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In two papers (of which this is the first) our central concern is to draw conclusions about the over-all 
dynamical properties of a many-body system. This is done without trying to solve the equations of motion, 
but rather, on the basis of our knowledge of oscillatory or collective variables (or more generally, from the 
existence of conservation rules and of the uniform constants of the motion). Our main result is that, corre­
sponding to the collective coordinates (or the uniform constants of the motion) there exists a separation of 
the motions into two parts, one of which is collective or oscillatory, and regular, and the other of which is 
noncollective, nonoscillatory, and irregular. This separation is here obtained by a (canonically invariant) 
method of projections in phase space, from the actual phase point x*, pi along a certain line, which is the 
direction of a "pure" de-excitation of an oscillation, down to a certain "projected point" X*, P», which is 
the intersection of the line with an equilibrium subspace (or variety), the latter consisting of all the points 
in the phase space for which the collective excitation is zero. We apply this separation to an illustrative 
example consisting of a simple two-dimensional model, possessing all the essential features of the general 
problem under discussion. We obtain the results corresponding to the Bohm-Pines theory, as applied to this 
case, in a very simple way, without having to introduce supernumerary variables or subsidiary conditions' 
(our results being generalized to the plasma case in the following paper). Instead of subsidiary conditions, 
we have a corresponding number of identities among the "projected motions" X*', Pi, so that in effect, 
X*, P,-, together with the collective oscillatory variables, span a space of 6N dimensions (where N is the 
number of particles). This definition of the X*, Pi replaces the two canonical transformations of Bohm-Pines, 
and is equivalent to a certain noncanonical transformation, which removes the collective part of the motion. 
Our method may also be regarded as a systematic generalization of that of Tomonaga; firstly, being an 
extension of the latter's method from configuration space to phase space, and to collective variables that 
are momentum dependent, and secondly, being the development of a general separation method for arbi­
trary variables, which contains Tomonaga's Taylor expansion of the Hamiltonian as a special case. The 
projection method associates to each actual motion xi(t), p»-(/) a unique equilibrium motion X»(0> P*W» 
about which it oscillates. This association is such that, from the very way in which it is defined, the possi­
bility of an indefinitely large increase of 5x* = x*'— X*, dpi = pi—Pi with time is avoided, so that the 5x% 5pi, 
will oscillate stably in every order of approximation, without the need for special precautions to avoid 
secular terms, as is necessary in the usual perturbation treatments (e.g., in celestial mechanics). 

1. INTRODUCTION 

THE most general way of stating the central prob­
lem of many-body dynamics is that we have a 

large number (1023, say) of interacting particles, for 

* This research was supported by the Department of Scientific 
and Industrial Research of the British Government while the 
author was at Bristol University, England, and by the Air Force 
Office of Scientific Research and the National Science Foundation, 
U.S.A. 

which, in principle, we know the equations of motion, 
but whose solution is, evidently, impossible in practice. 
Moreover, even if we did know the solutions, they would 
be of no use directly, because we would be lost in the 
huge mass of data required to express them. The central 
question is, therefore, to discover over-all properties, 
which enable us to draw conclusions about the general 
behavior of the system without our having to solve the 
problem in all detail. 
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A familiar example of such procedure is afforded by 
the thermodynamic properties of a large scale system, 
which are treated by statistical methods. These prop­
erties are not sufficient, however, for a discussion of the 
dynamics of the system, because they refer only to 
quasiequilibrium conditions. On the other hand, it is 
well known that there are conservation rules and associ­
ated constants of the motion, which enable some con­
clusions about the dynamics of the system to be drawn, 
without a detailed solution for the motion of all the 
particles. In fact, if one had a sufficient number of 
constants of the motion one could in principle use these 
to solve completely for the behavior of the particles, 
provided that these constants of the motions were all 
uniform. By a uniform constant of the motion, one 
means a function f(x\Pi) of the positions and the 
momenta of all the particles, which determines a 
"regular" hypersurface in phase space if / is given a 
certain value. Generally, most constants of the motion 
of the system are not uniform, being represented by 
surfaces which fill a region of phase space quasiergodi-
cally, so that a small change of p and x can correspond 
to a large change of / . If a function represents a non­
uniform constant of the motion, it will not be of much 
use for drawing conclusions about the system which are 
independent of the details of the movements, because 
the determination of / provides no real restrictions on 
the location of the system in phase space. 

The only known exact uniform constants of the mo­
tion valid for all isolated systems are the total energy, 
momentum, and angular momentum. However, there is 
a wide range of systems having a large number of uni­
form functions that are approximately constants of the 
motion. In particular, systems with a collective behavior 
(such as the electron-ion plasma) can quite easily be 
seen to possess uniform constants of motion to the same 
approximation in which the behavior is collective. For 
example, if a system has a collective coordinate Qy> and 
a corresponding canonical momentum Pk which oscil­
late harmonically with frequency cok, then by means of 
a canonical transformation, we obtain an action variable 

Jk= J^kQk 2 ) + (Pk2/̂ COk) , 

and an angle variable 

<^k=tan~1(Pk/wcokGk) > 

with 

<t>k=4>kQ-\-Ukt. 

The action variable 7k is everywhere a regular func­
tion of Qk and Pk, and, being a constant of the motion, 
is therefore a uniform constant of this kind.1 The con-

1 In all cases in literature when a system is said to possess col­
lective modes, these modes are implicitely supposed to be uniform 
functions of x*, p;. 

stancy of Jk expresses the conservation of the energy of 
a single plasma mode (of course, only approximately, 
because such modes are really damped, usually after a 
fairly large number of oscillations). On the other hand, 
the constant of the motion 0ko is multivalued, and has 
an irregularity at (?k=Pk=0, so that it is not a uniform 
constant of the motion. Therefore, the only constant 
that is relevant for the separation of the motion into 
two dynamically independent parts is /k. 

It is evidently desirable to obtain as many uniform 
constants of the motion as possible, whether exact or 
approximate. As we have already pointed out, however, 
we can in general obtain only some fraction of the total 
number of degrees of freedom in this form.2 If there 
were a complete set of uniform constants of the motion, 
then, as we have already indicated, the intersection of 
the associated surfaces in phase space would determine 
the phase orbit completely, so that the description in 
terms of particle coordinates could be discarded alto­
gether. If (as is true in general) we do not have a com­
plete set of uniform constants of the motion, we cannot 
discard the particle description altogether. It will be 
the main object of these papers to develop a systematic 
method of dividing the motion of the system into two 
parts, one of which is associated in a natural way to the 
constants of motion and the other which is the re­
mainder. In this way, as we shall see, one is able to 
draw many conclusions concerning the dynamics of the 
system, without actually solving the equations of 
motion fully, and in a way that is independent of the 
details of individual particle movements. 

We shall exemplify this separation by the elementary 
case of conservation of total momentum rc=2pi of a 
system of N particles (which, in fact, has already been 
treated in several ways by many authors). The canoni-
cally conjugate coordinate is the center of mass, 
t,= (l/N)Y,i x*. In this case, the separation suggested 
above can be expressed by writing the coordinates and 
momenta of each particle in the form3 

x,= X<(0+*(0 

1 (1.1) 

N 

If v=T, 7(x<-xO = E 7(X*-!fr), the equations of 

2 e.g., in the electron plasma, the collective coordinates ceases 
to be collective if the associated wavelength is smaller than the 
Debye length, which is generally much larger than the inter-
particle spacing. See, for example, D. Pines and D. Bohm, Phys. 
Rev. 85, 33S (1952). 

3 The collective parts of x», p;—here ? and (l/iVO^, and in 
general dxi and dpi—do not have to be canonically con jugate to 
each other; rather, they are quantities derived from the collective 
canonical pair (here ? and n) in such a way as to give (X%£) 
= (P*,?) = (X*,«) = (P;,tt) ==0. This insures the separation of the 
equations of motion into independent sets. 
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motion split correspondingly into two independent sets, 

d% <* dXl Pt 

dt m dt m 

dn 

dt 
= 0, 

* dX* io 

What will be relevant to the subsequent discussion is 
the (for this case trivial) fact that the two parts of the 
motion have a physically different character, viz., that 
the £ part increases linearly with time, while the remain­
ing part has complicated changes of momentum result­
ing from the interactions. In the general case (e.g., 
collective coordinates), the validity of such a separation 
will similarly depend on the fact that the two parts 
differ physically in various ways, such as that their 
characteristic frequencies will be very different; that 
one will be ordered and the other disordered; that one 
may be mainly collective and the other mainly indi­
vidual; that one may be stable, the other unstable, etc. 
Altogether the limitation on the number of available 
uniform constants of motion will be seen to be an 
inherent physical limitation which splits the degree of 
freedom into two groups of different physical character. 

The example afforded by the center-of-mass motion is 
so simple that not much is gained by the separation 
described above. But in other cases (such as the electron 
plasma) where there is a fairly large number of uniform 
approximate constants of motion, the part associated 
with these constants (the collective part) will separate 
out as a self-determining group of components of the 
motion which contain a significant amount of informa­
tion about the behavior of this system. A systematic 
separation of the dynamics may, therefore, provide 
considerable additional insight into the behavior of the 
system. 

The generalization of (1.1) will be seen to be (see 3.6) 

d<£k 
x*= Xi~J^k Jk [-higher order terms in Jk, 

dpi 

d<j>k 
Pi= P;+]Ck Jk [-higher order terms in Jk, 

dx* 

(1.2) 

where the Jk are the uniform constants of the motion 
and the <£k are their canonical conjugates. Generally, 
for any dynamical variable F(x\pi), a similar split can 
be made, the result being 

F(x',p*) = jF(X*,P<)-Ek / k C ^ k ] 
-[-higher order terms. (1.2a) 

Here [F,# J represents the Poisson bracket of F and 
0k. 5x*=x*—X* and 5p;=pi—Pt- are the parts of the 
motion of each particle associated with the uniform 
constants of motion, while X*,Pt represent the remainder 

for which the /k(X*,P»-) are zero. Alternatively, the same 
separation can be expressed in terms of the oscillatory 
variables 

Qk= (2/k/cok)
1/2 cos^k, Pk= (2/kcok)1/2 sin0k, 

by means of similar equations which will be given in 
Sees. 2 and 3 [the identities Jk( X*,P*) = 0 being replaced 
byPk(X«,P<) = 0,ek(X*,PO = 0]. 

As in the case of center-of-mass coordinates [Eq. (1)], 
the equations of motion for X^P; will be seen to separate 
completely from those for 5x\ dpi] i.e., the two parts of 
the motion will prove to be dynamically independent. 
It is important, however, to express this separation in 
terms of the canonical formalism. The problems that 
arise in doing this can be illustrated in terms of the 
example of center-of-mass coordinates. Let the original 
Hamiltonian of the system be 

#=E—+E7(x*-x9. 

i=i 2m a 

This can evidently be written as 
2 i / i y 

2m t \ N i ' 

N/1 
+—(-£ 

2m\N i / *7 
7(x*-x9. (1.3) 

By going over to the variables defined by the separa­
tion (1), we obtain 

Pi2 7T2 

ff=£—+7(X<-X0+ 
% 2m 2mN 

= #l(X<,P;) + #„(*). (1.4) 

We see that the Hamiltonian has in fact split into 
two parts, corresponding to our split in the coordinates. 
It is important to stress, however, that the variables 
P*- and X* satisfy the identities 

I P . - 0 , E X M . (1.5) 

This means that there are in reality only 3N—3 inde­
pendent pairs of canonical variables, among the X*, P,\ 
Indeed, the relevant Poisson brackets, 

[X<,PJ=«/-!/#, (1.6) 

express the fact that the X*, P* do not form an inde­
pendent set of canonical variables. 

There are two ways in which one can now proceed. 
The first is to ignore the noncanonical character of the 
X*, P*, i.e., one changes the formulation so as to have 
[X*,Py]=5/ (which is the form most easily cast into 
quantum-theory). To achieve that, Eqs. (1.5) can no 
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longer hold as identities but rather as subsidiary condi­
tions for singling certain solutions X*(t) out of the 
totality of solutions x{(t) (the consistency of such a 
subsidiary condition with the time-development of the 
system is gauranteed ultimately by A being a constant 
of the motion and, therefore, / k=0 holding for all times 
if it holds for *=0). Thus, the X*, P; are nothing but 
x*, p/s which obey certain initial conditions Jk—0 and, 
therefore, they are obviously canonical variables for 
which [X i,Py]=5/- However, this means that the total 
momentum variable rc can no longer be identically equal 
to X)4- pi (because if it were, the P*, for which we want 
to keep the definition P t =p — (1/N)it, would fulfill 
]£tP»=0 identically). Thus, n (and, similarly, its 
canonical conjugate £) must be additional, "redundant" 
variables which span together with the X*, P», a 
(67V+2)-dimensional phase space. The relations «=X]p» 
must then be interpreted as subsidiary conditions in 
this extended space, i.e., conditions which single out 
certain motions in the extended domain of variables. 
Again, the consistency of these conditions is guaranteed 
by the constancy of TC and the problem reduces to an 
initial-values problem. £ and iz remain canonically con­
jugate to each other in this scheme, although they are 
now variables independent of the original particle vari­
ables. To obtain the correct equations of motion for 
these "redundant" variables, the original Hamiltonian 
must be extended by a ^-dependent part and, when the 
Poisson bracket relationships are applied, one obtains 
"extended" equations of motions for all variables in­
volved. By applying the subsidiary conditions, how­
ever, one returns to the original "restricted problem," 
which is physically the correct one. The principal diffi­
culty in this procedure (which is essentially the one 
adopted by Bohm and Pines in their treatment of the 
plasma oscillation variables4) is that upon transition to 
quantum theory, the subsidiary condition eliminates 
the redundant degrees of freedom but not their zero-
quantum fluctuations. The latter give rise to divergencies 
(see Ref. 5) which, although they can be shown to be 
harmless (Ref. 6, Chap. IV), nevertheless make it 
desirable also to consider another and more direct 
approach. 

The second approach is in regarding (1.5) as constraints 
which are identically satisfied and, using the correspond­
ing Poisson bracket relation (1.6), X*, P4, w, ^ are now 
all explicit functions of xl and pi whose variation with 
t will follow, of course, from the formula f=Zf,H~] 
which holds for any function f(x,p). We then note, as 
can easily be verified, that 

[X*,ffn]=Dft,ffn>K,ffi]=t>,ffi]=o. (1.7) 

4 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). 
5 C . Kuper, Proc. Phys. Soc. (London) A69, 492 (1956); E. 

Adams, Phys. Rev. 98, 1130 (1955). 
6 D. Bohm, The Many-Body Problem, edited by C. DeWitt 

(John Wiley & Sons, Inc., New York, 1959). 

Therefore, 

</xy<ft=[X',Jr|=[XSFi]=-E[x«,Py]Py 
m i 

l r 1 -I 1 
= - P,- E P y = - * ' ' 

mL N $ Am 
dV 

dPVdt= [P*ff]= [P*ffl] = E — [ f t , Xy] 

dXs 

dV / 1 \ dV 

dxK N/ ex* 

mN 

dm/dt = (n,H) = («,£Tn) = 0. 

The essential point is that the separated parts, 
£T[(X*,Pf-) and £Tn(«), of the Hamiltonian, serve as 
effective Hamiltonians in the derivation of the equations 
of motions of X*, P; and £, «, respectively, provided 
that the correct (noncanonical) Poisson bracket rela­
tions are used. Thus, the separation in the behavior of 
the dynamical variables is matched by the correspond­
ing separation in the Hamiltonian. 

In the above case, we could evidently have foreseen 
the separation in the Hamiltonian (as well as in the 
variables themselves) without any special method. In 
these papers we shall show that our general method for 
effecting a separation for any dynamical variables, indi­
cated in the discussion leading up to Eq. (1.2), will also 
lead to a separation of the Hamiltonian into parts which 
will assume similar roles as in the example discussed. 
This result will be valid for any system for which one 
knows a certain number of uniform constants of motion 
/k and their canonical conjugates <£k (alternatively, the 
oscillating variables Q& and Pk). Indeed, the essential 
results are implicit in Eq. (1.2a). For if (1.2a) is applied 
to the Hamiltonian function, one obtains just the desired 
separation. Moreover, as a result of the way which X1' 
and P* are defined, their Poisson brackets with the A 
vanish, while the Poisson brackets of the X*, P* within 
themselves are not functions of the A, <£k. This, com­
bined with the separation of the Hamiltonian, will 
guarantee the separation of the motion into two dy­
namically independent parts. 

This method of separation constitutes a general way 
of formulating the many-body problem canonically, 
requiring no redundant variables or subsidiary condi­
tions (and may therefore be considered as an alternative 
to the Bohm-Pines method). 

On the other hand, our treatment can be regarded as 
a consistent generalization of the method of Tomonaga,7 

7 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 13, 464, 481 
(1955). 
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who discussed the part 5xl of the motion associated with 
a given collective oscillation and gave the collective part 
of the Hamiltonian, corresponding to our separation 
described above. However, he did not introduce the 
X*, Pi, nor did he discuss any properties of the non-
collective part of the dynamics. The procedure used by 
Tomonaga for the separation of the Hamiltonian was 
formulated for this variable alone, as a rather special 
application of Taylor's theorem; no attempt was made 
to affect a separation in the x*, p* themselves or in any 
other dynamic variable. Furthermore, Tomonaga's 
method is applicable only to the rather special case of 
collective coordinates which are functions of the x* only 
(and not of the p*), which means that, as we shall see, 
his method amounts to a projection procedure in con­
figuration space rather than in phase space. It is only 
in the latter that the full power of the method makes 
itself available and that conceptual and intuitive clarity 
is achieved. 

A fundamental difference between the method de­
scribed above and the subsidiary condition method is 
that (as we have already indicated), in the latter, the 
Poisson brackets satisfy the relations [X*,Py] = 5/, while 
in the former, [X*,Py]^5/. In the transition to quantum 
mechanics, the problem is therefore quite straight­
forward for the subsidiary condition method, because it 
is necessary merely to replace the dynamical variable 
Pi by the operator {fi/i){d/d\l). In our method, how­
ever, this evidently cannot be done. Methods like those 
of Dirac8 for attacking dynamical problems with con­
straints would only lead back to the subsidiary condition 
formulation. A way of treating this problem is being 
investigated now and is expected to be a subject of a 
later paper. At present we shall restrict ourselves to the 
classical case, in which most of the essential character­
istics of the many-body problem emerge more clearly 
and simply than in the quantum formulation anyway. 

Conceptually, one obtains the separation by consider­
ing the relation between equilibrium and nonequilibrium 
states. The hypersurfaces associated with the zero values 
of the uniform constants of motion / k can in general be 
seen to be surfaces of "equilibrium" in a sense which 
is the direct generalization of the usual definition 
of this concept. The noncollective part X*(/) of 
any motion xj(t), may thus be considered as a kind 
of zero motion "about" which the actual motion 
oscillates in a stable way. This zero motion fulfills, 
as we have seen, 7k(X*,Pi) = 0, i.e., it is repre­
sented by a phase point moving on the equilibrium 
surface A = 0 in phase space (or rather, on the inter­
section of all A surfaces considered). One may, there­
fore, say that the X* motion is obtained from the 
x* motion by extracting the collective part of the motion 
from the latter; in other words, X* is obtained by 
"de-exciting" the original x* motion into a state in which 

* p, A. M. Dirac, Can. J. Math. 2, 129 (1950). 

the collective constants of motion J* are zero. Of the 
infinitely many ways of relating an X* on the hyper-
surface to a given x* outside the surface, only the one 
given by Eq. (1.2) will result in a complete separation of 
the dynamics into independent parts; it is conceptually 
important to note that only then will the x* motion be 
stably related to the X* motion. We shall see that this 
particular choice of X* for a given x* admits a geometri­
cal interpretation: X*, P* is the perpendicular projection 
of x*, p; onto the hypersurface. For this to have a well-
defined meaning which is, furthermore, invariant under 
the canonical evolution of the motion, a canonically 
invariant metric must first be defined in phase space 
(the "symplectic" metric). The introduction of these 
geometrical ideas provides a rather powerful tool for 
intuitive thinking on the many-body problem and their 
applications will be discussed elsewhere. 

The idea of relating a motion to a nearby equilibrium 
motion about which it oscillates is of course already 
well known, and has indeed been applied very widely in 
the study of many-body systems (i.e., celestial me­
chanics, plasma theory, collective motion in nuclei). The 
simplest case of this kind is the one in which the forces 
tend to restore the system to a certain fixed equilibrium 
point. Small oscillations about such points will be stable, 
in the sense that the system will never move far away 
from it. As the kinetic energy is raised, the system may 
of course eventually become unstable. However, it 
frequently turns out (e.g., in the case of collective 
motion, as we shall see in Sec. 5) that the restoring 
forces are much weaker in certain directions in phase 
space than in others. As a result, the system will be 
able to escape and to move relatively freely in the 
direction of weak forces, while the components of the 
motion in the other directions will still execute stable 
oscillations. In this way, the system proceeds through 
a set of neighborhoods in phase space which generally 
all have the same character. Thus, instead of oscillating 
around a fixed point, it will oscillate around an equi­
librium hypersurface (or variety), which is a continuous 
set of points in phase space possessing strong restoring 
forces in the directions "normal" to the corresponding 
hypersurface, while in the direction of the hypersurface 
itself the restoring force is weak enough so that it is 
overcome by the kinetic energy. As the kinetic energy is 
raised still further, and if (as is usually the case) the 
hypersurface is curved, "centrifugal" and "Coriolis" 
forces come into play, with the result that the equi­
librium hypersurface is in itself altered, so that the 
surface depends on the general state of motion of the 
system (in the case of collective coordinates this situa­
tion will be seen to arise when the effects of random 
thermal motions on the collective oscillations are taken 
into account). 

The fact that the motion is stable only in the direction 
normal to the equilibrium variety and not in the direc­
tion tangential, means that a small perturbation can in 
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general cause unstable transitions between the various 
possible motions within this variety (i.e., transitions 
between the various motions in the hypersurface), 
which, however, will never lead the system far away 
from the variety. In this way, one obtains a generaliza­
tion of the concept of stable motions around an equi­
librium orbit (e.g., as in planetary motions). In the 
latter case, the equilibrium variety is just simply an 
orbit (an ellipse) which is a one dimensional set of 
points. Such an orbit can be stable in the sense that if 
there is a small deviation (e.g., due to a perturbation), 
the system will still oscillate around the orbit in ques­
tion. Nevertheless, even if the orbit is stable, the motion 
need not, in general, be so. For a small perturbation of the 
linear momentum in the direction of the orbit may cause 
a change of position along the orbit which accumulates 
with time, so that the perturbed motion would no longer 
remain close to the unperturbed one, although the orbits 
of the two motions coincide. In the more general case 
of a higher dimensional equilibrium variety (e.g., the 
plasma, where this variety consists of a hypersurface 
of 3N—s dimensions), the possible instabilities of this 
kind are of course far more complex, because there can 
be unstable transtions which change the "directions" of 
the equilibrium orbit as well as its linear momentum, 
while the motions in directions "normal" to this variety 
remain stable. 

A common method of treating such problems has been 
to begin with the actual orbit x*(/), pi(t) and compare 
this with some equilibrium orbit x0*(J), Pof(0 such that 
the difference x*(/)~ x<>*(/) is small enough so that 
perturbation theory may be applied (the "difference 
method"). However, because the motion is unstable to 
transitions within the equilibrium variety, there arises 
the well-known problem of "secular" perturbations. 
Basically this problem has its origin in the fact that, 
unless the initial conditions of the comparison motion 
Xo*00, Po*00 are very carefully chosen in relation to 
those for the actual motion x*(£), pi(t), the difference 
dxl(t), dpi(t) will eventually increase "secularly" (i.e., 
unstably and without limit) thus invalidating the as­
sumptions on which the perturbation theory is based. 
The proper choice of initial conditions for x0*(0, Po;(0 
can be a fairly complicated problem, even in those cases 
where one can actually solve for the unstable features of 
the motion. For even if the initial conditions of Xo*(0> 
Poi(t) are adjusted properly for an unperturbed system, 
any perturbation may cause transitions in the "un­
stable" directions, in which the change of the actual 
motion x*(/), p»(2) is somewhat different from that in the 
comparison motion x<>*(0> P*o(0> tn*s leading to differ­
ences 8xi(t)i dpi(t), which grow secularly. This means 
that at each stage of the calculation the initial conditions 
of Xo*(0> Po;(0 must be given a special adjustment which 
is different for each case, so that no generally valid 
expressions can be obtained. 

A treatment of this kind is, therefore, practicable 

only in simple problems in mechanics (such as in 
planetary motion) where a detailed solution of the un­
stable part of the motion is possible and indeed of 
considerable interest in itself. However, in cases where 
there are very many degrees of freedom (e.g., where 
collective coordinates assume an important role), the 
motion within the equilibrium variety is not only too 
complicated to be calculated, but its detailed behavior 
is of little interest in itself. It follows then, that for these 
problems, the difficulties connected with the proper 
definitions of the comparison motion x0*(0> Po<(0 are 
largely formal, and one could attempt to exploit this 
additional freedom to relate to each actual motion a 
comparison motion, in a way which is automatically 
free of secular instabilities for all stages of the 
calculation. 

It is evident that what is needed here is a systematic 
and general way of associating to each actual motion 
x*(J), pi(t) a particular equilibrium motion X*(£), P»00> 
so defined that the differences dxi~xi— X*, 5pi=p»-—Pt-
never become large. But as can be seen by an inspection 
of Eq. (2), this is just what our projection method does. 
Thus, for each phase point x*, pi another phase point 
X*, Fi is associated, and (as will be shown in this paper) 
if x*(0, P*(0 represent a solution of the equations of 
motion, X*(2), P*-(/) will be another solution of these 
equations. Moreover, it is evident that by that very 
mode of definition, x* and p» cannot become large; for, 
as can be seen from Eq. (1.2), they are proportional 
to Jk which latter will remain constantly small. 

It follows then, that our projection method does, in 
fact, solve our problem of giving a proper choice of the 
comparison motion X*(/), P;(/) in such a way that 
secular increases of x*, pi are automatically obviated. 
This is done through expressions which have general 
validity and which are indifferent both to the physical 
situation considered and to the type of perturbation 
used. Moreover, this choice requires no detailed solution 
for the unstable parts of the motion. Thus, the purely 
formal problems associated with the proper definition 
of the equilibrium motion are avoided. 

2. SIMPLE MODEL OF A SYSTEM WITH AN 
EQUILIBRIUM VARIETY 

In order to make our discussion of oscillations about 
equilibrium varieties more concrete, we shall in this 
section present a simple example of a system possessing 
such a variety. This example has the advantage that 
both the oscillatory and the nonoscillatory variables 
can be solved for exactly within the approximation of 
small oscillations. It can be, therefore, used for com­
parison with the results of our method which latter is, 
however, designed to apply to cases for which no exact 
solutions are possible for the nonoscillatory variables. 

The model that we shall consider is that of a single 
particle moving in a two-dimensional potential field 
which is such as to possess a one-dimensional equi-
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librium variety. A simple case of such a variety is a 
circle. Consider, for example, the potential given by 

V=Mr~ro)2, (2.1) 

for which the equilibrium curve is the circle of radius 
r=ro} and which implies a radial restoring force 
F=~a(r—ro) towards the circle, r=r0. If the particle 
is displaced a small distance away from r=r0, it will 
tend to oscillate about this circle. To study these oscil­
lations, let us express the equations of motion in polar 
coordinates. With the Hamiltonian 

pr
2 pe2 a 

H=—+ +-(r-r0)
2, (2.2) 

2m 2mr2 2 

the equations of motions are 

pr pe2 

r= — , Pr = —a(r—r0), 
m mrz 

(2.3) 
pe 

p , = 0 , 6= , 
mr2 

which yield 

mf= —a(r—ro)+pe2/mrz, (2.4a) 

pe= const, (2.4b) 

md=-(2pd/r
z)r. (2.4c) 

The term pe2/mrs is of course the centrifugal force, 
while — (2pe/rz)f is the Coriolis force. 

To treat small oscillations, we first note that there is 
an equilibrium radius r=re, which is determined by 
the equation 

pe2 

=a(r0—ro), (2.5) 
mre

z 

representing a balance of restoring and centrifugal 
forces. We then define a small displacement 8r=r—re. 
The equation for 8r is obtained by expanding (2.4a) up 
to first-order terms in 8r: 

m8f=-ia-\ )8r. (2.6) 
\ mre

4/ 

As was to be expected, 8r oscillates harmonically, 
with a frequency given by 

a 3pe2 

co 2 =-+ =«*(#*), (2.7) 
m m2re

4 

which is a function of the angular momentum only, 
and, therefore, a constant in time. 

The equation for 6 follows from 6=pe/mr2. Expanding 
in 8r} we obtain 

. pe f 8r /8r\2 n 
d= 1-2—+3( — ) . (2.8) 

mre
2L re \re/ J 

In the linear approximation the first term in 8r will 
be adequate. Since 8r=A cos(coH-<po), we have 

pe / 2 A sin(coH-<£>o)\ 
6= (/ ) . (2.9a) 

Since pr=m8r= — muA sm(cot+<po), the above can 
be written 

mr2 m^re
so)2 

The above equation shows that on top of a uniform 
motion in 6, proportional to the angular momentum 
pe, there is an oscillation of 6 which is 90° out of phase 
with the oscillation in r. 

Finally, let us expand the Hamiltonian (2.2) to the 
second order in r, so that it will give the equation of 
motions accurate to the first order: 

pr
2 m pe2 a 

H=—+-coW2+ +-(re-ro)2. (2.10) 
2m 2 2mre

2 2 

The physical aspects of the motion that will be rele­
vant for us can easily be seen from the above equation. 
Let us begin with the case of very small pe Cease (A)]. 
The equilibrium orbit can then be approximated by the 
circle r=r0, and the frequency of oscillation of 8r by 
(a/m)112. Although pe is small, pet will eventually become 
appreciable. However, the oscillatory part of 6 can be 
neglected so that the only significant oscillatory part of 
the motion is in the radial directions alone. 

This approximation is evidently equivalent to the 
neglect of centrifugal and Coriolis forces, as can be seen 
from the equations of motion (2.4). Over a period of an 
oscillation, the angle changes only slightly, so that the 
motion along the direction of the circle may be con­
sidered as effectively rectilinear during that time. As a 
result of the slow movement in the circle, however, the 
particle experiences a slowly varying direction of the 
restoring force, and this will turn the direction of oscil­
lation, so as to remain always normal to the surface. 
Thus, the decoupling of normal and tangential motions 
is not purely local, but continues in the large. 

If pe is raised, the centrifugal and Coriolis forces will 
begin to play a role [case (B)]. First of all, there will be 
a coupling between tangential and normal motions, with 
the result that the oscillations cease to be normal to the 
equilibrium variety [as implied by Eq. (2.9)]. Secondly, 
the centrifugal force will cause a shift of the equilibrium 
orbit from r=r0 to r=re, the latter being determined by 
the condition given earlier, viz., that the restoring force 
balances the centrifugal force. As a result, the equi­
librium variety will depend on pe—%1p2—%2pi, and is, 
therefore, a function of the momenta as well as the 
coordinates (i.e., it will be represented by a surface in 
phase space rather than in configuration space). Finally, 
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there is the shift of frequency of oscillation which de­
pends, as we have seen, on pe. 

Since we wish to use this example to discuss the 
separation of oscillatory and nonoscillatory parts of 
motion within the framework of the canonical formalism, 
we shall now proceed to give a canonical transformation 
to a new set of variables, in terms of which this separa­
tion is accomplished. Denoting the new variables by 
primed quantities, we write for the generating function 
of this transformation 

S^Pr'tr-feWl+pe'e. (2.11) 

The transformation itself is given by 

dS 

dS 
pr~ = # / , 

dr 
(2.12) 

dS 
dr' = ~=r~re(pef)==r-re(pe), 

In the above transformation, the angular momentum 
and radial momentum are left unchanged. The new 
radial coordinate 8rf is just r—re{pe), the amplitude of 
radial oscillation which has now been transformed into 
one of the canonical variables. The new angle Bf differs 
from 6 by —pr(dre/dpe), which is equal to the second 
term on the right-hand side of (2.9b). We conclude, 
therefore, that 0' simply increases linearly with the time, 
because it is obtained by removing the oscillatory part 
from 6. 

Thus, the oscillations are described by the variables 
8rf, p' or equivalently, by the uniform constant of 
motion Jr=pr2/2mo)-\-^mo:(dr/)2 and its canonical con­
jugate (j)=taxi~1(x/fna)pr/5r'). These oscillatory vari­
ables are completely decoupled from the variables 0', pe 
which have no oscillatory behavior whatsoever. This 
decoupling can be expressed in another way by rewriting 
the approximate Hamiltonian (2.10) in terms of our 
new set of variables; 

pj2 

H= Hmb)2(pe')(dr')2 

2m 

pe2 a 
+ +-tre(pd')-roJ. (2.10a) 

2mr,2(pe') 2 

The Hamiltonian separates into a sum of two terms, 
one representing the energy of the oscillatory part of 

the motion, and the other the nonoscillatory part.9 The 
role of these terms as effective Hamiltonians for deter­
mining the equations of motion for the corresponding 
groups of variables, will be discussed towards the end 
of Sec. 4. 

3. DISCUSSION OF THE BASIC DYNAMICAL 
CONCEPTS INVOLVED IN THE SEPARATION 

OF THE MOTION INTO DYNAMICAL 
INDEPENDENT PARTS 

In Sec. 2, we treated a simple example by means of 
straightforward methods, showing the separation of the 
motion into oscillatory and nonoscillatory parts by 
solving explicitly for the variables associated with these 
parts. In the many-body problem, however, it is usually 
possible to obtain explicit expressions only for the oscil­
latory variables (e.g., the collective coordinates).Indeed, 
as already indicated in Sec. 1, an explicit solution for the 
nonoscillatory part, even if it were possible (which it 
generally is not) would be of little use, because the full 
details of these complicated motions are hardly relevant 
for any problem of interest. 

The oscillatory variables can be thought as given in 
the form of a certain number s of canonical pairs 
(?k(x*,p<), Pk(x*,pO, which fulfill 

C&A' ]=** ' , [ek,Qk']= P V V H O . 
This leaves SN—s degrees of freedom—the nonoscil­

latory or the noncollective degrees of freedom, of which 
only general dynamical features but no detailed solution 
will interest us. 

In the example of Sec. 2 there is only a single pair of 
oscillatory variables [see Eqs. (2.12)] which we shall 
denote by 

Q=8rf=r-re, P=pr' = pr. (3.1) 

In accordance with the program outlined in Sec. 1 
[see Eqs. (1.2)], we first define 5x\ 5pt-, the purely oscilla­
tory part of the motion. We note that there is an 
equilibrium hypersurface in phase space, given by the 
intersection of the hypersurfaces 

ek(x*,p<) = 0, Pk(x\Vi) = 0 (3.2) 

[or alternatively, by /k(x*,p») = 0]. 
If the system is in a state of no oscillation, then the 

phase point x*, pi will be moving in this intersection-
surface. On the other hand, if the system is in a state 
of oscillation of some small amplitude, x*, p; will be on 
a nearby surface, given by the (stationary) intersection 
of the 2s (moving) hypersurfaces 

<2k(x*,p;) = <2ok exp(—icokO , i\(x*,p;) = P0k exp(—fcokO , 

9 At first sight, the term <a2{pe) (8r')2/2 seems to give a coupling 
between the two parts. However, because pe' is a constant of the 
motion, the only effect is to make the frequency of oscillation po'-
dependent, since the effect of du/dpo'^O on the equations of 
motion, 6 = dH/dpe, is of second order in 8r' and therefore can be 
neglected in our present linear treatment. 
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(where Qok, Pok are constants) or, equivalently, of the 

i V 
Jk(x*,p*)=imcokQkoH = const. 

2mo)k 

In attempting to separate the motion x*(/), pi(t) into 
a part X^), P»-00 which contains no contribution to the 
oscillation [and hence fulfills (\(X*,P;) = Pk(X*,P4-) = 0] 
and a part 6x*(0, 8pi(t) which is responsible for the oscil­
latory character of the (Mx^p*) = (MX*+5x*, P r f 8p*) 
and Pk(X*+5x*, P^+5pt-), care should be taken that no 
nonoscillatory part enter 8x\ dpi (such a part would 
correspond to the "secular parts" mentioned in Sec. 1); 
i.e., in the separation 

x*=XH-5x*, 

pi=¥i+8pi, 

X\ ¥i should be "purely nonoscillatory," and 8x\ dpi 
"purely oscillatory." To do this without the explicit 
knowledge of the residual degrees of freedom (which, 
together with the Qk, Pk, span the full dimensionality 
of phase space), we proceed in a manner which is a 
generalization of that used by Tomonaga7 in the separa­
tion of the Hamiltonian. Let &, p^ represent the 3N—s 
residual nonoscillatory degrees of freedom, then x*, pi 
are in principle expressible as 

x*«?k,Pk; hmd, 

P<(Gk,Pk;?i,P«,). (M) 

The nonoscillatory part of x\ pi will now obviously be 

X<=x*(0,0;?^), 

Pi=P.<0,0;&,P€i), (3.4) 

which can be further expressed as 

dx{ dxi 

—higher order terms in Qk, Pk 

= X«-E Ok[x%Pk]p.B.+E Pk[x',Gk]p.B. 
k k 

+higher order terms, 

P . - = P H - E i>kCp<,ek]p.B.- E Qk[p<,Pk]p.B. 
k k 

+higher order terms, (3.5a) 
and hence, 

8x«=x«- X*= - E &[x i ,Pk]p.B.+E Pk[x*,ek]p.B. 
k k 

+higher order terms, 
(3.6a) 

% = P - P i = E PkCp<,Gk]p.B.-E Qk[p<,Pk]p.B. 
k k 

+higher order terms. 

In these definitions, only the explicit dependence of 
Qk, Pk on x*,. pi need be known; it is not required to 
know how the x*, p»- depend on Qk, Pk, h, Pir Evidently, 
X*, P* fulfill Qk(Xi

J¥i)=Pk(Xi?i) = 0, to the order in 
which they are defined, as a glance at the definition of 
these entities in terms of the underlying variables 
Qk, Pk, h, Pu shows. The X*, P t can therefore be repre­
sented as a point in phase space on the intersection 
surface ()k=0, P k =0, i.e., on the subspace of no oscilla­
tion. To each point x*, p%—which, in general, represents 
some state containing a certain degree of oscillatory 
(collective) excitation—thus corresponds, via (3.5a) a 
"projected" point X*, P,-. Physically, X\ Pt- is the 
momentary state obtained from the momentary state 
x*, pi, if the latter is "collectively de-excited," without 
any change in the residual variables. 

If f(x\pi) is any dynamical variable of the system 
(the energy or the momentum, say) we can, in a similar 
fashion, effect a separation into "purely nonoscillatory" 
and "purely oscillatory" parts 

/(x',pi)=/(X*,P«)+«/) 
by again imagining / as a function f(Qk,Pk', &,P$,) 
and denning the "purely nonoscillatory" part as 
lfl=f(fi,0;ihVi); evidently 

t/l=/(X<,P<), 
i.e., the same function / evaluated at the projected 
point X*, P». In a fashion similar to that which led to 
(3.6a) we obtain 

* / = £ & C / A ] P . B - z i>k[/,ek]p.B. 
k k 

+higher order terms (3.6b) 
and 

I/l=/(XsP,-)=/(^P,) 

k k 

+higher order terms. (3.5b) 

To the first order, it does not make any difference 
whether the coefficients such as SQk/dpi and [_F,Q"] in 
the above equations are evaluated at the actual point 
(x\pi), or at the projected point (X*,P»). We shall at 
times find it convenient to adopt one procedure or the 
other. It must be emphasized that Eqs. (3.5-3.6) 
are not canonical transformations, because the coeffi­
cients of the derivatives in (3.5), (3.6) are functions of 
x*, pi and not constants.10 In fact, it may appropriately 
be called a "Clebschian" transformation because the 
coefficients P(x*,p<) and Q(x\pi) are here playing a part 
analogous to that of Clebschian multipliers11 £ in the 

10 I t is clear for example that a transformation which changes 
certain dynamical variables P and Q into zero must have a 
vanishing Jacobian determinant; thus it cannot be aFcanonical 
transformation, which later has a Jacobian equal to unity. 

1 1H. Lamb, Hydrodynamics (Dover Publications Inc., New 
York), sixth ed., p. 248. 
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expression v = V<p+£V)7, for the velocity in hydro­
dynamics. The meaning of the Clebschian transforma­
tion (3.5-3.6) can be brought out more clearly by going 
over to the constants of the motion (the action variables) 
and their canonical conjugates (the angle variables). 
These are given by 

& = (2/k /W)1 / 2 cos0k , P k = (2/kCOk)1'2 sin0k. 

Since (0k,/k') = ^kk', 0kA constitute an alternative set 
of canonical variables, in terms of which the above 
transformations can be carried out. Inserting these 
expressions into (3.6a), one obtains (to first order) 

d0k 60k 
« x * = - i ; / k , « P i = E A — • (3.6c) 

k dpi k dXl 

We also obtain 

S/=-LA[/,0k] , 
k 

and 
d0k d$k 

X<=x*+E / k — , P<=p*-£ A — , 
k dpi k dxi 

I/ l=/+E/k[/k^k] . 

(3.6d) 

(3.5c) 

(3.5d) 

Applying (3.6d) to / = 0 k , we obtain |0k l = 0k so 
that 0k is unchanged. With / = A , we obtain | [ / k l = A 
~ / k = 0 . Noting that A , 0k, are just the polar coordi­
nates of <2k, Pk space, we see that our displacement 
takes an arbitrary point x*, pi (having excitation vari­
ables Qk, Pk or, alternatively, A , 0k) and moves it 
on a "radius" in Qk, P k space down to the "origin" 
Qk=0, P k = 0 (or alternatively J k = 0 ) . This displace­
ment is, therefore, nothing but a de-excitation of the 
oscillation along a line of constant phase 0k, and in 
such a way that all other variables (£z,Psz, or 0', P% in 
the example of Sec. 2) are left unchanged. That is to 
say, it is a projection along the line 0 = constant, which 
does nothing but to project out all the oscillatory part 
of the motion in the most direct possible way. 

Returning to the simple example introduced in Sec. 2, 
we had [Eq. (2.12)] 

Q = r-re(pe)^(xl2+x^Y2-re(x
1p2-x

2p1), 

P = pi 
Xlpi~\-X2p2 

In the calculation of the variables 8x* and X\ we 
shall need the following quantities (evaluated on the 
equilibrium surface, r=re): 

where we have used P = 0 on the equilibrium surface, 
and 

IL foul IL r if lldpe &*UJ 

- I T M ^ * * 1 1 , (3-8) 

where e/ is a two by two matrix which is zero for i= j , 
+1 for j = 1, i= 2 and — 1 for j= 2, i= 1. We then calcu­
late $#*, 5^- to first order in <2 and P. According to 
(3.5a) we have 

-ITM^"'^-!^- (39b) 

To see what these equations mean, let us first consider 
case (A), for which, as we recall, pe is so small that 
centrifugal and Coriolis forces could be neglected, so 
that, in this approximation, re~r0= constant. In this 
case, Q = r—r0 is a function Q(x) ,only of xl and not of pi. 
Thus, dre/dpe=0 and the above equations simplify to 

*-f3|e, %=f7lp- (310) 

These equations imply that 8x* and dpi are both directed 
along a radius, or in other words, that the oscillatory 
part of the motion is normal to the equilibrium variety 
r=ro (a conclusion which is trivial in this approximation). 

We now solve for the variables X\ P{. These are 

(3.11) 

I t is easiest to see what this means by going to polar 
coordinates. Thus, writing Q=r—r0, x1 = r cosd, 
x2=rsind, and replacing {xl/r\ by xl/r (both being 
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equivalent in the linear approximation) we obtain 

X1=cosO[r— (r—ro)l = r0 cosd, 

X2=sm[r-(/—ro)] = fOsin0. V " ; 

Thus, X1 is a point on the equilibrium variety, r=r0; 
and it has the same value of 6 as x\ 

Similarly we see that the vector Pi is nothing but 
the total momentum, less the radial part of the mo­
mentum, or in other words, just the part of the mo­
mentum mrB—Pe/mr in the angular direction [and 
since Pe is so small in case (A), we can replace r by r0 to 
approximate for this part of the momentum by Pe/mr^]. 
Thus, Pi is on the surface Pr=(x1pi+x2p2)/r=0 in 
phase space. 

The fact that X\ Pi is on the equilibrium variety 
[i.e., Q(X*) = 0 and P(Z*,P<) = 0] is evidently a con­
sequence of the way in which it was defined. This 
relation can, however, be verified for the general case 
(to the first order) by substituting f=Q and / = P , 
respectively into Eq. (3.5b). One obtains 

Q(X\Pi) = Q(x\Pi)-Q(x\Pi)^0, 

P(X\Pi) = P(x\Pi)-P(x\Pi)^0. ( * } 

If we go on to case (B), where p$ is large enough so 
that centrifugal and Coriolis forces cannot be neglected, 
then, as Eqs. (3.9a) and (3.9b) show, the motion is no 
longer normal to the equilibrium circle r=re (which now 
depends on pe). Indeed, as can be shown by a simple 
calculation, the additional terms in these equations 
correspond to the terms in (2.9) and (2.12) which imply 
that radial oscillations and angular motion are coupled. 
Nevertheless, as we shall see in the next paper, one can 
obtain a systematic geometrical interpretation along 
these lines, and show that if a certain "symplectic" 
metric is introduced in phase space, then the projection 
is "symplectically" normal to the equilibrium variety. 
In this way we obtain a simple and instructive geometri­
cal interpretation of our method, which we shall de­
velop systematically in the following paper. 

4. THE POISSON BRACKETS AND THE 
EQUATIONS OF MOTION 

As in the example of the center-of-mass variables in 
Sec. 1, we now proceed to demonstrate the dynamical 
independence of the oscillatory and nonoscillatory parts 
defined by Eqs. (3.5) and (3.6). We first note that 
Sx*, 8pi9 X*, Pi were defined as functions of the x*, p», 
(and hence their equations of motion can be obtained,12 

as for any function /(x*',p*), from the equation 

12 At this point, one might be tempted to adopt the following 
simple point of view: X*, P;—and, in general, f/|=/(X*,P t-), for 
any dynamical variable /(x*,p*)—were obtained from x*,p; and / 
by setting the constants of motion J& equal to zero (without chang­
ing the residual variables), and hence, all one did was to go over 
from certain solutions of the Hamiltonian system under considera­
tion to other solutions (namely to the "nearest" collectively un-

In order to obtain the separation of the equations of 
motion into two dynamically independent parts, we 
shall show that (1) the Poisson brackets of the set 
Qk, P'k with the set X*, P* is zero to the necessary order, 
(2) the Poisson brackets [X^X^], [X*,Py]5 CP*,Py] are 
functions only of the X*, Pz and not of Qk, Pk to the 
necessary order, (3) the Hamiltonian splits into a sum 
of two terms 

H^Ht+Hn, (4.1) 

such that, in a linear treatment, Hu is a quadratic 
function of the Qk, Pk (with coefficients which may, 
however, depend on the X* and P;), while Hi is a function 
of the X*, Yi only. 

As a result, the equations of motion will then separate 
into 

dQk dPk 

C0k,ffn] (4.2) = [ i \ > # i i ] , (4.3) 
dt dt 

dXi d?i 
_ = [ X « , H i ] (4.4) — =CP*,ffi]. (4.5) 
dt dt 

The equations for Qk, Pk will contain the X*, Pi at 
most through the coefficients of the \Qk\2 and |Pk|2 in 
# n . In all relevant cases, these coefficients are either 
constants (as in the case of the example treated in 
Sec. 2, and, as we shall see in Paper II, in the plasma 
case), or slowly varying functions of the time (as such 
to effect an adiabatic shift in the character of the oscilla­
tion). Thus, # n will be the effective Hamiltonian for 
the oscillatory variables, and Hi for the nonoscillatory 
variables. 

excited ones). The question of writing down the equations of mo­
tion for X*, P^ I/J would, therefore, seem to have reduced to a 
triviality, as they just fulfill the original Hamiltonian equations. 
Similarly, one could, by subtracting the two systems of equations, 
quite easily write down the equations for 5x% 8pi, 8f [the resulting 
equations would be the well known "equations of variation"—see, 
e.g., E. T. Whittaker, Analytical Dynamics, (Dover Publications, 
Inc., New York, 1944), third ed., p. 269]. 

However, one can immediately see that this point of view, if 
carried consistently through, would just lead back to the subsidi­
ary-condition method of Bohm and Pines. The Xl'(2), Pi(t), con­
sidered as possible motions of the system should, as any other 
motion, have Poisson brackets (X*, Py) —8/ associated with them, 
and the fact that they fulfill 7k = 0 would then be a matter of 
proper choice of the initial conditions; i.e., Jk — 0 would have to 
be considered as subsidiary conditions rather than identities; 
dynamically they must be considered as spanning a phase space of 
6N dimensions [as is implied by the rank of the 6JVX6iV matrix 
(X*,Py)], and since they constitute only the noncollective part of 
the actual motion x* (/), p; (t), we would have to extend this phase 
space by introducing 2s "redundant" variables, as explained in 
Sec. 1. In our procedure, we consider the equations Jk = 0 as 
identities; as a result, (X%P,)^5/, the latter being a matrix of 
rank 6N-2s only. Hence, the restriction of X*', Pi, to represent the 
noncollective part of x% pi is incorporated into the dynamics of 
X*, Pi and will continue to hold even in more general cases when 
the X*, Pi can no longer be interpreted as possible motions of the 
system (e.g., if the latter is subjected to random external 
perturbations). 

As the equations for the X*, P* will have to be formulated in 
terms of the Poisson brackets (X*,Py) ?%*, a statement that 
X*(/), Pi(t) is a possible motion of the original system would not 
be sufficient, and their equations of motion must be considered in 
detail. 
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To verify (1), (2), and (3), it must be noted that 
although we are treating the dynamical variables and 
the equations of motion only to the first order in Qk and 
Pk, we must start with the expression of H and all other 
variables to the second order in Qk and Pk, in order to 
obtain the Poisson Brackets relations to the first order, 
which latter are necessary to obtain the equations of 
motion to the same order. This is only a formal require­
ment, however, resulting from our insistence on a 
canonical formalism. After all differentiations have been 
carried out so as to give the equations of motion, 
everything need be expressed to the first order only. 

It is readily verified that to second order, (3.6d) 
would read 

F(X<,P , )=WP,) 

+ E ( / k [ / t y k ] + — [ [ / ^ k ] 0 , k ] ) . (4.6a) 

With F=/k(x*,p;) and P=^k(xi,pO, we again obtain 

A(X*,P<) - Mx\Pi) - Mx\Vi) = 0, 

*k(X«,P<) = 0k(x*,pO, 

and with F=x{ or F=piy 

dct>k A 2 rd0k 
X<=x*+£/k—+E — 

k dpi k 2 Lap 

d$k Jk 
P*=pi—L A E — 

k dX* k 2 

—:^ k > 
Lap* J 

rd0k i 
—,0k . 

Lax* J 

(4.6b) 

This represents a displacement in phase space which 
carries a point x*, p*, with certain values of 

COk 1 

A = - | Q k | 2 + — | P t | 2 

2 2o?k 

into a point X*, P*, with Q*=0, Pk=0. This "collective 
de-excitation" is along the "radius" </>k= const, which is 
now no longer a straight line element but, in general, 
curved (as indicated by the second-order terms). 

In verifying (1), (2), and (3), we again consider x* and 
Pi everywhere as functions of the Qk, Pk and of the 
6N—2s complementary canonical variables £, p$ (which 
have vanishing Poisson brackets with the Qk, Pk). Thus, 
for an arbitrary F, F(x\p%) = G{Qk,Pk&p£), with a suit­
able G. As long as G is analytic in Qk, Pk, the transforma­
tion (4.6) operating on this function, will reduce the 
()k and Pk to zero and leave us with G(0,0,£,p$), up to 
terms of third or higher order in Qk and Pk. Moreover, 
G(0,0,£,p$) is evidently equal to F(X\Fi) to that order. 
Thus, it is clear that (taking F=xl or pi) 

pp,Gk]=o, [XvPk]=o, 

[ P ^ k ] = 0, [P,yPk]=0, 

to second order in Qk, Pk. 

Thus, in this approximation, X* and P* do not depend 
on Qk, Pk, and therefore their Poisson bracket (X*,P») 
does not depend on Qk, Pk either, up to terms of third 
and higher order. This means that it makes no difference 
whether the (X*,P») are calculated on or off the equi­
librium surface Qk—Oy P k =0 (a fact of which we shall 
make use presently). 

After the equations of motion have been obtained 
there is no longer any need to express X*, P; or their 
Poisson brackets to second order. They can be evaluated 
to first order only. We shall never, in fact, encounter the 
need to use the second-order expansion for X*, P* (not 
even in order to obtain their Poisson brackets). The 
introduction of the higher order expansion for X*, P4 

was only a formal step, needed to show the canonical 
independence of the X*, P; and Qk, Pk. 

With regard to the Hamiltonian, however, it will, of 
course, be important to express it correctly to the second 
order in Qk and Pk, in order to obtain the correct first-
order equations for Qk and Pk . To expand the Hamil­
tonian, we can use Eq. (4.6) writing 

H=H(X\Yi)+blH+m, (4.7a) 

where blH and 82H are of first and second order, re­
spectively. Such an expansion will be carried out ex­
plicitly in Paper II. For the present we shall only draw 
some conclusions concerning the general properties of 
this expansion, by supposing that the Hamiltonian 
H(x\pi) has been expressed in terms of Q, P, £, p£, viz. 
H(x,p) = K(Q,P£,pz). For the simple example given in 
Sec. 2, it was, in fact, possible to obtain such an expres­
sion from Eq. (2.10a) 

P2 Q 
H=—+mo)2(pe)—I-

2m 

pe2 

, x t-(re-roy, (2.10b) 
2 2mre(pe)

2 2 

where we have set pr=
zP7 r—re(pe) = Q. As we have 

indicated earlier, it is not possible in practice to obtain 
such an expression for the general problem. Neverthe­
less, we may imagine the function K to be expanded to 
second order in Qk and Pk 

K(Qk,Pk&pd = K(Ofi&Pd 

^f , s<2k2 P A 
+ E U ( { , f c ) — + h & p t ) — . (4.7b) 

k \ 2 2 / 

(We know that the terms linear in Qk and Pk must 
vanish because by hypothesis, we are considering func­
tions Qk and Pk that oscillate harmonically about 
Qk=0,Pk=0.) 

When (4.7b) is expressed in terms of x*, p* and X*, P», 
we are able to translate it into terms which do not 
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require us to know £, p$. We obtain 

H(x\pi) = H( X\Pi)+A (X*,P0—+B( X*,P<)— 
2 2 

(where 4 (X»,P<) = [A (x<,p»)]Qkipk«0 

= C«(ek^k,^€)]ok.Pk-o). (4.7c) 

The coefficients 4(X*,P») and #(X*,Pi) will, in all 
relevant cases, either be constants or slowly varying 
functions of the time, in which latter case the oscillations 
can be treated by the adiabatic approximation. 

To obtain the equations of motion from an expression 
such as (4.7) for the Hamiltonian, we would need an 
explicit expression for the Poisson brackets of the X* and 
P». Let us recall that these can be evaluated on the 
equilibrium surface, Pk=0, Qk=0 (which is indicated 
by brackets "f ] " around the expressions). As a 
typical case, consider 

C I X ^ | ] = Z -— :) • (4.8) 
i UA dx* dpi dpi dxVil 

To evaluate this Poisson bracket we consider the 
relevant quantities 

©• ©• a ©• <-
In the differentiations involved here, second-order 

terms in Q& and Pk will, evidently, make no contribution 
(even after differentiation, such contributions will 
vanish, as everything is evaluated on the equilibrium 
surface). Therefore, the first-order expansion (3.5a) will 
(as we have already indicated before) be sufficient to 
calculate the Poisson brackets (4.8). When (3.5a) is 
substituted in (4.8a), one obtains 

dxUI 

Although the rest of the calculations are straight­
forward, they would prove to be very unwieldy if the 
present notation is used (not only because the expres­
sions for the Poisson brackets are lengthy, but also be­
cause the second-order expansions for H are quite 
complicated). In Paper II, however, we shall develop 
a more condensed notation, with the aid of which the 

results can be obtained more easily. The advantage of 
being able to write down these equations of motion with 
the aid of the noncanonical Poisson brackets [X^Py] 
will, it is hoped, become evident in subsequent papers. 
In the present paper, however, we want to stress only 
one property of the X^t), P*(0 motion, a property which 
is indifferent to whether its equations of motion are 
derived in the way indicated above or through the argu­
ment of footnote 13; namely, that dXi/dt={dH/pi}, 
d?i/dt= - {dH/dx1}. This will become evident through 
the condensed notation of Paper II, and can also be 
understood directly as indicated in footnote 13, since it 
just means that X*(/), P*(0 is a possible solution of the 
original equations of motion. In other words, to each 
actual solution, x*00, pi(t) of the equations of motion, 
the transformation (3.6) and (4.6) associates a special 
comparison solution X*(/), P»(J) in the equilibrium 
variety. This comparison solution is special in the sense 
that as a result of the way in which it is defined, the 
differences 8xi=xi—X*, 8pi=Pi— Pi will evidently not 
increase without limit in a secular way, because they are 
proportional to Qk and Pk, which oscillate harmonically 
and remain small. 

To illustrate the meaning of this property of the X*, 
Pi, let us return to the example given in Sec. 2. We shall 
consider case (A), in which pe is small enough so that 
the equilibrium variety can be approximated by the 
circle r=r0. In the description of small oscillations about 
the equilibrium circle, we introduced a set of canonical 
variables (2.12). With their aid, we associated to each 
point r(t) = r0+8r(t), pr{t), d'=d-pr(dre/dpe)3 pef = pe, 
a corresponding equilibrium point of the variety 
Q=r— r0=0, P=pr=0 with coordinates 0O' = 0/ and 
pe=pe- In other words, the values of the nonoscillatory 
variables 0' and pe', in the comparison orbit have, in 
this way, been chosen to be the same as in the actual 
orbit. If such a choice had not been made, then there 
would have been an increase of 0'— 0o

/== (pe—peoWfnro2 

without limit, with the passage of time. 
Of course, in the above simple example it was possible 

to choose conditions on the comparison orbit in the 
equilibrium variety so as to avoid a secular increase of 
50 with time because there was available an explicit 
expression for the nonoscillatory variables 0' and pe, 
by means of the canonical transformation (2.12). More 
generally, however, such an explicit expression cannot, 
as we have already pointed out, be found. Thus, if an 
arbitrary motion in the equilibrium variety is taken as 
a comparison motion, then the difference 8x\ 8pi will, 
in general, undergo a secular increase with time. The 
special way of defining the comparison motion by means 
of the transformation (3.6) and (4.6) leading to the 
"projected" point X*, Pj is therefore, in effect, a means 
of choosing initial conditions of the comparison orbit, 
such that secular increases of 8x\ dpi are certain not to 
occur. As a result, the conditions needed for application 
of perturbation theory will always be satisfied. 


