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A formalism is developed to calculate radiative processes, and applied to the shift of resonance frequency 
due to the radiation field itself. The zeroth approximation gives the Bohr resonance condition, while the 
next approximation gives a shift proportional to the photon density. The first-order shift is made of two 
terms: electric and magnetic. They can be interpreted as second-order Stark effect and Zeeman effect due to 
the oscillating field, respectively. A comparison with experimental data on the Cs atom is made. A good 
agreement is obtained by choosing the value of parameters suitably. These values of parameters can be 
checked by a future experiment. 

INTRODUCTION 

IN order to explain hydrogen spectral lines, Bohr1 

postulated that the absorption or emission of radia
tion field energy by an atom can take place when the 
frequency of the radiation field is equal to that of the 
atom which is given by the energy difference between 
atomic stationary states divided by the Plank constant 
h. This postulate was so successful that this is one 
of the few basic assumptions on which the entire quan
tum mechanics has been developed. 

Each spectral line, however, has a shape, or is charac
terized by the width and the shift of the center fre
quency. Such spectral line shape is often due to inter
atomic interactions. When the interactions between 
atoms are negligible, a width of a spectral line still exists 
and is called its natural linewidth. A shift must also 
exist even when interatomic interactions are negligible. 
Such a shift of spectral line, which may be called the 
natural line shift, was first pointed out by Bloch and 
Seigert2 with respect to the nuclear magnetic resonance. 
They showed theoretically that if one uses a linearly 
polarized electromagnetic wave to observe a magnetic 
resonance, a shift is expected compared to the case when 
one uses a circular polarized wave. Bloch and Siegert 
discussed the simplest case of spin one-half, while 
Salwen3 discussed the same effect in more general cases 
to explain the experimental result of Heberle, Reich, 
and Kusch.4 

Recently, Beehler, Snider, and Mockler5 observed the 
center frequency of Cs 9-kMc/sec lines and found that 
it shifts when the input power of the radiation is in
creased. The present paper develops a general theory of 
the natural line shift to explain Beeler, Snider, and 
Mockler's result. The theory includes the Bloch-
Siegert effect as a contribution, but gives a completely 
general formula. 
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The Hamiltonian of our system is made of three parts, 
namely, that of the radiation field, that of an atom in a 
vacuum, and that of the interaction between them: 

H=Hr+Ha+Hi. (1) 

The first term Hr, which is the Hamiltonian of the 
radiation field, can be given by the vector potential 

2 

A(r,0 = E E exO* exp(-io)ki) 
X fc 

— ak* exp(iukt)~]Gk (r), (2) 

where Gk(r) is the amplitude of the &th mode of the 
field normalized with respect to the volume of the 
cavity V as 

/ 
G * ( r ) | W = F . (3) 

Note that if the cavity is infinitely large, Gk(t) can be 
exp (ik« r) as given in any text books of quantum electro
dynamics,6 but for a finite cavity Gk(r) should be real 
and different from such expression, ex is the polarization 
unit vector, uk is the frequency of the &th mode, and 
ah, ak* are familiar annihilation and creation operators 
defined as 

(nk | ak | nk+1) = (nk+ l\ak*\ nk) 
= [*(»*+l)/2coteoF], (4) 

where nk is the photon number of the &th mode and €o 
is the capacitivity of the vacuum. 

The eigenvalues of Ha> the Hamiltonian of the atom 
in vacuum, are very difficult to calculate but can be 
measured in spectroscopic experiments using Bohr's 
postulate. 

The interaction between the field and the atom is 

+ fa//*<)MvXA<)], (5) 
where e^ /x*, s*-, and P4 are the charge, mass, spin, and 
momentum of the ith particle of the atom, and A* is 

6 For example, W. Heitler, The Quantum Theory of Radiation 
(Oxford University Press, New York, 1954). 
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the vector potential at the position of the ith particle. 
Since we are interested in modes with wavelength very 
much larger than the atomic dimension, we can ap
proximate (5) as 

Hi= (*//*)P. A 0 - (Ze2/2M)Ao2 

-i(e/2Ai)(L+2S)-(vXA)0, (6) 

where e and & are charge and mass of the electron, Z 
is the total number of electrons, P, L, and S are total 
linear momentum, total orbital angular momentum, 
and total spin angular momentum of electrons, respec
tively. Subscript 0 means to take values at the position 
of the atom. It was shown by Power and Zienau7 that 
in our case the first two terms in (6) can be replaced by 

Eft Mkex*Me(ak—ak*)Gko9 (7) 

where Me is the dipole moment of the atom. 
In a representation in which both Hf and Ha are 

diagonal, we have 

(nka | Hr | nka) = nkhcok, 

(nka\Ha\nka) = Waj 
(8) 

where Wa is the energy of the atom in its ath state. 
Nondiagonal matrix elements are: 

(nka\Hi\nk+lb) = -i(e/2fx)(exXVGko) 
• (a | L+2S | b)l%(nk+ \)/2nhe*Vj», (9) 

{nk\Hi\nk+U) 
=^G j f co(a|ex-Me |c)^(^+l)/2c^6oF]1 /2 . (10) 

Atomic states a and b can be the same, but state c is 
different from them. 

TIME DEVELOPMENT OPERATOR 

The Schrodinger equation 

ifi\p=H\l/ (ID 
is formally solved as 

*(0 = exp(-iff*/%>KO), (12) 

where expi—iHt/fi) is called the time development 
operator. The transition probability for i —» / can be 
defined as 

S ( i -> / ) = lim| (/ |exp(-*W*)IOIV*. (13) 
t—*» 

We are interested in the emission of a photon where 

|») = |«a ) (14) 

| / )=|»+1/5) (15) 

in the same notation as in the previous section. 
As a result of the interaction term H^ wave functions 

(14) and (15) are not eigenfunctions of the Hamiltonian 
H. If Hi can be assumed to be small, however, the 

7 E. A. Power and S. Zienau, Phil. Trans. Roy. Soc. (London) 
A251, 427 (1959). 

perturbation method can be used to obtain eigenfunc
tions. Thus the first approximation is obtained as 

I no) = <pn+ (n+1$ | Hi | no) 
X(En+l—En)-

l<pn+i+J2m^m<pmf (16) 

In+ 1/J) = <pn+i- (na\Hi\n+10) 
X(En+i~Eny

i<pn+Yim%m<Pm, (17) 
where 

H<pn=En<pn, (18) 

and 
H(fn+l— En+i(pn+i, 

H<pm=Em<pm. 

(19) 

(20) 

From (13) we have 

S(na~->n+l0) 

= lim| (n+W\Hi\na)\2\exp(-iEj/fi) 

-expf -iE^t/h) ^/{En-E^ft 

= (2w/m\(n+W\Hi\na)\%(En-En+1)mf (21) 

which gives the resonance condition 

£ n = E n + i . (22) 

Since the first approximation to the eigenvalues gives 

E&nha+Wa, (23) 

E^^in+Vfa+Wfi (24) 

according to (8); the resonance condition (22) is 

fo = Wa-Wfi, (25) 

which is the Bohr resonance condition. 

FREQUENCY SHIFT 

The deviation from the Bohr resonance condition 
(25) can be obtained by calculating the eigenvalues En 

and En-% to a higher order of approximation. For our 
case where the degeneracy exists due to the condition 
(22), we see the Van Vleck transformation8 is most suit
able to calculate such improvement. Thus we obtain 

En=nim+Wa+j: \(na\Hi\n'y)\*/ 

Kn-tOfa+Wa-Wy), (26) 

En+1= (n+l)lk»+Wfi+ E I (n+lp\Hi\n'y)\*/ 

where 
Z(n-l-n')lto+Wfi-Wy], (27) 

y^a, norjS. (28) 

From (22) the resonance condition is now 

hu = Wtt- Wp+n, (29) 

8 T. H. Van Vleck, Phys. Rev. 33, 467 (1929). 
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where the shift 0 is, from (9), (10), and (27), 

Q=nhiZy\(*\D\y)\s{(fk,+Wa-Wyyi 
+ (-haj+Wa-Wy)-1} 
-Zy\(PlD\y)\*{Qkc+wa-wy)-i 

+ (-h6>+Wa~Wy)-
1}~]/2a)eoV, (30) 

where y does not include a nor 0, and 

D= (e/2ix)(exXWG)r (L+2S)+wG0ex-Me. (31) 
In (30) we neglected one compared to n. 

Because of the selection rule, the shift (30) can be 
expressed as a simple sum of terms called electric shift 
and magnetic shift, respectively: 

0=Oe+Ow , (32) 
where 

Oe= = (rfWGo2/2eoF)CEr| (a\ ex-Me |7)2 

X { (ha>+ Wa~ WJrl+ ( - k»+ Wa~~ W y)-1} 
-E7|01ex-Me|7)|2 

Xiik^+W^Wy^+i-h^+W^Wy)-1}!, (S3) 

and a similar expression for Om which is obtained from 
the first term of (31). 

Now 
Pe=nhuGi/2V (34) 

is the time average of the electric field energy density 
at the position of the atom. On the other hand, the 
average electric field strength at the position of the 
atom So is given by 

pe=e0<§o2/2 (35) 

so that (33) can be written as 

0.= (Sm)ZEy\ (ale^M^imhu+Wa-Wy)-1 

+ (»^o+TF a- lF7)-1}-Z7l(/3 |ex-M e i7) |2 

XUhu+We-Wy^+i-fa+We-Wy)-1}^ (36) 

which shows that the electric shift Oe can be interpreted 
as a second-order Stark effect due to the average elec
tric field of the radiation. Note, however, that the matrix 
element (a|e\*M6|j8) does not contribute to the shift. 

The same interpretation can be done about the mag
netic shift Qm. If we define the average magnetic flux 
density at the position of the atom B0 by 

Pm=Bo2/2[X0, (37) 

where pm is the time average of the magnetic field energy 
density at the position of the atom, and /*o is the perme
ability of the vacuum, we see that 

0^=(BoV2)CE rl(aIex'-Mm |7)|2 

X {{fm+Wa- Wy)-*+ (-hu+Wa- Wy)~1} 
-E,i03|ex'-Mmi7)|

2 

x{(h^+w0-Wyyi+(-hoj+w^wyy
i}'], (38) 

where 
Mm=(e/2M)(£+25) (39) 

is the magnetic dipole moment of the atom. Again the 
summation over y should exclude both a and j3. 

APPLICATION TO Cs 9-KMC/SEC LINES 

The ground state of the Cs atom is 25*1/2 and the 
nuclear spin of J splits it into F = 4 and F=3 states. 
The F = 4 state is higher in energy than the F=3 state 
by about 9 kMc/sec. Beehler, Snider, and Mockler5 ob
served the change of the resonance frequency due to the 
field in tensity. In their experiment a static magnetic 
field B is applied to remove the degeneracy. The transi
tion F—4 <-> 3 is the magnetic dipole transition. 

The magnetic component of the microwave can be 
either parallel or perpendicular to the static magnetic 
field. They are called w and cr cases, respectively. The 
selection rules for the magnetic dipole transition are 

AM=0 for x case, /il/NX 

(40) 
A M = ± 1 for or case. 

Let us consider the electric shift first. Since the micro
wave frequency is very low compared to any resonance 
frequency of electric dipole transition, we can use 
experimental data of the Stark effect with static field, 
which are given by 

^Ea=S"j:y\(a\eX'Me\y)\HWa-Wy)^ 
and 

A E ^ ^ E ^ l ^ l e x - M . l T ) ! 2 ^ - ^ ) - 1 . (41) 

The Stark effect depends on the angle between the 
electric field and the quantization axis, and in Beehler, 
Snider, and Mockler's experiment the electric com
ponent of the microwave is perpendicular to the static 
magnetic field. Haun and Zacharias9 observed the Stark 
effect of (F=3, Jf=0)<-> (F=4, Af=0) transition in 
the same situation and obtained 

-2.9X10~2(S2cps, (42) 

where S is in V/m. We thus expect 

Oe(0<-> 0)/A= -2 .9X10-V€o cps 
= -3.3X109peCps 

for M= 0 «-> 0 transition. pe is in J/m3. 
Since each of (41) will be expressed as (AEo— AEiM2) §2 

we expect the electric shift for other transitions as 

Qe(M^M)/h= (-3.3X109+£M2)p, cps, (44) 

G,(F=3, M4->-Jp=4> M±l)/h 
= (-3.3X109+C±2Clf+Z)ikr2)pe cps, (45) 

where C and D are constants. 
In calculating the magnetic shift, we can restri'ct 

ourselves to the transitions among the electronic ground 
state since magnetic excitations to any other electronic 
states will have only a negligible contributions due to 

9 R. D. Haun, Jr., and J. R. Zacharias, Phys. Rev. 107, 107 
(1957). 
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FIG. 1. Magnetic dipole transitions perturbing frequency 
of (F = 3, Jlf = 0) -* (F = 4, M = - 1 ) . 

high excitation energies. We see immediately that under 
such approximation 

Qm(M<->M) = 0 (46) 

for all 7r-type transitions. 
In the o--type transitions, on the other hand, the selec

tion rule makes the magnetic shift important (Fig. 1). 
If the microwave is linearly polarized, as in the present 
case, the transition (F=3, M) <-» (F=4, M+l), for 
example, is perturbed by the transitions (F=3, M) <-» 
(F=4, M-l) and (F=3, M+2) *-> (F=4, Jf+1) very 
strongly, since denominators in (38) are quite small 
for these terms. Other transitions (F=3, M)<-> 
(F=3 ,Af - l ) , (F=3,M)<->(F=4:,M+2) also con
tribute to Om to some, but to a much smaller extent. 

Since the external field B gives additional energy 

-B(eh/fi)M/S for F = 3 states, (47) 

B(eh/fi)M/& for F = 4 states, (48) 

the frequency of (F=3, AT) <-> (F=4, M + l ) transition 
is co0+^(e/8/x) (2M+1) is the zeroth approximation. 

The contribution of transition (F=3,M)*-* (^=4, 
M — 1) to the magnetic shift £2m of the above frequency 
is, according to (38), 

(PmMo/64) (4-M) (5-M) (eh/fj?) 

X[(4M/^)-(2coo)~1], (49) 

where pm is the magnetic field energy density. In 

the same way, the contribution of transition 
(F=3, M+2) <-> (F=4, M + l ) is obtained as 

- (PWMO/64) (2-M) (3-M) (eh/ixY 
X[(4Ju/^)+(2co0)-1]. (50) 

Adding (49) and (50) together, and neglecting (2coo)~1 

terms, we have 

Qm/h= 1100(Pm/B)(7-2M) cps, (51) 

where pm and B are given in the mks unit. 
The same consideration gives the following formula 

for the magnetic shift of (F=3, M) <-> (F=4, M - l ) 
transition: 

Qm/h=-UQO(pm/B)(7+2M) cps. (52) 

COMPARISON WITH EXPERIMENT 

Theoretical shifts for all transitions are tabulated in 
Table I. 

TABLE I. Theoretical shifts in cps. p and B0 are in kms units. 

M(F=. 

0 
± 1 
± 2 
± 3 
± 3 
± 2 
± 1 

0 
± 1 
± 2 
± 3 

5) M(F=4) 

0 
± 1 
± 2 
± 3 
± 2 
± 1 

0 
± 1 
± 2 
± 3 
± 4 

Electric 

-3.3X109pe 
(-3.3X109-f-£>)pe 
(-3.3X109+4D)P e 

(-3.3X10»+9Z>)pe 

( -3 .3X109-5C+9D) P e 

(-3.3X109-3C+4D)p 8 

( -3 .3 X109-C+D)p e 

( -3 .3 X10»+C)pa 
(-3.3X109+3C+Z>)Pe 

(-3.3X109+5C+4D)pe 

(-3.3X109+7C+9D)pe 

Magnetic 

0 
0 
0 
0 

±1.43 X10* GWBo) 
±1.21X10*(p»/Bo) 
±0.99X10Hpm/5o) 
±0.77X104(pw/^o) 
±0.55 X104 (Pm/Bo) 
±0.33 X104 (pm/Bo) 
±0.11X104(pm/Bo) 

In Beeler, Snider, and Mockler's experiment5 input 
power was measured, but the energy densities pe and 
pm in the cavity were not. It is assumed here that these 
energy densities are both proportional to the input 
power. 

Experimental data are tabulated in Table II and 

TABLE II. Theoretical result with parameters given by 
(54), (55), and (56). 

M(F = 3) 

0 
1 
0 
1 
0 

- 2 
3 

M(F = 4) 

0 
1 
1 
0 
1 

- 3 
4 

Bo 

2.50X10-5 
2.50X10-5 

0.95X10-5 

0.71X10-5 
0.73X10-5 

Shift/input 
(cps/mW) 

« l / 5 0 ) 
+ 1.9 
+ 1.5 
- 1 . 0 
+8.5 

-14 .0 
- 3 . 0 

given in Fig. 2. Straight lines in Fig. 2 are theoretical 
ones obtained by choosing the values of parameters as 

Dp ,/inp. = 1.9 cps/mW, (53) 

CPe/inp. = - 3.2 cps/mW, (54) 

Ptn/mp. = 1.2X 10-8 J/m3 mW, (55) 
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FIG. 2. Comparison of theoretical and experimental shifts. 

(0 

where inp. means the input power in mW. Since they deviations from linear behavior. A large disagreement 
found no shift for the M =0<-> 0 transition within the is also seen in transition (F=4, Af = - 2 ) <-> (F=3, 
experimental accuracy we see M= — 3). 

The effect of the molecular velocity is neglected m 
pe/inp.<10"10 J/m3 mW. (56) the present theory. The experiment by Beeler, Snider, 

and Mockler was with an atomic beam from an oven 
Values for the energy densities are reasonable compared of about 150°C. The deviations of the experimental 
to estimations given by characteristics of the apparatus, data from the theoretical lines can be due to the 

In the higher input regions experiment shows large molecular velocity. 


