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Certain questions of consistency in S-matrix theory arising from unitarity, analyticity, and crossing 
symmetry requirements are examined in a few special instances for two-body scattering amplitudes. It is 
proved that at least in these cases, the formalism does not lead to any contradiction. 

I. INTRODUCTION 

IN his investigation of the constraints imposed by 
analyticity and unitarity on two-body scattering 

amplitudes, Martin has remarked on a certain consis
tency problem in S-matrix theory.1 Thus, in a scattering 
process for which there is an elastic interval in two of 
the channels, if the double spectral functions are given 
in one of these intervals, the scattering amplitude gets 
determined uniquely in a way that does not appear to 
guarantee its crossing symmetry when such a symmetry 
is expected on general grounds. A similar situation 
arises in the author's proof2 that in a two-particle scat
tering process, if all but a finite number of partial waves 
are given, the remaining partial waves are uniquely de
termined (possibly up to an additive S-wave constant) 
if the scattering amplitude either has crossing symmetry 
or satisfies elastic unitarity in one of the crossed chan
nels. When the amplitude meets with both these re
quirements, consistency would therefore demand that 
these two determinations should in fact be the same. 
Since this question is of some importance in ^-matrix 
theory, the compatibility of the assumptions of analy
ticity, unitarity, and crossing symmetry are verified in 
a few special instances in this paper. The discussion is 
divided into two parts. In Sec. II, the proofs of two 
uniqueness theorems due to Martin1 are summarized, 
emphasizing those aspects relevant for our discussion. 
Section III contains the main body of our results and 
is based in part on Sec. II. 

II. MARTIN'S THEOREMS 

We consider the elastic scattering of two nonidentical 
spinless particles of equal mass my and denote the 
Mandelstam variables for the process by s, t, and u. 
These are subject to the usual constraint 

s+t+u=4:<m2. (1) 

The double spectral function which is nonvanishing in 
part of the region s^Atn2, t^Am2 in the s-t plane is de
noted by pst(s,t), and those nonvanishing in correspond
ing regions in the t-u and u-s planes are denoted by 
Ptu(t,u) and pus(u,s). 
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With these preliminaries, we may now turn to the 
statement and brief proofs of Martin's results. 

(1) If there are intervals 4w2^^<^i, Am2^t<h in 
the s and / channels where scattering is purely elastic, 
and if the double spectral functions pst(s,t) and pSu(s,u) 
are given in the strip Am2^s<si, the scattering ampli
tude is uniquely determined. 

Let F(s,t,u) and Ff{s,t,u) denote two possible scat
tering amplitudes consistent with the hypotheses. 
Since the double spectral functions of F and Ff coincide 
for 4:tn2^s<si, where elastic unitarity may be used, it 
is true that1 

F(s,t,u)-F'(s,t,u)= E an(s)tn, 
w=0 

(2) 

where N denotes the number of subtractions in the 
Mandelstam representation. The right-hand side of 
Eq. (2) is regular for every finite / and fixed s. The 
absorptive part of F—F' in the / channel therefore 
vanishes. If Gi{t) and Gi{t) denote the partial-wave 
amplitudes in the t channel, it follows that 

ImGi(t) = ImG/(t), for ^ 4 w 2 . (3) 

For 4m2^t<ti9 using elastic unitarity, we deduce from 
Eq. (3) that 

ReGz(/) = ±ReGj ,(0. (4) 

Martin's argument1 then shows that only the solution 
ReGz(0 = +ReGi'(J) is acceptable for l>N. Thus, 
Gi(t) = Gi(t) for 1>N and Am2^t<th and, by analytic 
continuation, for all /. F~F' may thus be written as 

F(s,t,u)-F'(s,t,u)=Y, bn(t)sn. 
n=0 

(5) 

Comparing (2) and (5), we conclude that an(s) and bn(s) 
are polynomials of degree N in s: 

0n(y)=5I dn,rSr , 

&«0)=Z bn,rS
r. 

r=0 

(6) 

Since, however, partial waves are bounded at infinity, 
and an(s) and bn(s) are linear combinations of partial 
waves with coefficients which remain bounded for large 
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s, only an,o and £n,o may be nonzero constants. Finally, 
(2) and (5) reveal that ao(s) = b0(s) = #0,0=#0,0 while all 
the other an and bn must be zero. Thus, 

F(s,t,u)-F'(s,t,u) = a0,o. (7) 

But, if #o,o were not zero, there would be no inelastic 
S-wave scattering in s and t channels.1 Since this is not 
acceptable, ao,o=0 and 

F{s,tyu)=F'(s,t,u). (8) 

(2) If there is an energy interval 4 r a 2 ^ s O i in the s 
channel where scattering is purely elastic and if the 
double spectral functions pst{s,t) and psu(s}u) are given 
in the corresponding strip, the scattering amplitude is 
uniquely determined provided it satisfies crossing sym
metry in the s and t (or s and u) variables, that is, if 
F(s,t,u) = F(t,s,u) [or F(s,t,u)=F(u,t,s)J 

The simplest way of proving this assertion is to ob
serve that crossing symmetry in s and t implies that 
there is an elastic interval 4m2^t<Si in the t channel, 
which then reduces this case to the previous one. 
Alternatively, one may appeal to a pattern of proof pre
sented in Ref. 2. The latter is the one relevant for our 
discussion, since, a priori, the former need not even 
lead to a crossing symmetric amplitude. 

III. ON THE QUESTIONS OF CONSISTENCY 

I t will prove convenient to divide this section into 
four parts. The first two of these attempt to resolve the 
problem posed by Martin,1 while the remaining two re
fer to a situation discussed in Ref. 2. I t is important to 
observe that in what follows, we do not attempt to prove 
the existence of various solutions we encounter, but 
merely assume that such functions can in fact be 
constructed. Note also that our methods of proof are 
quite similar to Martin's.1 

(1) Here we assume that there exists an interval 
^m2^s<si in the s channel where scattering is purely 
elastic. The double spectral functions pst{s,t) and 
Psu(s,u) are given in this strip. If, now, we assume cross
ing symmetry in s and t, we obtain one determination of 
the scattering amplitude which we denote by F(s,t,u). 
On the other hand, if we assume that there exists an 
interval 4m2^t<ti in the t channel where scattering is 
elastic, we obtain another determination of the scatter
ing amplitude which we denote by F'(s,t,u). I t is to be 
proved that F(sJt,u) = F'(s,t,u). 

Since the double spectral functions of F and Fr coin
cide for 4w 2 ^^<^ i , where elastic unitarity can be 
applied, we find1 

F(s,t,u)-F'(s,t,u)= £ an(s)tn. (9) 
n=0 

Crossing symmetry of F implies 

F'(s,t,u)-F'(t,s7u)= £ an(t)s
n- £ an{s)t». (10) 

n=0 n=Q 

For the absorptive parts in the t variable, Eq. (10) gives 

N 

At'(s,t,u)-As'(t,s,u)= £ Iman(t)s
n. (11) 

If we denote the partial-wave amplitudes of F'(s,t,u) 
and F'(t,s,u) in the / channel by G/(t) and G"(t) re
spectively, it follows that 

TmGi'(t) = TmGi"(t) for 1>N and t^4m2. (12) 

But, by hypothesis, both Gi(t) and Gi"(t) satisfy elastic 
unitarity for 4m2^t<ti} and therefore1 

G/(t) = G/;(t) for 1>N and all*. (13) 

Thus, 

Ff{s,t,u)-Ff(t,s,u)= £ bn(t)s». (14) 

Comparing Eqs. (10) and (14), we conclude that an(s) 
is a polynomial of degree N in s. The argument follow
ing Eq. (6) now applies, and finally, 

F(s,t,u) = F'teM), (15) 

which proves the result. 
(2) The double spectral functions are given in the 

interval 4 w 2 ^ ^ < ^ i where scattering is purely elastic. 
If we assume crossing symmetry between s and u 
channels, we are provided with one determination of the 
scattering amplitude which may be denoted by F(s,t,u). 
If we assume elastic unitarity in some interval 4m2 ^t<h 
in the t channel, we obtain another determination of the 
scattering amplitude which may be denoted by Ff(sJ,u). 
I t is to be proved that F(s,t,u) = Ff{s,t^u). 

Since the double spectral functions of F and Ff coin
cide for 4m 2 ^ . ?Oi , we find1 

N 

F(s,t,u)-F'(s,t,u)= £ an(s)tn. (16) 
n==0 

The crossing symmetry of F implies that 

N N 

Ff(s^u)-F'{u^s)= £ an(u)tn- £ an(s)tn. (17) 
n=0 n=0 

I t should be observed that in Eq. (16), the functions 
an(s) may have no left-hand cut, for if they did, (16) 
would violate fixed ^-dispersion relation. Thus, an(s) 
may have poles in the interval 0 ^ s < 4 m 2 and a cut 
running from 4w2 to 00. If we fix u, the singularities of 
an (s) are therefore contained along the line Re* ̂  4m2—u. 
Thus, the absorptive part of (17) in the i channel 
vanishes for u>0 and by analytic continuation, for all 
u. If we denote the partial-wave amplitude of Ff(s,t,u) 
in the / channel by G/(t) and that of F'(u,t,s) by Gi"(t), 
it follows that 

JjnGi'(t) = IwGt"(t) for t^itn2, (18) 
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But F' satisfies elastic unitarity in some interval 
4m2^t<h in the t channel, and so 

ReGy(O = ReGi"(0 for 4m%t<h and 1>N. (19) 

By analytic continuation, it follows that 

Gi'(0 = Gi"(0 (20) 

for all / and 1>N. This gives 

F'{sM)-F'(M,t,s)= £ bn(t)s», (21) 
n=0 

where bn{t) may have poles in the interval 0^<4m 2 . 
Comparing (17) and (21), we find 

N N N 

£ an(u)tn- £ an(s)tn= £ bn(t)s«. (22) 
n==0 n=0 n=0 

If we fix / at some />4w2, an(w) will have singularities 
in the s plane along the line Res ^ Am2—/<0. We there
fore take the discontinuity of (22) in ^ for fixed t>Am2 

to obtain 
lman(s) = 0 for s^O. (23) 

an{s) is thus a polynomial of degree N in s. Since an(s) 
is a linear combination of partial waves with coefficients 
bounded at infinity, the argument following Eq. (6) 
applies. Finally, 

F{s,tiu) = Fr{s,tiu) (24) 

which completes the proof. 
(3) We are given all partial waves for 1>M in the s 

channel, where M is some integer. If we assume cross
ing symmetry between s and / channels, we have one 
determination of the scattering amplitude2 which we 
denote by F(s,t,u). If we assume elastic unitarity for 
4:tn2^t<ti in the t channel, we have another determina
tion of the scattering amplitude, which we denote by 
Ff(s,t,u)2 It is to be proved that F(s,t,u)=F'(s,t,u). 

By hypothesis, 
M 

F(s,t,u)-F'(s,t,u)='£an(s)tn. (25) 

Crossing symmetry of F implies that 

M M 

F'(s,t,u)-F'(t,s,*)= £ <*»(0*n- £ an(s)tn. (26) 
n=0 n=0 

The discontinuity of (26) in t for t^ Am2 is a polynomial 
in s: 

M 

At'(s,t,u)-As'(t,s7u)= £ Iman(t)s
n. (27) 

n=0 

If Gi{t) and G"(t) denote the partial-wave amplitudes 
of F'(s,t,u) and F'(t,s,u) in the t channel, (27) gives 

ImGl'(f) = lmGi"(t) for 1>M and t^Atn2. (28) 

By hypothesis, F' (s,t,u) satisfies elastic unitarity in the 
/ variable for 4w2^/</i. Further, the higher partial 
waves that are initially given must satisfy elastic uni
tarity in the same energy interval, for if they did not, it 
is clear that there is an inconsistency in the assumptions 
underlying the problem. Thus, both G/(t) and Gi"(t) 
satisfy elastic unitarity for some interval in t. Therefore, 
(28) gives ReGi/(0 = =fcReG//(0 for l>M and t in 
this interval. This means that Gi(t) = Gi"(t) for 
/>max{M,Af} and all t and 

max 

F'(s,t,u)-F'{t,s,u)= £ bn(t)s
n. (29) 

Comparing (26) and (29), we conclude that an(s) is a 
polynomial in s. The proof can now be completed by 
following a previous discussion. 

(4) Here we modify the situation in (3) by assuming 
that F (s,t,u) is crossing symmetric in s and u instead of 
in s and /. Equation (26) is replaced by 

M M 

F'(s,t,u)-F'(u,t,s)= £ an(u)tn- £ an(s)tn. (30) 

This is similar to Eq. (17). We therefore conclude that 

F(*A«)-/?'($,*,«) = 00,0, (31) 

where #o,o is a constant. But (31) shows that the spectra 
of F(s,t,u) and Ff(s,tyu) in the t channel are identical. 
Therefore, since Ff{s,t,u) satisfies elastic unitarity for 
4m2^t<ti in the / channel, F(s,t,u) also satisfies it in 
this interval. The discussion in Sec. II then assures us 
that ao(o=0 and F(s,t,u) = F'(s,t,u). 

In conclusion, we wish to emphasize that in the fore
going discussion, we have merely verified that the 
^-matrix formalism does not lead to inconsistencies in a 
few special instances. This, therefore, does not con
stitute a proof of its consistency even for two-body 
scattering amplitudes. 
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