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Most distorted-waves direct-reaction calculations rely upon a "zero-range approximation." In the present 
article some of the errors caused by this approximation are discussed, and a general method suitable for 
numerical computation is described which does not use this approximation. Applications to stripping and 
knock-on reactions are described in detail. 

I. INTRODUCTION 

THE distorted-waves Born approximation (DWB) 
is used in nearly all nuclear direct-reaction 

theories.1,2 In this approximation the transition am
plitude is computed as a first-order matrix element 
between channel wave functions for the colliding sys
tems A, a and the separating systems B, b. That is, 
the DWB transition amplitude for the reaction A (afi)B 
has the form of a matrix element between product 
wave functions: 

r6 a=(^6X&
(- )(h& , r&) ,F^^X a(+)(k a , r a)) . (1) 

Here ^JS, ^&, ^ A , $a are the internal wave functions for 
the noninteracting, separated particles B, b, A, a. The 
interaction V is the interaction whose off-diagonal 
matrix elements are responsible for the transition, and 
its precise meaning depends on the particular reaction 
mechanism being studied. The functions X& -̂) and 
Xa

(+) are the "distorted waves."1,2 They are elastic 
scattering wave functions which describe the relative 
motion of the pair A, a before the collision, or of the 
pair B, b after the collision. Here Xa

(+) is a function 
of rtt, the displacement of a from A, and X&

(_) is a 
function of r&, the displacement of b from B. In practice, 
the functions Xa<

+) and X&<-> are generated from optical 
model potentials which are chosen to give a fit to the 
observed elastic scattering in the entrance and exit 
channels. 

Matrix elements of the form of Eq. (1) describe 
many kinds of processes, such as inelastic scattering, 
deuteron stripping, many-particle stripping, etc. Both 
the direct and exchange terms for these processes are 
of the form of Eq. (1). (Detailed discussions of some 
individual processes are given in later sections.) 

* A preliminary account of this work has been given elsewhere. 
pE. C. Halbert, R. M. Drisko, G. R. Satchler, and N. Austern, 
in Proceedings of Rutherford Jubilee Conference, 1961, edited by 
J. B. Birks (Heywood and Company, Ltd., London, 1962)]. 

f Supported in part by the U. S. National Science Foundation. 
t On leave from University of Pittsburgh, Pittsburgh, 

Pennsylvania. 
1 N . Austern, in Fast Neutron Physics, II, edited by J. B. 

Marion and J. L. Fowler (Interscience Publishers, Inc., New 
York, 1963). 

2 W. Tobocman, Theory of Direct Nuclear Reactions (Oxford 
University Press, New York, 1961). 

Evidently it is important to have accurate numerical 
evaluations of Eq. (1) in order to have useful com
parisons of the DWB theory with experiment. Unfor
tunately the numerical evaluation of Eq. (1) is difficult, 
so that simplifying approximations usually are intro
duced. The so-called "zero-range approximation" is 
especially important, and is used almost always in 
distorted-waves calculations which concern rearrange
ment collisions. This approximation owes its importance 
to the fact that in a rearrangement process no two of 
the wave functions which appear in Eq. (1) have quite 
the same argument. In particular, the vectors xa and 
r& differ from each other. Thus, the evaluation of Tba 

requires at least a six-dimensional integration, over 
the space of these two vectors. The other arguments 
are related linearly to xa and r&. However, when these 
relations are used to express the integrand in terms of 
a nonredundant set of independent variables there is 
not, in general, any analytic simplification. Thus, Tba 
has to be computed numerically as a general integral 
in six dimensions, whereas, the zero-range approxi
mation introduces a delta function in the integrand 
which reduces Tba to a three-dimensional integral. 

To understand better the zero-range approximation, 
it is convenient to first isolate in Eq. (1) the matrix 
element of the interaction F, taken between the in
ternal states: 

> - / • (Bb\ V\Aa)^ / ^ V W i W i - (2) 

Here £ represents all the coordinates independent of 
rfl and r&. Thus Eq. (2) expresses those portions of the 
calculation of Tba which involve the internal states, and 
which do not concern the scattering wave functions 
Xa

(+) and X6(->. As a result, the calculations of Eq. (2) 
generally are fairly easy, and largely analytic. (Also it 
is helpful for physical understanding that calculations 
involving the internal states be separated from those 
involving the scattering states, because these are under
stood on different terms.) Of course the matrix element 
(2) remains a function of r0 and r&. It plays the role of 
an effective interaction or form factor for the transition 
between the elastic scattering states Xa

(+) and X6
("~). It 
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contains all the information on nuclear structure, angu
lar momentum selection rules, and even the type of 
reaction being considered (whether stripping, or in
elastic scattering, or knock-on, etc.). In terms of this 
matrix element the calculation of the DWB amplitude 
then is completed in the form 

Tba= fdrajdrbXb^^(kb)rb) 

X(Bb\V\Aa)Xa«)(ka,ra). (3) 

It is Eq. (3) which presents problems of calculation. 
The integration still extends over both the variables 
ra and rb. Both these variables appear in the form 
factor, in a way that generally makes Eq. (3) a difficult 
six-dimensional numerical integral. In most current 
distorted wave calculations, this difficulty is removed 
by the assumption that the form factor (2) has a very 
small range in (TaA—r&^), perhaps because V has a 
small range, or perhaps because the internal wave 
functions have small ranges. This zero-range assump
tion has the physical meaning that particle b is assumed 
to be emitted at the same point at which particle a 
is absorbed, so that rb— (MA/MB)*^ where MA and 
MB are the masses of A and B. As a result, Eq. (3) is 
reduced to a three-dimensional integral, and this 
greatly facilitates its computation. 

Only for the direct term of inelastic scattering (and 
with a local interaction) is the zero-range approxima
tion not used. In this simple case the variables rb and 
xa are equal, the form factor becomes a function of 
only one variable, and the matrix element (3) auto
matically becomes a three-dimensional integral. 

It has not been clear up to the present how much the 
zero-range approximation affects the calculated angular 
distributions, and in what cases the effects are strongest, 
etc. For some guide to these effects one can consider the 
Fourier transforms of the product Xa

(+)X5(-)* and of 
the form factor (2), using as one of the two variables 
in these expansions the momentum conjugate to 
r&— (MA/MB)* a (the argument of the delta function in 
the zero-range approximation). Then the zero-range 
approximation is based on the assumption that the 
important components of this momentum in Xb

(-)*Xa
(+) 

are much smaller than the momenta at which the 
Fourier transform of the form factor (2) begins to 
decrease appreciably. This implies the approximation 
will be most accurate in reactions which have small 
momentum transfer, such as medium-energy deuteron 
stripping, or inelastic scattering. It is expected to be 
inaccurate for exchange terms, or for "heavy-particle 
stripping" terms, because in these cases the form factor 
is not very localized, and itself involves small momenta. 
The zero-range approximation probably also is rather 
inaccurate in treating the contributions from reactions 
occurring inside the nucleus; it probably over empha
sizes the importance of such contributions. The average 
momenta in Xa

(+) and X&(_) are greatest in the nuclear 

interior, so that there, especially, the delta function of 
the zero-range approximation introduces correlations 
between these rapidly varying functions, without which 
considerable cancellations might occur in the integral 
(3). So there has been much interest in eliminating 
this zero-range approximation from distorted wave 
calculations,3 and in understanding the specific effects 
which are related to its elimination. 

In Sec. 2 we give some further qualitative discussion 
of finite-range effects. Then in Sec. 3 we describe a 
scheme of numerical calculation by which Eq. (3) is 
computed exactly. Later sections give specific formulas 
for the cases of stripping and exchange scattering, while 
the treatment of a general form factor is indicated in 
the Appendix. Detailed numerical results of the appli
cation of this theory to various nuclear reactions will 
be described in a later publication. 

The procedure to be described makes possible the 
accurate evaluation of conventional DWB matrix ele
ments, all of which are of the form of Eq. (3). However, 
there are other aspects of the conventional treatment 
which may be questioned, aside from the zero-range 
approximation itself. For example, 

(i) weak coupling is assumed; that is, the theory is 
first order in the interaction V, and higher orders are 
assumed to be negligible. 

(ii) even within the nucleus, it is assumed that the 
motion of a complex particle such as a deuteron may 
be described in terms of its center-of-mass motion, 
without dissociation or internal excitation of itself or 
the nucleus (except insofar as this can be described by 
simple absorption). 

(iii) usually, certain interaction terms, such as that 
between the proton and target nucleus in a (d,p) 
reaction, or some exchange terms, such as heavy par
ticle stripping, are neglected. 

The question may be raised whether it makes sense 
to correct the zero-range approximation without simul
taneously—or first—correcting some of the others. In 
particular, the finite-range correction involves detailed 
correlations within the nuclear interior, the very region 
where the approximate wave functions are at their 
worst. 

Nevertheless, we believe it reasonable and worth
while to determine the effects of finite range super
imposed on a conventional distorted-wave treatment. 
The zero-range approximation is probably by far the 
easiest one to correct. Also qualitative results may be 
enlightening. First: there may be some interesting 
changes in the nuclear surface region, where the ap
proximate wave functions are probably quite good. 
Second: just because contributions to the reaction in
tegral (3) from the nuclear interior are particularly 
subject to error, it is of interest to determine whether 
their importance depends on the zero-range approxi-

3 E. C. Halbert, R. M. Drisko, G. R. Satchler, and N. Austern, 
in Proceedings of Rutherford Jubilee Conference, 1961, edited by 
J. B. Birks (Heywood and Company, Ltd., London, 1962). 
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mation. If the introduction of finite range does produce 
a general suppression of these contributions, then errors 
in the interior wave functions become less disturbing. 
Finally, concerning point (iii) above, a finite-range 
computer program will for the first time allow a 
realistic appraisal of the importance of many of these 
terms. 

II. QUALITATIVE DISCUSSION OF FINITE-RANGE 
EFFECTS: PLANE WAVES AND LOCAL WKB 

An exact treatment of finite-range effects is easy in 
the plane-wave Born approximation, and the results 
obtained in this manner are familiar in the important 
case of deuteron stripping.1,2>4 I t is interesting to review 
these results, and to indicate qualitatively how they 
may extend to other reactions and in what way they 
may change if distorted waves are used. 

The coordinate system for a (d,p) reaction is shown 
in Fig. 1, with n—x,d=a, p=b. In terms of the general 
notation of the preceding section, the variables indi
cated here have the meanings: ra=tdj Tb—*p, while 
rxA = rn. If for the present discussion we ignore the 
spins of the neutron and proton and the target nucleus, 
then ^&=1 and ^ A = 1 , and the transition amplitude 
reduces to the form 

dp~ dr. , drJCp<-> *(kp,'p¥n*(rn) 

XV(\rn~rp\)M\tn-rp\)Xdw(kdjrd). (4) 

Here \pn is the wave function for the captured neutron. 
I t is convenient to introduce the abbreviation 

D(rPn) = V(rPn)fa(rPn), (5) 

where rpn~rp—xn. If the interaction V has zero range 
this quantity D reduces to a delta function: 

D=Vxpd=-(4Tyf2(¥/M)Nd(rpn) (zero-range), (6) 

where M is the nucleon mass and N is the asymptotic 
normalization factor for the deuteron. From effective-
range theory, 

iV= (2 7 ) 1 / 2 [1 -7P<(- € , - € ) ] - 1/2 

where e=fi2y2/M is the deuteron binding energy, and 
Pt{~e, — e) is the triplet effective range.1 If the inter
action has finite range then Eq. (6) is not valid, but 
will be useful for comparison. In either case the am
plitude (4) is 

dp' •• I drp drnXp(-)*(kPyrp) 

Xblsn*(rn)D(rpn)lXdM(kd,rd). (7) 

The quantity in brackets is the "form factor," discussed 
in the Introduction. In zero range it reduces to a delta 

4 S. T. Butler, Nuclear Stripping Reactions, (John Wiley & 
Sons, Inc., New York, 1957). 

FIG. 1. The coordinate vectors for a general stripping reaction. 

function times the bound-neutron wave function, and 
the integral becomes a three-dimensional integral. 

In plane-wave Born approximation Eq. (7) can be 
factored, even with finite range. First, the use of geo
metrical relations among the variables converts this 
equation to the form 

Tdp- dxn / drpnX/-^(kP)(MA/MB)rn+r:pn) 

XbP^(rn)D(rpn)ycd^(kdjrn+irpn). (8) 

Then replacement of the distorted waves by plane 
waves yields 

dp = / ^n*0*) exp*[r n - (k d - (MA/MB)K)ldrn 

X / D(rpn) expt[rpn- (|kd—kp)~]drpn. (9) 

Because the arguments of the Xp and Xd in Eq. (8) 
are each displaced from the common value r„, there 
appears in Eq. (9) an averaging of the finite-range 
function D. This averaging involves the momenta of 
the continuum wave functions. Finite-range effects ex
press themselves in Eq. (9) as a departure of the second 
factor from the simple constant value — (£ir)1/2(h2/M)N, 
which it assumes in zero range. For example, if a 
Hulthen wave function is used for the deuteron, the 
second integral of Eq. (9) becomes 

- (4TT)I/2(^/^)^{ (r2-72)[r2+ (ikd-k*)2]-1}, (io) 
where G " / T ) « 7 , as usual. Eq. (10) is familiar from 
discussions of Butler stripping theory.1-2'4 Experience 
with the application of Eq. (10) for medium-energy 
stripping reactions has shown that the finite-range cor-
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rection factor usually introduces only minor changes 
in the shape of the Butler angular distribution, but 
reduces the magnitude of the peak cross sections by 
about 20%.5 

Thus, there is a well-marked tendency for finite-range 
effects to reduce the cross section, because of averaging 
of the variable xpn over the oscillations of the con
tinuum wave functions. Inspection of Eq. (8) suggests 
that a similar averaging should occur if distorted 
waves are used, but with the modification that in the 
finite-range correction factor the asymptotic momenta 
kp and kd should be replaced by the "local momenta" 
of the waves XpH a n cj xd^ in the vicinity of the 
common argument rn. In a formal approach these local 
momenta are found in the "local WKB approximation," 
in which trigonometric interpolation is used to repre
sent the distorted waves Xp<-> and %d(+) within a small 
region about each point rw. For example, in Eq. (8) 
the function Xd

(+) depends on the two variables rn 

and tpn. In the local WKB method we approximate the 
dependence on rpn as being trigonometric, with a wave
length determined from the local kinetic energy, and 
with an amplitude and phase determined from the 
properties of Xd

(+)(kd,rn). However, in whichever way 
the local momenta are introduced, it is evident that 
we thereby obtain a finite-range correction factor which 
depends on rn, which must then be carried in the inte
gration over r». (At present some use is being made6 

of the local WKB method in numerical calculations.) 
We can next argue that because momenta are expected 
to be at their largest in the nuclear interior, the most 
important finite-range averaging is expected to occur 
there, with a consequent reduction of the relative im
portance of the contributions to the reaction amplitude 
from the nuclear interior. Indeed it is very appealing 
to find a reason for anticipating some suppression of 
contributions from the nuclear interior, inasmuch as 
it is already known that such suppression often im
proves the agreement between zero-range DWB cal
culations and experiment.7 

In the finite-range correction factor of Eq. (9), the 
momenta kp and ka are subtracted. Hence, at the 
important forward scattering angles in the (d,p) reac
tion, the averaging of D involves a net momentum 
(kp— |kd) which, at the medium energies usually em
ployed, is not very large compared to the inverse of the 
range of D(rpn) (which is of the order 1.5 F). However, 
in other types of reactions, the averaging may involve 
net momenta and ranges which are much larger, and 
may cause major modifications of the cross sections. 
Such may be the case for so-called heavy-particle 

5 A. Hamburger (private communication); C. R. Lubitz, Nu
merical Table of Butler-Born Approximation Stripping Cross Sec
tions (University of Michigan, Ann Arbor, Michigan, 1957). 

6 W. R. Gibbs (private communication). 
7 R. H. Bassel, R. M. Drisko and G. R. Satchler, Bull. Am. 

Phys. Soc. 8, 57 (1963); G. R. Satchler, in Direct Interactions and 
Nuclear Reaction Mechanisms, edited by E. Clementel and C. Villi 
(Gordon and Breach, Science Publishers, New York, 1963). 

stripping; for a (d,p) reaction the appropriate momen
tum is then (kp+kd/MA) and the "range" is of the 
order of the nuclear radius. Knock-on scattering, dis
cussed in Sec. VI, also gives rise to large momentum 
transfers, and is accordingly sensitive to finite-range 
effects. 

These qualitative ideas are discussed again in Sec. 
VI. It will be noted there that the above discussion of 
them has been somewhat over-simplified. 

III. DERIVATION OF THE EXACT FORMULAS 

We now describe the procedures by which the dis
torted-waves amplitude of Eq. (3) is computed nu
merically, without use of the zero-range approximation. 
It will be seen that the basic formal structure of the 
calculation, in its use of spherical harmonic expansions, 
is the same as in the zero-range case, so that much 
of the coding done for zero-range calculations can be 
taken over intact, and so that detailed comparison 
with zero-range results is straightforward. 

The amplitude (3) must be specified more carefully. 
If the spins of the particles are designated J A, JB, sa, 
and Sb, and their corresponding z components by MA, 
MB, wa, and mb, respectively, then the amplitude (1) 
becomes 

Tba^(JBMB,sbmb,kh\V\JAMA,sania,ka) 

= JdtajdrbXb^^(kbyrb) 

X(JBMB,sbmb\ V\JAMA,sama)XaW(ka,ra). (11) 

It is convenient to expand the form-factor matrix ele
ment in the usual manner,8-9 such that each term in 
the expansion corresponds to the transfer to the target 
nucleus of a definite angular momentum j , which in 
turn is comprised of an orbital part I and a spin part s, 
according to the vector coupling 

J = JB—JA, s=sa—S&, j = l + s . 

The multipole series for the matrix element can be 
written with Clebsch-Gordan coefficients10 

(JBMB,sbinb | V | JAMAjSama) 

= £ (JAJMAMB-MAUBMB) 
Isj 

X (lsmma ~-mb\ JMB — MA ) 

X(sasbma, —mb\sma--nib)(--)
sh--mhi~l 

XGiajm(rb,ra',bB,aA), (12) 

where tn~ Ms+mb—MA—fna. The symbols bB, aA 

8 G. R. Satchler, Nucl. Phys. 18, 110 (1960). 
9 R. H. Bassel, R. M. Drisko and G. R. Satchler, Oak Ridge 

National Laboratory Report No. 3240 (unpublished). 
10 D. M. Brink and G. R. Satchler, Angular Momentum (Oxford 

University Press, New York, 1962). 
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as arguments of G denote the dependence on the various 
nuclear quantum numbers. I t will be convenient later 
to have the inverted form of this expansion 

Gl8jm=ilt(2l+1)/(2JB+1)'] 

X £ {—)sb"-mh{lsmma—mb\jMB—MA) 

MBMAmbma 

X (JAJMAMB—MAI JBMB)(sashma, —mb\ sma— mb) 

X (JBMB,sbtnb | VI JAMAisafna). (13) 
The phase factor il is included to ensure convenient 
time reversal properties.10 By its construction, Gisjm 

transforms under a rotation of the coordinate system 
like the spherical harmonic F*m*. Another property 
carried by G is the parity of the nuclear transition, 

U = 7r(a)Tr(A)w(b)Tr(B) , 

where ir(i) is the parity of the internal state of particle i. 
[[Since G is a function of two position vectors, this parity 
is not generally related to /. Only in the zero-range 
approximation is the parity of G necessarily given by 
(~~)z-] I t is helpful to write G as the product of two 
factors, 

Gujm{Xh,ta)=
: AujfujmK^b^a) • ( 14 ) 

The separation into a spectroscopic coefficient (or 
"reduced width*') AUJ and the form factor fiSj,m is one 
of convenience, so that for example, standard types of 
form factors with simple normalization may be used in 
computation. In general A isj carries such quantities as 
fractional parentage coefficients for the initial state and 
final state, and also the overlap integral of the two 
parent states. 

The expansion (12) has the convenience that (in 
the absence of spin-orbit coupling in the distorted 
waves) the different values of /, s, and j contribute 
incoherently to the differential cross section. Even with 
spin-orbit coupling, j remains incoherent. In any case, 
often only one value of /, s, and j is allowed, or is 
important, and we shall concentrate on one such term. 
Neglecting spin-orbit coupling, we then define partial 
amplitudes by 

(2l+l)H%^(kb,ka) 

= Mra^r,X&(-)*(k& ,rb)/Z s i m(r6 ,ra)Xac+)(ka ,ra). (15) 

The differential cross section is then given by 

d(T fJLafAb kb2JB+l \Aisj\
2 

= ]T . . £ I / V ' m l 2 , 
do> (2T¥)2 ka2JA+l uj 2sa+l ™ 

where \xa is the reduced mass of the pair #, A, etc. 
(From now on, for simplicity we will drop the labels 
s and j , as these play no part in the calculation now 
to be described.) The finite-range problem has become 
the problem of evaluating Eq. (15). 
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For the distorted waves in Eq. (14) we use the 
familiar1'2'9 partial-waves expansions 

X«(+)(W«)-(V*«r«) 
X E iLaX^aKKra)YLa^{fa)YLa

M^{ka), (16a) 

LaMa 

Xh^*(kb,rb)=(iir/kbr„) 

X Z * - ^ < w ( f t » , r k ) F L « K ^ ) I V f t * & ) - (16b) 
LbMb 

Here f denotes the polar angles of the vector r, etc. 
These expansions are almost the only orderly approach 
to computation of the distorted waves, and are integral 
parts of all accurate distorted-waves computer pro
grams. Also, since the form factor fim transforms like 
Fjm*, its expansion into a double series in spherical 
harmonics of fa and fb takes the form 

flm(tb,Ia) 

= E FlLbLa{n,ra)YLb
M*(.h)YL™-M*(ta) 

LaLbM 

X(LbLaMm-M\lm). (17) 

The Clebsch-Gordan coefficient displays the selection 
rule 

\La—Lb\ ^l^La-\-Lb, 

which limits the double summation. By inversion we 
have 

FiLhLa(rhra) 

^Y,(LbLaMm-M\lm) 
M 

X fdfa fdfbflm(rhra)YLb
M(fb)YLa

m-M(fa)• (18) 

Then in terms of this expansion of the form factor and 
in terms of the partials wave-expansions (16), the result 
of integration of Eq. (15) becomes 

(2/+l)*j8'-(k6,ka)=(16^/ft fc*a) E iu~Lb~llLbLa
l 

LaLb 

X L (LbLMm~M\lm)YLb
M*(h)YLa

m-M*(ka), (19) 
M 

where the radial integrals are 

lLbLa
l= I radra rbdrbXLb

(b)(kb,rb) 

XFlLbLa(rb,ra)xiJa)(ka,ra). (20) 

The expression (19) simplifies if we choose the z axis 
along ka and the y axis along k t tXk&, and put 6 as the 
angle between ka and kb; then for m>0, 

X £ iL*+L*~l(2Lb+l)*(LiJm, -m\La0) 
LaLb 

Xl(Lb-m)l/(Lb+m)lJPLir(e)ILbIJ, (21) 
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while for w < 0 we have the symmetry relation 

Qlm—: T]Y \mQl— m 

Here II is the parity of the nuclear transition, hence of 
the form factor, as discussed earlier. Thus, the finite-
range problem reduces to the problem of evaluating the 
radial coefficients in Eq. (18) and carrying out the 
integrals of Eq. (20). Of course both steps are much 
lengthier than the corresponding steps in a zero-range 
calculation, even though the sum in Eq. (21) has exactly 
the same structure as in zero range. 

In the special case that the form factor fim(rbira) has 
the parity 11= (—)*, under simultaneous inversion of rb 

and ra, the comparison between zero range and finite 
range becomes especially close. Many important physi
cal applications have this property, which we may call 
"normal" parity. For example, in deuteron stripping 
(with neglect of tensor forces and the deuteron D state), 

flm (tpjd) = fam* (tn)D (rpn) , 

and 

The parity here is the parity of the bound-neutron 
wave function. With normal parity, Eq. (18) yields 
the selection rule 

L a + L & + / = e v e n number. 

This same selection rule appears automatically in all 
zero-range calculations, because in these calculations Eq. 
(18) reduces to an integral over three spherical har
monics which have the same argument; such an integral 
is proportional to the factor (LblfiO\Lafi), which 
vanishes unless La+Lb+l=even number.10 Evidently 
for the case of normal parity the sum in Eq. (21) 
includes the same terms as in the zero-range case, and 
we can rewrite the amplitude (21) so as to display 
formally the geometrical factors which are used in the 
zero-range calculations.2•9,n The expressions become 

p^=(2^/kakh) z rLbLj™pL(r(e)jLbLa\ (22) 
LbLa 

where 

JLbLa
l= (-)^2^ILbLJ/(2Lb+iyi\Lbl00\La0), (23) 

and the gamma coefficient 

TLbLJ^i^-L^K2Lb+l)l(Lb-m)l/(Lh+m)Q^ 

X(Lbl00\La0)(Lblm, -m\La0), (24) 

is identical to that used in the zero-range approxima
tion.9,11 In this form the only change required from 
current zero-range calculations is in the technique of 
evaluation of the radial integrals 7L&L0

Z. The generaliza
tion to a calculation which includes spin-orbit coupling 
in the distorted waves is simple. The T are replaced 

11 R. H. Bassel, G. R. Satchler, R. M. Drisko, and E. Rost, 
Phys. Rev. 128, 2693 (1962). 

by more complicated geometrical coefficients which 
depend also on s, j , ma, Mb, J a, and Jb (where J a = L a 

+ sa, etc.), and which also appear in the corresponding 
zero-range calculation. At the same time the correspond
ing spin-orbit distorted waves have to be used. Other
wise the structure of the formalism is unchanged. (The 
formalism which has been coded includes the possi
bility of spin-orbit coupling for spin- | or spin-1 
particles.) 

The most difficult step of the finite-range calcula
tion lies in the evaluation of the "nonlocal" kernels 
FiLbLa(rb,ra) of Eq. (18). The subsequent double radial 
integral of Eq. (20) is reasonably convenient for nu
merical integration, once the nonlocal factors have 
been determined. These factors incorporate essentially 
all the physics which distinguishes different types of 
reactions, and different models for a particular reac
tion. I t is worth noting that they do not depend upon 
the bombarding energy (provided V is energy inde
pendent) or upon the parameters which characterize 
the distorted waves. Hence, a particular set of kernel 
functions FiLbLa

 m a y D e u s e d in many different calcu
lations. Since, by far, the greater part of the computing 
time goes into evaluating these functions, considerable 
savings may be made this way. 

I t must be expected that special methods will be 
developed to evaluate these nonlocal kernels in different 
cases. Later sections are devoted to discussions of 
some special methods. Evidently a well-designed nu
merical procedure should treat the calculation of the 
nonlocal kernels as a distinct unit, which can easily 
be changed. However, one trick used for evaluating 
the nonlocal kernels is general, and shall now be 
described. 

For Z=0 the integral of Eq. (18) is the expansion of 
a scalar. As a result three of the four angle integrations 
may be done immediately, and 

FoLL(rhra)=(-)L2w(2L+iyi* 

Xj Mth,Ta)PL(n)dv, (25) 

where /x= (fa*fb) is the cosine of the angle between 
ra and r&. We shall now show that for 1^0 it is always 
possible to reduce Eq. (18) to a finite linear combina
tion of integrals of the type of Eq. (25). In general, 
fim(*b,*a) is a product of several factors, each of which 
may be nonscalar and contain a spherical harmonic of 
the polar angles of a vector r which is some linear com
bination of xa and r&. Many reaction models are in
cluded in a form of fim which has three factors, at 
least one of which is scalar. A general treatment of 
such a form is given in the Appendix. The basic trans
formation used is one which converts the spherical 
harmonic Yim(r), where 

r=sra+trb, 
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into spherical harmonics in fa and fb separately, namely,12 

/2H-1V'2 

f z F r W = = £ [ 4 7 r / ( 2 x + l ) ] i / 2 ( ) (sray-*(trb)* 

A* \ 2X / 

X (l-\\m-w | lfn)Y^™-»(ra) Y^(fb), (26) 

where X runs from 0 to /, and 

O xl 

yl(x—y)l 
is the binomial coefficient. [The derivation of Eq. (26) 
may be based on the principle that a solid harmonic 
of a vector r is a homogeneous polynomial in the 
Cartesian coordinates of r . ] Because the values of I 
which are of most interest are usually rather small, the 
sum in Eq. (26) includes only a few terms, and leads 
to a very convenient reduction of Eq. (18) into inte
grals over the one variable y. Illustrations of the ap
plication of this method are given in the next section. 

The zero-range equivalent of a form factor must be 
so normalized as to yield the same results yielded by 
the exact form factor in the limit that the distorted 
waves have infinite wavelength. I t therefore is 

fim^o) (r*,r«) = 8(tb- (MA/MB)ra) 

X JfU(MA/MB)ra+s,ra)ds. (27) 

The radial integrals JLbLa
l computed in finite range 

may be compared one-for-one with those computed 
from Eq. (27), to see in detail what are the finite-range 
modifications. 

IV. STRIPPING 

Here the projectile is assumed made up of the emitted 
particle b and another particle x which is captured by 
the target, so that the course of the reaction is 

a+A -> (b+x)+A -> b+ (x+A) -> b+B. 

[For a (d,p) deuteron-stripping reaction, for example, 
we have a— d, b—p, x—nJ] The interaction responsible 
for the transition is taken to be Vbx, usually assumed 
central- and spin-independent, so that Vbz= Vbx(rbx). 
In deuteron stripping this interaction is Vpn> We also 
usually consider reactions in which b and x are initially 
in an s state of relative motion within a, and only give 
attention to more complicated kinds of relative motion 
for x and A within B. This is appropriate for deuteron 
stripping; stripping from non-5 states is discussed in the 
next section. We therefore develop a scheme of analysis 
for the special case of 5-state projectiles and central 
interactions, with the understanding that it is applicable 

12 This result has also been derived by M. Moshinsky, 
Nucl. Phys. 13, 104 (1959), and by M. K. Banerjee (private 
communication). 

for deuteron stripping, and that it is also applicable to 
many other stripping reactions by simple changes of 
numerical values of parameters. 

From the discussion of the preceding sections it is 
evident that the form factor is 

fim(rb,ra) = ityim*(rxA)D(rbx), (28) 
where 

timto^fuii^Yrif) (29) 

is the normalized wave function for the bound state of 
the captured particle, that is, for the relative motion 
of A and x within B. The factor D was discussed in 
Sec. I I . I t is the product of the interaction Vbx times 
the internal wave function of a. In our special case D 
is a scalar, 

£>(rbx)= Vbx(rbx)\pa(rbx). 

In zero range, D becomes proportional to a 8 function. 
We now rewrite the form factor in terms of the standard 
variables r& and ra, the displacements of b and a from 
B and A, respectively. The transformation of variables 
is determined from the geometry, as shown in Fig. 1, 
giving 

rXA = oi(ra—yrb), rbx=a(rb—8ra), (30) 

where a, y, 8 are various ratios, 

a=aB[x(A+a)']-\ y= (b/o) 9 8=(A/B), 

of the masses of particles a, A, b, B, and x. I t is the 
form factor of Eq. (28), using the variables of Eq. 
(30), which must now be introduced into the calcula
tion of the angular integrals of Eq. (18). 

Because D is a scalar it is already of the convenient 
type treated in Eq. (25). However, the transformation 
of solid harmonics of Eq. (26) must be used for the 
wave function. The wave function is first rewritten as 

tim(r) = ilwi(r)[rlYim(f)~]. (31) 

The factor wi(r) = r~lui(r) is well behaved a t r=0, 
inasmuch as any eigenfunction ui must be proportional 
to rl near r=0. Then we may use the expansion (26) 
for the solid harmonic in brackets in Eq. (31). The re
maining, scalar, part of fim is the product wi(rxA)D(rbx)y 

and is a function of the scalar variables 

r XA=a[ra
2+y2rb

2— 2yrarbfi\
112, 

rbx=aZ8W+rb
2~28rarb»Jl*, (32) 

where /*= (fa-fb) is the cosine discussed in connection 
with Eq. (25). The integration over /x is equivalent to 
an expansion of this scalar part of fim, 

ivi(rXA)D(rbx)=jr (K+±)gK(rb,ra)PK(uL), (33) 

where, by inversion, 

gK(rb,ra)= dfiwi(rxA)D(rbx)PK(fjL). (34) 
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FIG. 2. Triangular inequalities for the Racah coefficient 
W(abcd; ef). For this coefficient not to vanish, any three colinear 
quantities must be able to form a triangle. 

Upon introducing these expansions into Eq. (18) the 
radial factors are finally found to be 

FiLbLa(n,ra) = a^T(2l+l)Ji' 

X Z (ra)H-yrby-*(-)K(2K+l)gK(rb,ra) 

X ( | x ) 1 / 2 ( ^ 0 0 1 La0){l-\K001 L50> 

XW(La\Lbl-\;Kl). (35) 

The W is a Racah coefficient which arises when we 
combine and integrate the pairs of spherical harmonics 
from Eqs. (33) and (31), and sum the associated 
Clebsch-Gordan coefficients over magnetic quantum 
numbers.10 There are certain selection rules implied by 
Eq. (35) which restrict the numbers of terms con
tributing. For the Racah coefficient W(abcd,ef) to be 
nonzero, all the connected triads in the pyramid shown 
in Fig. 2 must satisfy triangular inequalities, so that 
in the present case, 

\Lb-l\<La<Lb+l, 

0<\<l, 

\La-\\<K<La+\, 

\Lb-K\ <l-\<Lb+K. (36) 

Further, parity conservation (exhibited in the Clebsch-
Gordan coefficients) requires that only even values of 
(La+Lb+l), (La+K+\) and (Lb+K+l-X) enter. 
The first of these is the condition we called "normal 
parity," such that the finite-range calculation has the 
formal structure of a zero-range calculation with altered 
radial integrals, as in Eq. (22). 

Under the above selection rules both the K and X 
sums in Eq. (35) are finite, and are convenient to 
perform. The values of X are small numbers, because 
I is a small number. The values of K are limited to a 
small range in the vicinity of La and Lb. Both these 
sums are consequences of the introduction of the finite-

range interaction and collapse to closed form in the 
zero-range limit. We see this most easily by noting 
that in the zero-range limit 

where Do is some appropriate constant, and that gK 
then is easy to evaluate 

gK (zero-range) = (Do/27r)wi(ra)8(rb—5ra)/o?rb
2. (37) 

This limiting form for gK is independent of K, and, 
therefore, standard theorems about Racah coefficients10 

enable the K sum in Eq. (35) to be performed. The 
remaining sum on X then is also easy, and finally, 

FiLbLa (zero-range) 
= Dorb~

2d (rb— 8ra)ui (ra) 

X[(2L a +l ) (2L & +l ) /47 r (2 /+ l ) ] 1 / 2 

X(L&L„00|Z0). (38) 

One of the more important points at which to identify 
finite-range modifications, therefore, is in the functional 
structure of the gK(rb,ra), the expansion coefficients of 
the scalar part of the form factor. With finite range it 
is clear that the gK must drop off rapidly with K for 
the higher K values, merely because Px(/x) in Eq. (34) 
is oscillatory, and it is clear that this effect must be 
most important at small radii. (As an extreme ex
ample of this, we note that in the limit that both wi 
and D are constant, gK vanishes unless K=0.) Finite-
range modifications that are related to properties of 
the bound, final-state wave function \l/im(rxA) also show 
up in the K dependence of the gK- The other source of 
finite-range modifications in the stripping amplitude 
is the oscillations of the distorted waves themselves. 
These oscillations affect the double radial integrals of 
Eq. (20) insofar as the gK depart from S-f unction form. 

The calculational procedure used for stripping can 
now be summarized: (i) First Eq. (34) is applied, to 
determine the expansion coefficients gK(rb,ra). (ii) 
These coefficients are introduced into the sum, Eq. 
(35), and the radial factors FiLaLb(rb,ra) thereby de
termined. (iii) These radial factors are introduced into 
the double radial integral, Eq. (20), and the coefficients 
in Eq. (22) for the stripping amplitude thereby deter
mined. (iv) Physical quantities of interest are evaluated 
from the amplitudes (22) as in standard zero-range 
calculations. 

Step (i) in the above sequence, the determination of 
the gK(rb,ra), is the only step which is really trouble
some. In our present procedure this step is performed 
by straightforward numerical integration of Eq. (34) 
for each value of K, and for all those pairs of values 
of rb and ra which lie in a band centered around the 
zero-range line, rb=8ra. This procedure is general. I t 
may be used for applications in which D has an ap
preciable range, say, for reactions induced by heavy 
ions. If D actually has a fairly small range then only 
a narrow band of values of r&, ra need be used, and it 

D(rbz)-~>Do8(rbx), 
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might be supposed that the method would simplify. 
Unfortunately this general method does not simplify, 
because adequate representation of a short-ranged D 
requires use of a finely spaced net in r&, ra. I t is inter
esting, therefore, that Eq. (34) can be integrated 
analytically if D has Gaussian form, and if the wave 
function Wi(rxA) can be treated as constant. Further
more, the entire Eq. (34) can be integrated analytically 
if D has Gaussian form and if \pim is an eigenfunction in 
a harmonic oscillator potential, and in this case the 
result of integration is a sum of modified Bessel func
tions of half-integer argument. This latter fact has 
disadvantages for practical calculations of deuteron 
stripping, because oscillator eigenfunctions are un-
physical in the region of the nuclear surface and 
beyond, where usually the largest contributions to the 
reaction originate. Similar objections can be raised 
against other forms for wi which can be expanded 
analytically. However, the analytic integration of Eq. 
(34) with a Gaussian D and oscillator wi might be 
useful for checking the accuracy of a numerical pro
cedure of integration. 

Another useful check of the numerical procedure is 
obtained in the plane-wave limit. Although the use of 
this limit for the distorted waves X0<

+) and X6<~> does 
not simplify the calculation of gK(rb/a), it does yield 
a simple factored form for the over-all amplitude, as 
explained in Sec. I I . The finite-range amplitude is then 
simply the zero-range amplitude multiplied by the 
Fourier transform of the range function D. Calcula
tion using the numerically evaluated g#(r &/«) must be 
able to reproduce this result. 

If much calculation with fairly short-ranged func
tions D is to be performed, as, say, for deuteron strip
ping, then it might be profitable to shorten the calcula
tion of Eq. (34) by expanding separately the two 
functions which enter. In terms of the two Legendre 
expansions 

Wiq(rb>ra)= diiwi(rxA)Pq(p)y (39) 

Dp(rb,ra)= f dtxD(rbx)PM, (40) 

we obtain for g#(f &,ra) itself the expansion 

gK(rbyra) = 7r E l(2p+l)(2q+l)/(2K+l)1 

X(pq00\K0)WlqDp. (41) 

Now special methods can be applied for the expansion 
of wi and D separately, which cannot be applied for 
the expansion of their product. In particular, because 
D is not very precisely defined, physically, it is nor
mally possible either to use a function D whose ex
pansion can be computed analytically, or to choose a 
convenient analytic set of Dp as the definition of D. 
These coefficients would then be common to all strip

ping reactions initiated by a given type of projectile, 
and would therefore not need to be computed separately 
for each application. The expansion would then be 
very convenient if the coefficients Wiq should drop off 
sufficiently rapidly with q, so that only a few need be 
carried. [These coefficients certainly must be computed 
numerically, because any physically interesting Schrod-
inger eigenfunction Ui(rxA) is only known numerically.] 
I t is of interest, therefore, that if D has a short range, 
then the relevant Wiq do drop rapidly with q. For 
deuteron stripping probably only two or three of these 
coefficients need be carried, and these are available 
without much calculation. 

The properties of the Wiq are seen by considering in 
detail the function wi(rxA), 

wi(rxA) = wi(a\ja
2+y2rb

2—2yrarbiJ>J12) 
^wl(al(ra--yrb¥+2yrarb(l--ii)J!*). (42) 

A Legendre series in fj, is a rearrangement of a power 
series in /x, or in (1—M), and converges rapidly if either 
of these other series converges rapidly. Now a short 
range for the function D emphasizes the region ju~l 
and ra~rb. Also, in deuteron stripping the parameter 
values in Eq. (42) are a—2, y~\. Then for radii ray rb 

which are large compared with the range of D it is 
clear from the argument in (42) that an expansion in 
(1—fx) has good convergence. For small ra and r&, 
good convergence follows for another reason—that in 
this region ui(rxA) is dominated by the centrifugal 
potential, and that, therefore, in this region wi(rxA) is 
approximately constant. A further way in which expan
sion of Wi is convenient is that the first two terms of 
the expansion involve the value and first two derivatives 
of wi, which are readily obtained. Higher terms can 
in principle be obtained by using the Schrodinger equa
tion as a recurrence relation for the power series ex
pansion of w\. As yet we have not tested this method 
numerically. 

Finally, two alternative schemes which have been 
used for including finite-range effects in stripping reac
tions should be noted. In the first,6 rxA and rbx are 
chosen as variables. Although this seems a natural 
choice when D(rbx) is of short range, it involves a 
Taylor expansion of the distorted waves. This must be 
carried out anew in every calculation, whereas the gK 
described above may be stored numerically and used 
in many calculations. A similar scheme13 uses ra and 
rbx as variables, which involves expansion of one dis
torted wave, X&(_), and of the bound-state wave func
tion \pim. 

The second scheme14 is closely related to the ex
pansion proposed above for D and wi separately, except 
that the whole calculation is carried out in momentum 
space. This then involves a Fourier expansion of the 
distorted waves, and again obscures the important and 

13 F. P. Gibson (private communication). 
14 D. Robson, Nucl. Phys. 42, 592 (1963). 
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useful factorization expressed in, for example, Eqs. (3) 
and (15). 

V. STRIPPING FROM NON-S STATES AND 
"HEAVY PARTICLE" STRIPPING 

In the detailed discussion of the preceding section 
it was assumed that the transferred particle x was 
originally in an S state of motion relative to b when 
they formed the projectile a. We consider briefly here 
the changes involved when this is no longer true. Such 
a generalization is required, for example, if the effects 
of the deuteron D state are to be included in deuteron 
stripping, or if the concept of stripping is to be ex
tended to other classes of reactions such as nucleon 
transfer in heavy-ion scattering. One such process, 
which has received considerable attention, is the so-
called "heavy-particle" stripping (HPS). Suggested 
some years ago, this is supposed to resemble ordinary 
stripping except that the role of projectile and target 
nucleus are interchanged. The emitted particle b now 
originates in the target nucleus, and by analogy the 
interaction responsible for the transition is that which 
binds b to the rest of the target nucleus. There is still 
considerable discussion as to the physical importance 
of this reaction mode, and even as to its precise theo
retical formulation. Nonetheless, bypassing the latter 
question, it is clear that any realistic study of the 
importance of HPS must take into account distortion 
effects.14 Further, the zero-range approximation is 
hardly appropriate here (both the bound state of 
b+x and the interaction Vbx now have "ranges" 
comparable to the size of the target nucleus). So it is 
of interest to discuss the application of the present 
techniques to HPS for the same simple 3-body model 
of stripping that was introduced in the previous sec
tion. The notation of the previous section immediately 
covers HPS if we interchange the interpretation of a 
and A as projectile and target, and write the HPS 
reaction as a(A,b)B. 

The more complicated types of stripping reactions 
just mentioned all are special cases of the basic formal
ism of the present article. Only the procedure of 
calculating the radial kernels of Eq. (18) becomes more 
complicated. The principal new feature here just is 
that the internal angular momentum of nucleus a, 
formed from b and x, will generally be nonzero, and 
that as a result the form factor fim will include two 
factors which are nonscalar under rotations, both of 
which have to be expanded by application of Eq. (26). 
The general treatment of this type of form factor is 
given in the Appendix. Not only is the discussion in 
the Appendix a generalization of the stripping formal
ism, but also of the formalism for the exchange-knock-
on process of our next section. There also the main 
text will emphasize a special case. The form of the 
general result for the radial kernels of Eq. (18) is seen 
in the Appendix to be very similar to that found in the 
last section, for example Eq. (35), except that the 

angular momentum algebra becomes more complicated. 
In particular the expansion of a nonscalar wave func
tion \[/a introduces an additional summation variable 
X' with attendant angular momentum coupling factors. 

VI. EXCHANGE-KNOCK-ON PROCESSES 

Here the target nucleus A is assumed made up of the 
emitted particle b and another particle (or "core") c, 
which captures the incident projectile a, so that the 
course of the reaction is 

a+A -> a+ (b+c) -> b+ (a+c) -» b+B. 

The interaction responsible for the transition is taken 
to be V^, the entire physical interaction between 
particles a and b, and this we assume to be central 
and spin independent, as in Sec. IV. This Vba presents 
some problems of principle, as it is partly responsible 
for the optical model interactions between a and A and 
b and B. However, the interest in the present paper 
concerns the kinematical structure of the integrals 
which arise, and therefore, to give the theory defmite-
ness, we ignore these questions and just regard Vba 

as a known, simple potential. 
Several illustrations of exchange-knock-on processes 

may be mentioned. These are (p,n) reactions, the ex
change terms in (p,pf) reactions, and the knock-out 
term in (d,p) reactions. The last one of these examples 
concerns a term which might compete strongly with 
normal stripping if the target nucleus has a very loosely 
bound nucleon. In all these examples some antisym-
metrization may be called for, and the knock-on am
plitude may be only one term of a linear combination 
of interfering contributions from different reaction 
modes. In any case, it should be computed. 

It is instructive to discuss a physical situation which 
presents a nontrivial and rather typical illustration of 
a knock-on process. We may imagine particles a and b 
to be spinless, and we may imagine nuclei A and B to 
each be described by a single parent state of the core 
c\ in these states c has angular momentum Jc, and b 
and a have angular momenta lb and laj respectively. 
Then the expansion (12) which defines the form factors 
fim is in general found to have several nonvanishing 
terms, arising from the coupling of la and lb to various 
values of /. Each term is weighted by the coefficient 
Ah whose I dependence is just that of the Racah 
coefficient W(lb,laJAJB; Z/c). This coefficient controls 
the importance of the contributions which the various 
angular momentum transfers I make to the physical 
reaction amplitude. Of course if there is more than 
one parent state Jc, or if a, b have spins, the coeffi
cients Aisj would not be just Racah coefficients, but 
would be more complicated.9 If in addition more than 
one pair of orbits la, h are involved, then each of the 
form factors fim which arise in Eq. (12) can be ex
pressed as a sum of terms like the ones we are about 
to discuss. In any case we learn from the example that 
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in a knock-on process several terms in Eq. (12) are 
likely to be important. Of course it remains true that 
the different terms of (12) make incoherent contribu
tions to the differential cross section, provided spin-
orbit coupling can be neglected. 

The form factor for our simple model is determined 
from Eqs. (13) and (14) to be 

fim(rb,ra) = il £ (UiMa, -ixh\lm){-)lh-^ 
VaUb 

Xha^^ac)Vba(rba)hbttb(nc) , ( 4 3 ) 

where the bound-state wave functions are 

M) = ilui(r)Yf(f). (44) 

From the geometry shown in Fig. 3, the variables in 
Eq. (43) are related by 

r«c=7/(ra+a/r&), r6c=7'(r6+/3'ra), 

rba= yrb— fra, (45) 

where the mass-ratio coefficients have the values 

y'=AB(AB-ab)-\ a '= (a/B), 0'= (b/A), 

V = cB(AB-ab)-1, ?=cA(AB-ab)~l. 

In the limit that the masses of the particles a, b are 
negligible compared with the masses of the nuclei A, B, 
it is seen that a! and ($' become negligible, but that 
y', 77, f take on the value unity. An expansion technique 
which is useful when a! and £' are nonzero but small 
is described in the Appendix. 

To compute the DWB amplitude from Eq. (43) 
we follow the standard procedure of Sec. III. It is 
necessary to compute the radial coefficients FiLaLh(rb,ra), 
and these are obtained by substituting Eq. (43) into 
Eq. (18). The transformation of Eq. (26) may be used 
to eliminate the complicated spherical harmonics 
Yi/a(fac) and Fj6

M6(̂ &c) hi favor of spherical harmonics 
of fa and fb separately. The calculations are straight
forward, and are described in the Appendix. However, 
it is interesting to give attention to the case in which 
the projectile masses a, b are negligible compared with 
A, B. Then the coefficients a', 0' go to zero and Eq. 
(26) need not be used. This case is interesting because 
it still includes the major effects of finite range on the 
knock-out process. We expand the scalar interaction V 
in spherical harmonics, 

F = E (K+h)vK(rb)ra)PK(»), 

= 2TT E VK(rb,ra)YKQ*(h)YKQ(ta). (46) 
KQ 

Substituting expansion (46) into Eq. (43), and this 

FIG. 3. The coordinate vectors for exchange-knock-on. 

into Eq. (18), yields the radial kernels 

FiLbLa(rhra) 

= ***-«.-'*[ (2la+l) (2/6+ l)Jl2Uia (ra)ulb (rb) 

X L (~-)x(2^+l)(/^00|La0)(/&Z00|L&0) 
K 

XW(LalaLblb) Kl)vK(rhra). (47) 

Eq. (47) is symmetrical under the interchange of the 
pairs L0, la and Lb, lb. The angular momentum cou
pling in Eq. (47) is controlled by the Racah coefficient. 
According to Fig. 2, certain triads must satisfy tri
angular inequalities, so that 

M-Ja>/>|*6-Za|, 
Lb-\~La^.l^i \Lb—La\ j 

Lb+h>K>\Lb-lb\ , 

La+la>K>\La-la\. (48) 

The Clebsch-Gordan coefficients enforce the parity 
rules, that only even values of (la+K-\-La) and 
(lb-\-K+Lb) shall enter. 

Equation (47) has much the same structure as Eq. 
(35) in the case of stripping. The bound-state quantum 
numbers la, h usually are small numbers, and this 
restricts the summation. But now the subsequent sum
mations, in computing the amplitude, do not take on 
an equivalent * 'zero-range form" because the parity is 
not "(normal." The parity is (—)z«+ ,̂ rather than (—)l, 
and odd values of (l+la+h) and (l+La+Lb) are 
allowed. Once again the summation over K collapses 
in the zero-range limit (because in this limit VK be
comes independent of K and may be removed from 
the sum), and only "normal" parity terms survive. 
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In order to anticipate some of the finite-range effects 
which may appear in the knock-on amplitude it is once 
again interesting to examine the plane-wave limit. If 
the no-recoil form of Eq. (43) is substituted into Eq. 
(15), and plane waves are used, then we obtain 

(2l+iy^lm= E (Uwa, -Pb\lfn)(-)l*-'» 

X / dxa / dtbV(rba)faa»a*(ra)\plbfib(Yb) 

X expi[ka • ra—k & • r &]. (49) 

This equation is more complicated than the corre
sponding equation for stripping, and does not auto
matically factor. However, an approximate factoring 
does appear if we can assume that the range of V is 
small enough so that the bound-particle wave functions 
may be evaluated at the average position variable, 
r = | ( r 6 + r a ) . T h e n 

(2 /+ l ) 1 / 2 £ Z m ~i : (UbHay -ni\lm)(-)1™ 

X / dr\PiafX*(t)\f/ibflb(r) exp[ir- ( k a - k 6 ) ] 

X / dtbaV(rba) e x p [ - i i r 6 a . ( k a + k & ) ] . (50) 

The two integrals in Eq. (50) involve momentum trans
fer vectors which have very different structures. Thus, 
the first integral tends to be large at forward scattering 
angles, where ka— k& is small. Then at such forward 
angles the momentum ka+k& is large, so that strong 
finite-range effects are suggested by the second integral. 
The two integrals tend to reverse their roles at large 
scattering angles. In either event, strong finite-range 
effects are expected. A similar discussion is given in a 
recent article by Rodberg,15 and the conclusions are 
confirmed by explicit calculation of proton scattering 
from carbon,16 and of the (n,p) reaction on silicon.17 

VII. SUMMARY AND DISCUSSION 

Exact numerical calculations with finite-range inter
actions are much more difficult than with zero-range 
interactions. However, we have shown that the finite-
range calculations can be arranged so as to be practical. 
The methods which are described in this article have 
been built into a code for the IBM 7090 computer, 
and preliminary results have been obtained. The code 
and detailed numerical results will be described in 
another article. 

15 L. Rodberg, Nucl. Phys. 47, 1 (1963). We are grateful to 
Dr. Rodberg for the opportunity to see this paper in advance 
of publication. 

16 C. A. Levinson and M. K. Banerjee, Ann. Phys. (N. Y.) 2, 
471 (1957). 

17 A. Agodi, R. Giordano, and G. Schiflrer, Phys. Letters 4, 
253 (1963). 

In the qualitative discussion it has been seen that 
finite-range corrections for deuteron stripping are not 
expected to be drastic, except in possibly suppressing 
contributions from the nuclear interior. However, the 
plane-wave estimates did suggest that other reaction 
processes may be much more sensitive to finite-range 
effects.15 

For deuteron stripping, the present indications from 
the exact numerical calculations are that the finite-
range effects only lead to a partial suppression of con
tributions from the nuclear interior. The shape of the 
differential cross-section curve tends to be altered 
rather little, and it is still often necessary to use radial 
cutoffs on the stripping integrals in order to obtain 
agreement with experiment.6 When cutoffs are not 
used, there is a noticeable over-all reduction of the 
magnitude of the cross section, but only to the degree 
expected from the suppression of interior contributions. 
When a cutoff close to the nuclear surface is employed, 
finite-range effects are very small. However, more 
striking effects have been obtained for other processes, 
such as (p,a), as expected from the larger momentum 
transfers involved. 

Both in Eq. (9) and in Eq. (49) it is seen that in 
plane-wave approximation the finite-range correction 
factor is of the nature of a Fourier transform of a two-
body interaction. This transform can fall off rapidly 
if the relevant momentum difference should become 
large. For example, if the two-body interaction should 
be of Gaussian shape then the rate at which the Fourier 
transform drops with momentum may become very 
rapid, and toward large scattering angles the cross 
section may drop by several orders of magnitude. I t 
is especially interesting that the numerical calculations 
show that such drastic finite-range effects tend to 
disappear when distorted waves are used. With dis
torted waves there is no tendency for the introduction 
of the finite-range interaction to force the cross section 
down to exceptionally small values. 

The influence of distorted waves in a finite-range 
calculation was previously discussed in Sec. I I , and it 
was pomted out that distortion tends to introduce 
into the wave functions higher momenta than are 
present in the plane waves. This tends to enhance 
finite-range effects. However, more generally, distor
tion spreads the momentum distribution of the wave 
functions, and not only high momenta but also low 
momenta are introduced. This allows effects from low-
momentum differences to dominate at scattering angles 
where the plane-wave theory would lead one to expect 
strong effects caused by high-momentum differences. 
For this reason the high-momentum parts of the 
Fourier transform of the two-body interaction are not 
very important. They are small. How small they are 
does not matter, because enough of the large, low-
momentum parts of the transform enter the calcula
tion to dominate the results. Two interactions which 
agree at low momenta tend to give indistinguishable 
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cross sections. (This last fact is of practical use, be
cause it means that the convenient Gaussian interac
tion may be employed without noticeable error, so 
long as distortions are appreciable.) 
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APPENDIX 

Many models for the "effective nuclear interaction" 
of Eqs. (2) and (12) can be written as a sum of terms, 
each of which has the structure 

<t>hn*(*i)4>hnfa)Mzfa) • (51) 

In the expression (51), Uz is a scalar, while in general the 

**««(*) =«K'<)JV'(*) (52) 
are not, but carry angular momentum k. In general 
the arguments have the form 

r i=si r a -Hir& , r 2=s 2 r 0 -H 2 r 6 , 

rz=\szra+hrb\. (53) 

Several examples of the form (51) have been discussed 
already. Stripping from 5-state projectiles (Sec. IV) is 
of this form with Z2=0 and x2=T%—rbx. The relations 
corresponding to Eq. (53) are given in Eq. (30). The 
extension to non-5-state stripping (Sec. V) consists of 
/ 2 T^0 . In the knock-on process (Sec. VI), <j>iin and 
<t>i2M correspond to the orbits into which a is captured 
and from which b is ejected, respectively, while u% 
corresponds to the interaction Vba. The relations be
tween u, ra, and r& are then given by Eq. (45). In the 
limit of no recoil, ti=S2=0; we shall return later to 
the interesting case that h/si and s2/k are small. 

The terms (51) are always required in the covariant 
combinations which behave like Yf1* under coordinate 
rotations, as in Eqs. (12) and (14), 

^ m = E (him, — M2|fo»)(— )M20Z1M1*^1M2^3. (54) 
M1M2 

Each such term corresponds to transfer of angular 
momentum I, m, and parity change, (—)h+h. The him 

in Eq. (54) should also be labeled with h and h, and 
possibly other quantum numbers, but these will be 
omitted for simplicity. 

The general form (54) has some advantages for 
numerical computation. The properties of a specific 
reaction model are contained in the radial functions 
Ui(fi), and the coefficients s^ U, but the angular mo
mentum algebra now to be described is common to all 
such calculations. Thus, a flexible computer code may 
carry options for the u% and have the s», U as input 

parameters. Exceptions occur when special cases such 
as / 2 = 0 (Sec. IV) or neglect of recoil (Sec. VI) are 
considered. The algebra then simplifies sufficiently to 
justify separate calculational procedures. 

With the form factor (54) we need the radial coeffici
ents in the bipolar expansion corresponding to Eq. (17), 

him(Tbjra) 

= E LaLbMH lLbLa(r &/«) YLb
M* (fb) YLS^"* (fa) 

XiLtLaMm-Mlbn). (55) 

This expansion is easily carried out using Eq. (26) and 
the generalization of Eqs. (33) and (34), namely 

&/<*) = / « 

/ 2 / A V 2 / A * 
XW(LaLhAaAb]lK)( )( ) 

\ 2 \ 1 / \2X2/ 

gK (rbjra) = / dfiPK GO wi (r i) w2 (r2)uz (r8), (56) 

where tx=fb*fa and Wi=Ui/rili. The result is 

HlLbLa(
rb^a) 

= * E (5 i r a ) i l - X l ( ^1^6) X l ( ^a ) X 2 02r0^ - X 2 ^ (^6 /a ) 

X E (-)Lb-h+^-H2h+l)(2h+l)(2K+l) 

X[(2A a +l)(2A & +l)]^X(A a iT00 |L a 0) 

X (AbK001 Zft0>(/1-XiX2001 Aa0)</2-X2X1001 A60> 

I h h 

A a ' l — Xl X2 

A& Xi h—X;^ 

(57) 

In the expression (57), the sums are limited by the 
following triads which must obey triangular inequali
ties: (LaAaK), (LbAbK), (AJi—Xi,X2), (Abl2— X2,Xi), 
(lLaLb), (Ihh), (lAaAb)y of which the first four must 
also have an even sum. The last factor in Eq. (57) is 
the 9-j symbol10; numerically this is computed¥as an 
expansion over a product of three Racah coefficients. 
Of these three, two are very simple to compute be
cause each contains one argument which is the arith
metic sum of two others.10 

The simple examples discussed in the main text are 
limiting cases of Eq. (57). Putting / 2 = 0 (so that X2=0, 
Aa=Zi— Xi, A&=Xi, and h=l), Eq. (57) reduces to the 
form of Eq. (35). The no-recoil limit of Sec. VI is also 
of interest. The sum over Xi, X2 in Eq. (57) arises from 
the expansion of the spherical harmonics in </>ilfll and 
<£z2M2, in the form factor (54). With the no-recoil model 
for knock-on reactions, this expansion is no longer 
necessary because r i = r a , r2=r&. Then Xi=X2=0 only, 
so that A a =/ i , A&=/2 and Eq. (57) reduces to the form 
of Eq. (47). 

I t is also of interest to consider an approximate 
scheme for use when h/sx and ^2/^2 are very small, so 
that only the values 0 and 1 need be considered for Xi 
and X2. This corresponds, for example, to taking recoil 
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into account to first order in the knock-on reaction. 
I t may also be applied to "heavy particle'' stripping 
if the target is sufficiently massive. Explicit expressions 
for this case could be obtained by substitution in Eq. 
(57), but a more convenient and consistent approach 
is to make a Taylor expansion of the </>zM, 

<l>hp1(ri)=<l>i1r1(siTa)+hTb'V<l>iwl(sira)-\ , (58) 

(where V is the gradie t with respect to Sira), and 
similarly for <f>i2fi2. Then to first order in h and s2 we 
may write 

HlLbLa=HlLbLaW+HlLbLaV, (59) 

where the zero-order term 

flW«(0)(r*,r«) 

= 4 E gjc(f6,r«)«i(^r«)«2(^6)(-)^(2A:+l) 

K 

X (hKOO | La0)(l2K00! L60>[(2/i+1) (2/2+1)]* 

XW(LaLhhh-JK), (60) 
has the same form as the no-recoil expression, Eq. (47). 
The first-order correction is 

HlLbLa(1)(rb,ra) 

= 4 E (2v+l)(2v+l)(2K+l)gK(rbyra)(-)^^1 

v-qK 

XZhrbU2(t2rb)dv(sira)+s&aUi(sira)di(t&i,)2 

X ( ^ 0 0 1 La0)(vK00 \ Lb0)(vl00 \ h0)(rjl0O | Z20) 

XW(hhpri'7H)W{LaLhvV;lK). (61) 

Since the expansion (58) has been used for the func
tions <£, the gK in Eqs. (60) and (61) arises from the 
expansion of u%{r^) alone, 

gK (rb)ra) = / dfxPK (JJL)UZ (r8) • (62) 

When u-i represents a two-body interaction potential, 
it will often be possible to use forms such as a Gaussian 
for which analytic expressions are available for the gK. 
The radial parts of expression (61) also involve the 
derivatives of u\ and u2 through the combinations dv 

and dy, where 

dii+i(x) = \_(d/dx)- (k/x)~]ui(x), 

dli-1(x) = i(d/dx)+(li+l/x)']ui(x). (63) 

The summations in Eq. (61) are quite limited. The only 
values of v and rj allowed are v = hdt:l, 7] = l2dol. The 
first Racah coefficient in Eq. (61) therefore has simple 
explicit forms, as also do the second two Clebsch-
Gordan coefficients. The remainder of Eq. (61) has 
the same structure as the no-recoil term, Eq. (60). 

Finally we consider the special case of this approxi
mation where r3=r2. This would be the case for heavy-
particle stripping. It is then unnecessary to carry out 
the expansion (62); u^(r2) may be combined with u2(r2), 

ih(r2yi2(r2) = u2(r^. 

Since this is equivalent to replacing u-6 by unity in the 
integral (62), this leads to gK—2 if K = 0, but zero 
otherwise; that is, the K sum disappears from Eqs. 
(60) and (61). Explicitly the results are quite simple, 

^ZL5Lo
(0) = 5 L a ^ L f c ^ l ( ^ i r a ) W 2 ( / 2 r 6 ) ( - ) ^ + L b - ^ 

and 

= - l(2h+1) (2/2+ l)Jl2W (LaLhhl2; 11) 

X(hl00\La0)(l2l00\Lb0) 

XZhrbU2(t^rb)dv(sira) 

+s2raui(s1ra)dv(t2rb)~], 

where now dv acts on u2. Only the values Z , a = / i ± l ? 

Lb=h±l enter into H&K 


