
P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 2A 20 J A N U A R Y 1 9 6 4 

Ground-State Energy of a High-Density Electron Gas 
W. J. CARR, JR. AND A. A. MARADUDIN 

Westinghouse Research Laboratories, Pittsburgh, Pennsylvania 
(Received 5 September 1963) 

The terms of 0(rs lnrs) and 0(rs) in the expansion of the ground-state energy of the high-density electron 
gas are studied in this paper. The value of the coefficient of rs lnrs is evaluated, and it is found to differ from 
the value obtained by DuBois. The result of the present calculation for the energy per electron is 

E = 2.21fs-
2-0.9l6>s-

x+0.0622 ]nr,-0.096+0.018r. Inr,+ (£3 '-0.036)f8+0(fs
2 tor.), 

where E% is a sum of twelve dimensional integrals. Although _E3' has not been evaluated it is shown with 
the aid of the virial theorem that no reasonable value of E% can make the series expansion rapidly convergent 
beyond rs~l. Under the rather arbitrary assumption that E%rs as well as higher order terms can be neglected 
below r«= l , an interpolation between the present result and the low-density expansion is carried out, and 
values of the correlation energy in the region of metallic densities are estimated. 

FOR a large number of electrons moving in a fixed 
uniform distribution of positive charge, expansions 

exist for the exact ground-state energy in the limits of 
both high and low density. The principal assumption 
in these calculations is that the particular perturbation 
series converge. A considerable importance is attached 
to the question of whether these series contain physical 
meaning at intermediate densities, and to the possi­
bility that the two expansions might cover the complete 
range. There is particular interest in knowing if the 
expansion for the high-density case, which resembles a 
metal, holds in the range of actual metallic densities, 
i.e., for rs between 2 and 5, where rs is, in Bohr units, 
the radius of the equivalent sphere which each electron 
occupies. 

In low densities the electrons crystallize into a lattice1 

and therefore have the electrical properties of an insu­
lator.2 Thus, an additional question arises, which was 
investigated by Mott3 in a qualitative way, concerning 
the transition from metallic to nonmetallic behavior.4 

In a previous series of calculations5-7 the problem of 
the low-density electron gas has been treated in some 
detail7a; in particular, it appears that the expression ob­
tained may be valid down to the neighborhood of rs 

equal to eight or nine, and an estimate of the next term 
in the expansion gives a reasonable result down to an 
rs of about six. Because of this result it seems profitable 

1 E. Wigner, Trans. Faraday Soc. 34, 678 (1938). 
2 More precisely, they would have these properties if small 

irregularities were placed in the positive charge to break up the 
translational degeneracy. 

3 N. F. Mott, Phil. Mag. 6, 287 (1961). 
4 Some authors have speculated that a transition occurs at low 

density from a lattice to a "liquid" arrangement in analogy to the 
melting of a solid. Since a solid melts largely because of entropy 
considerations, and only the ground-state energy is involved here, 
the analogy is not a close one, however. Nevertheless, the possi­
bility remains that other transitions might occur within the 
metallic or nonmetallic range. 

6 W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961). 
6 R. Coldwell-Horsfall and A. A. Maradudin, J. Math. Phys. 1, 

395 (1960). 
7 W. J. Carr, Jr., Rosemary A. Coldwell-Horsfall, and A. E. 

Fein, Phys. Rev. 124, 747 (1961). 
7a Note added in proof. Some recent work on the low-density gas 

has been done by F. W. de Wette, Dept. of Physics, University of Ill­
inois and Argonne National Laboratories (private communication). 

to carry the high-density calculation one step further, 
which means evaluating the rs and rs lnrs terms. The 
rslnrs term has in fact already been evaluated by 
Du Bois.8 We obtain a considerably different result 
however, and have uncovered a number of errors in the 
original calculation (which may not seem too surprising 
considering the length and tedious nature of the 
problem). 

We shall review the calculation along the lines origi­
nally developed by Gell-Mann and Brueckner.9 The 
kinetic energy operator T is the unperturbed 
Hamiltonian and V, the total Coulomb interaction, is 
the perturbing part. 

Up through second order in the Rayleigh-Schrodinger 
perturbation series the energy terms are known, the 
result in Rydberg units being 

£o=€0=2.21i\Vs-
2, 

Ei=7oo=-0.916Mv-1 , 

VOJVJO 
£ 2 = E =£24+(0.046±0.002)7V, 

where 
&0 €o—6j 

E<>±=-
-3N rdq 

8TT5 BH dvr 
1 

g2+q- (pi+p2) 

(1) 

(2) 

(3) 

(4) 

where the region of integration is 

p!<l, p2<l, | p i + q | > l , | p 2 + q | > l , 

and where N is the number of electrons, e the unper­
turbed energy, q a momentum transfer between elec­
trons, and p a momentum within the Fermi sphere. 
The subscript zero indicates the unperturbed ground-
state wave function and j indicates an unperturbed 
excited state, each state being a Slater determinant of 
plane waves. The value of the second, or exchange 
term, in (3) is the result of the computation of Marcum 
and Kahn, given by Gell-Mann and Brueckner.9 

8 D. F. Du Bois, Ann. Phys. (N.Y.) 7, 174 (1959). 
9 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 

(1957). 
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The third-order expression for the energy may be After a rather lengthy calculation we have reduced 
written as (5) to the following expressions: 

V oi{V — V oo) ijV jo , ,s\ 
E 3 = E £ . (5) £ 8 = £ 8 6 + £ 8 4 + £ 8 / , (6) 

&o MO (e0— €i) (e0— ej) where 

^ 3 6 = / : r X , (7) 
3 arsN rdpidp2dpzdq 1 1 

= / x 

4 TT7 J q* (g 2 +q-(p i+p 2 ) ) (^ 2+q-(pi+p 3)) 

and where the region of integration is: | p*+q | > 1, | p» | < 1. 

-3arsN rdpidp2dpzdq 1 3arsN 
Ez 

-sl\ rdprfp 

Pi -P2 | 2 (g 2 +q- (p i+p 3 ) ) (g2+q-(P2+p3)) 4 7T7 

dpxdp2dpzdq 1 3 arsN 
X 

/ g4 |pi+P2+q|2(g2+q-(pi+P2))tf+q-(pi+P3)] 8 TT7 

dpidp2dpzdqr l i n 

q4 MP1-P2I2 |Pi-P2+q| 2J (g2+q-(P1+P3)) /

dpidp2dpzdqr 1 I n 
— - r X- : — > ( 8 ) 

<74 M P 1 - P 2 2
 P l - p 2 + q * J "• 

where the regions of integration are |p*| < 1 and | p ; + q | > 1 for the first two integrals and |p*| < 1 , | p i + q | > 1 , 
I p3+q| > lj f̂ r the last one. And 

3 arsN rdpidp2dqidq2F 2 1 ~| 1 
£3' = / 

32 TT7 J qx
2qi L | q i — q 2 | 2 | P i + p 2 + q i + q 2 1 2 J ( g i 2 + q i - (P1+P2)) ' 

7 fdpidq2dqidq2r 2 1 1 
. / X -
J qx

2q2
2 L | q i — q 2 | 2 | p i - p 2 | 2 J qi 

(?2 2 +q 2 - (P1+P2)) 

3 arsN fdpidq2dqidq2r 2 1 ~] 1 

16 TT7 7 g i V L | q i — q 2 | 2 | p i — p 2 | 2 J q i - (p2~pi )q2- (P2-P1) 

3arsN r dpidp2dpzdq 1 1 1 
/ x 

8 TT7 J 22 |prfp2+q|2 |p2-p3|2tf+q-(pi+P2)) (q2+q- (pi+Pa)) 

3 arsN r dpidp2dpzdq r ' 1 1 "1 1 >N r dpxdp2dp3dq r 1 I n 1 
_ / X ; (9) 

16 TT7 7 g 2 | p i + p 2 + q | 2 L | P l - p 3 + q | 2 |pi—p3 |2J (<22+q-(Pi+p2))2 

where the first integral is the sum of two parts, one over energy per electron coming from this sum is 
the region: | p i + q i | > l , | p i + q 2 | > l , | p i | < l ; 
| p 2 + q i | > l , I p2-hq2 | > 1, I p21 < 1; the second over the f — 3(ars)~

2r r™ 
region with the opposite inequalities; the next integral e ' = ~ ~ / #^q / M̂ 
is over the region: | p i + q i | > l , | p i + q 2 | > l , | p i | < l , J J~™ 
| p 2 + q i | < l , Ip2+q2 | < 1, | p 2 | > l ; the next to last 
over: | p , + q | > 1 |p«| < 1 ; and the final one over x [ ^ g ^ . J 1+^QM ) | , (10) 
| p i + q | > l , | p2+q |> l , |p<|<l.# m # u LTTY \ TTY / J 

The perturbation expansion is one in increasing 
powers of rs; however, as is well known, the expression w h e r e a = = (4/9^)1/3 a n d Qqfo) i s a function defined by a 
£ 2 4 is a divergent integral as are £36 , £34 , and corre- fourfold integration as given in Eq. (18) of the same 
spending terms in higher orders. To circumvent these reference. After performing the integration we obtain 
infinities, the series must be reordered, as first pointed 
out by Macke10 and done in a precise manner by Gell- , ^ Q_I_I^2_^_„2 
Mann and Brueckner.9 The sum Eu+E^+E^ , Qq(ji) = 2?r — [ l + M 2 - i g 2 ] In 
which contains the most divergent integrals in each [2q (1—^g)2+M2 

order, represents a well-behaved function of q and is 
given in Ref. 9. In the notation of these authors the l+i(Z 2<Z"-~1] , N 

+ 1 - / * tan"1 + M tan"1 . (11) 
10 W. Macke, Z. Naturforsch. 5a, 192 (1950). ju M J 
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As q —» 0 it may be readily established that 

0flO*) = 4ir22(M)+^iO*)+O(^), 

with the definitions 

RQi)= l - ju tan- 1 ! / /* 

(12) 

(13) 

- 9 1 

16TT6 rs
2 
-1 d r / r / / J/x 
'JO J-oo 

dq QMQr8'
10(q,iqu) 

X 
/ -

(19) 

and 

« i0*)=-
3(1+M

2)2 

With (11) and (10) an expansion may be obtained 
for e' in powers of rs and in powers of r8 multiplied by 
lnrs, although some care is required in doing so to avoid 
divergent integrals. We obtain, using the previous 
evaluation of Gell-Mann and Brueckner for the first two 
terms, 

e'=0.0622 ln r . -0 .142+r . ( i4n ImvfCn) 

+ 0 ( r s y s
2 l n r 5 ) 3 

where 
-6a r 

i l n = / dp&QtiR!^ 0.0054, 
7T5 J_oo 

and11 

- 8 a r™ 6a r°° 4aR(p) 
Cu= I duff 0*) / d^R2 (fi)R! (p) In 

7T4 J-oo 7TV-OO 7T 

? [5*+(ar . ' /«*)e ,0i)] 

where Qr,'10 is a function proportional to rj, denned by 
/j4\ Eq. (A3) in Ref. 8. One check on the correctness of 

(19) may be made by expanding the denominator in 
powers of rs. The first term should equal £34; i.e., 

- 9 1 
£34= / dr,'r,' I dp 

16x6r, 
-f'dr.'r.'f , 

J 03 

(15) 

(16) 

which can be shown to be the case. 
Upon isolating the r8 and r8 lnrs terms in (19), we 

obtain 

e" = r8(Alx\nrs+Clx)+0(rsW l n r . ) , 

where13 

Aix= 
3a 

dq a r°° r" dq a r00 r11 

4irV-oo J i qz 4irV-co </o qz 

X C e 3
3 ( M ) - ( 4 7 r ^ ( i u ) ) 3 - 3 ^ 1 ( i u ) ( 4 7 r ^ ( M ) ) 2 ] . (17) 

a n d 

Clx~ 

2TT4 

4a 1 / 4a 1 \ 

• / d»R(ji)RU(iiJt)=0M3 

3a 

(21) 

(22) 

-8 i ,+-
2TT4 

Numerical evaluation of the terms m (17) lead .,, 
c n i w l t n 

finally to 
C n = -0 .018-0.0042+0.0072 

- 0 ( 1 0 - 4 ) = - 0 . 0 1 5 . (18) 

SUMMATION OF THE NEXT MOST 
DIVERGENT TERMS 

xf diiR(ix)R^(i^)lnR^): 

J —00 

3a r00 f r dq 1 
«i*= / dfxl / —QMQr,1 0(q, iqu)— 

(23) 

«<i 

QMQr^iguy 
ar s 

] ) • 
(24) 

The next logical step in this approach is to sum the 
terms of next highest divergence in the perturbation — 4TR(fi)Ra) (iu) 
series. We denote this sum, £34H by Ne". According 
to Du Bois' results [his Eq. (C16)] an approximation T h e f u n c t i 0 n R^(iu) is obtained from the limit of 
for e" sufficient for obtaining the exact rs and rs\nrs (l/ar8)Qr8

10(q,iqu) as q->0 and is given by Eq. (A5) 
terms is given by12 

11 Du Bois obtains the expression 

Cn = 81+-. P d^R?Rl lnR+ ^ I n ^ + ^ f "rf^s 
7T5y_oo 7T6 IT 7TV-00 

with 

dl = (^)-^fj»f* ^[&3- fatySRi (4**)»] 

in Ref. 8. 
We find by numerical integration that 

Clx= - 0 .0097 -0 .008 -0 .0037= - 0 . 0 2 1 . (25) 

RESULTS 

+ 
a f"3 f°°dq 3 Upon collecting terms we obtain a coefficient of 
^V-* Mi i r^q' 0.018 for the r 8 lnr8 term (as compared with Du Bois' 

This expression is similar in form to ours but differs in sign, nu- 0.0049) a n d t h e energy pe r electron becomes 
merical factors, and a power of q2 in one term (probably a mis­
print). Du Bois' expression for An and his value of Ri also differ £ = 2 .21r 8 ~ 2 —0.916r s

- 1 +0.0622 lnr s —0.096 
from ours, but the discrepancy here is obviously due to misprint ' " 1/77/ l\ n?*:\ n/ 21 -\ /OA\ 
since his numerical results for An are in approximate agreement +0 .018f s lnrs+ (E 3 — 0 . 0 3 6 ) r s + 0 ( r s

2 , r / lnr s ) , (26) 
with ours. 
^ 12 More correctly, we have taken Du Bois' result with opposite 13 Du Bois gives Aix — —0.00045. However, our expressions for 

sign. A\x and C\x are the same as his except for a. factor of — 47i\ 
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TABLE I. Comparison of the correlation energy obtained by 
various estimates. The energies are in Ry units. 

FIG. 1. Correlation energy plotted against rs. The curve marked 
Ez' = 0 is a plot of Eq. (27) with E* neglected. The straight line 
is a plot of 0.0622 lnrs—0.096, the Gell-Mann and Brueckner ex­
pression for the correlation energy. The solid curve for large ra 
was taken from Ref. 7, and the dashed curve is an interpolation. 

where E'% is the sum of the twelve-dimensional inte­
grals given in Eq. (9). The individual terms in E'% 
diverge. However, when the first three and the last two 
integrals are grouped together the result seems to be 
finite. 

From (26) the correlation energy Ec, defined as 
E— 2.21fs~

2+0.916rs~
-1, is given in the first two orders 

of approximation by 

Ec= (0.0622 lnrs-0.096) 
+rs(0.018 lnrs+£'3-0.036) . (27) 

In Fig. 1, Ec is plotted against rs, with E% arbitrarily 
taken to be zero. The first-order approximation for the 
correlation energy, 0.0622 lnrs—0.096 is shown on the 
same figure. By use of the virial theorem7,14 the kinetic 
and potential correlation energies Tc and Vc have also 
been plotted in Figs. 2 and 3. 

If the series expansion is rapidly convergent and 
Eq. (27) accurately represents the correlation energy 
in the region of metallic densities, we would expect that 
in this region, and especially at smaller densities, the 
second-order term would be quite small compared with 
the first. As observed in Eq. (27) and Fig. 1, however, 
such is not the case unless Ez is positive. But according 
to Fig. 2 even with E% set equal to zero, Eq. (27) gives 

FIG. 2. The kinetic part of the correlation energy plotted against 
rs. The meaning of the various curves is the same as in Fig. 1. 

14 N. H. March, Phys. Rev. 110, 604 (1958). 

Ec 

Present 
a 
b 
c 
d 

2 

-0.096 
-0.085 
-0.090 
-0.099 
-0.094 

3 

-0.076 
-0.068 
-0.081 
-0.086 
-0.081 

r$ 

4 

-0.064 
-0.058 
-0.075 
-0.074 
-0.072 

5 

-0.054 
-0.051 
-0.069 
-0.067 
-0.065 

6 

-0.048 
-0.046 
-0.064 

a W. J. Carr, Jr., Rosemary A. Coldwell-Horsfall, and A. E. Fein, Phys. 
Rev. 124, 747 (1961). 

b E. Wigner (corrected) D. Pines, in Solid State Physics, edited by F. Seitz 
and D. Turnbull (Academic Press Inc., New York, 1955), Vol. 1, p. 367. 

c J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958). 
d P. Nozieres and D. Pines, Phys. Rev. I l l , 442 (1958). 

an absurd negative kinetic correlation energy over most 
of the range of metallic densities. A positive E% would 
make Tc go through zero at an even smaller value of rs. 

The conclusion is that regardless of the value of Ez, 
Eq. (27) will not give an accurate account of the corre­
lation energy in the interesting region of rs between two 
and five, since in binding energy calculations the result 
is often desired to the order of 10-2 Ry or better. If the 
series (26) converges at all in this region of interest it 
does so rather slowly. 

FIG. 3. The potential part of the correlation energy plotted against 
rs. The meaning of the various curves is the same as in Fig. 1. 

If the metal to nonmetal transition introduces no 
more than a small discontinuity in the slope of the 
ground-state energy as a function of rs, then the high-
density and low-density expressions for the energy 
might be expected to fit smoothly on to one another. 
Since Ez has not been evaluated we have arbitrarily 
taken a value (specifically Ez'~0) which allows a 
smooth connection between the high- and low-density 
results for the correlation energy and the kinetic and 
potential correlation energies. With E3VS neglected, a 
reasonably smooth connection can be made in Figs. 1-3 
if it is assumed that the high-density curve is accurate 
only for rs less than unity. Such an interpolation is 
shown by the dashed line of Fig. 1. The correlation 
energies estimated in this way are given in Table I. 
They are intermediate between the values of Ref. 7 
and previous estimates. However, it is doubtful if any 
of the estimates in Table I can be relied upon to 10~2 

Ry and to this order there is agreement. 


