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The solution of the time-dependent wave equation describing the interaction of two coupled spins with 
a rotating magnetic field in the presence of a steady field, as in the usual magnetic resonance situation, has 
been reexamined. By extending the method previously developed by Salwen, an exact expression is derived 
for all components of the wave function describing a three-state system under magnetic-resonance conditions. 
This solution describes in analytical form all the single and multiple resonances of which the system is 
capable for fields of any intensity. It is shown that when z is the axis of quantization, the projection of the 
wave function on an eigenstate of Fx oscillates at twice the resonance frequency at exact double quantum 
resonance. An approximate form is derived for the transition probability near double quantum resonance, 
showing that our solution is consistent with Salwen's in the limit of well-separated single and double quantum 
resonances. The theory is applied to the uppermost three substates of the upper hyperfine multiplet of an 
alkali metal of arbitrary nuclear spin, a case of interest to the analysis of magnetic resonance in optically 
pumped vapors. 

INTRODUCTION 

MAGNETIC resonance frequently involves the in­
teraction of two or more coupled spins with 

external magnetic fields. This interaction differs sig­
nificantly from the corresponding interaction of single 
(uncoupled) spins, primarily because of the partial 
decoupling of the spins caused by the applied steady 
magnetic field. A characteristic aspect of the magnetic 
resonance of coupled spins is the occurrence of multiple 
quantum transitions.1-4 

Transitions of this type have been investigated theo­
retically by other investigators,5-8 and in particular in 
some detail by H. Salwen.6 Salwen developed a method 
for finding an exact formal solution of the time-de­
pendent wave equation describing the interaction of two 
or more coupled spins with the external fields used in 
magnetic resonance. This formal solution was then 
applied to an analysis of multiple quantum transitions 
with the aid of perturbation theory. 

The object of the work reported here is to extend 
Salwen's theory so as to derive an exact analytical solu­
tion of the complete problem in certain cases, without 
the use of perturbation theory. Such a solution is of 
interest when perturbation theory will not provide a 
good approximation, as in the transition region between 
tightly coupled and slightly decoupled spins, that is, in 
the region of overlapping single and multiple quantum 
resonances. Furthermore, the analytical solution pro­
vides explicit expressions for all components of the wave 
function of the coupled spins, rather than just the 
amplitude of its z projection. The projections in a 
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transverse direction are important in the analysis of the 
modulation of a transverse beam of resonance radiation 
by an optically pumped vapor.9,10 

When the various resonances are widely separated, 
the predictions of the exact analytical solution will be 
.shown to be equivalent to those obtained by the use of 
perturbation theory, as will be demonstrated for the 
case of the Zeeman resonances of atomic hydrogen. This 
example will be contrasted with the Zeeman resonances 
in the uppermost three substates of the J P = 7 + | hyper­
fine multiplet of an alkali metal of nuclear spin I> | . In 
hydrogen, both the perturbation theory solution6 and 
our solution predict a shift in the double quantum 
resonance-frequency proportional to the square of the 
rf field intensity; the shift is, however, practically 
unobservable in hydrogen. For the alkali metals, the 
corresponding shifts are large and should be easily 
observable, particularly in optically pumped vapors. A 
study of related shifts in an atomic beam of K39 has been 
reported by Kusch,4 and analyzed by Salwen.11 

The analytical solution assumes a particularly simple 
form at exact double quantum resonance. It will be of 
interest to demonstrate that under these conditions the 
x projection of the wave function oscillates at harmonics 
of the resonance frequency. This effect, which is related 
to the light beat experiments of Series,12,13 should be 
observable in cross-beam light modulation experiments 
with optically pumped vapors. 

FORMAL SOLUTION 

The influence of an oscillating or rotating magnetic 
field on a spin system may be described by a time-
dependent wave equation in which the Hamiltonian 
function is an explicit function of time. It is well known 
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that a particularly simple formal solution of this equa­
tion can be obtained when two conditions are fulfilled, 
namely when the time-independent part of the spin 
Hamiltonian, 3C0, is invariant to a rotation about the 
axis of quantization (the z axis, the axis of the applied 
steady magnetic field), and when the time-dependent 
part of the Hamiltonian, 5Ci(/), is associated with a field 
rotating about the axis of quantization. In that case, the 
wave function may be reduced to a constant by two 
successive unitary transformations. The first of these 
transforms the system to a singly and the second one to 
a doubly rotating frame of reference. 

As an example, let us consider two coupled spins, K 
and J, with coupling energy 

aK. J = a[(i) (K+J-+K_J+)+KJ J , (1) 

where a is the interaction constant. The coupled spins 
are subjected to a steady field HQ in the z direction and 
to an additional field H\ rotating about the z axis with 
angular velocity co. The time-independent part of the 
Hamiltonian, namely 

3Co= a[(4) (K+J-+K-J+)+K9J.'] 
+ (wojJz—o>okKz), (2) 

commutes with Fz=Kz-\-Jz, which insures that 3C0 is 
invariant to a rotation about the z axis, or in 
other words, that 3Co commutes with the operator 
V=exp\[—(i/ft)Fzo)t]* Here we have set cooi= |7y|ffo 
— —yjHo, where y3- is the (assumed negative) gyro-
magnetic ratio of the spin / , and o)ok=y kHo, where yu 
is the (assumed positive) gyromagnetic ratio of the 
spin K. 

The time-dependent part of the Hamiltonian as­
sociated with the rotating field in the x-y plane, namely 

rci(0 = i ( u i / + - c o i ^ ^ 

where <aii=
z\y3\Hi=—yjHi and a>ik=yhHi, can be 

made time-independent by transforming to a frame of 
reference rotating about the z axis with the angular 
velocity a> of the rf field: 

5C/= exp[(i/#)F^*]3Ci 

Xexp[ - (i/h)Fzvf\=a)1.Jx~a>lkKx. (4) 

A formal solution of the wave equation 

(i/hKfy/dt)=(WQ+X,i)rfr 

is then given by 

^(0 = e x p [ - ( i / * ) F ^ ] 
XexpC-(^ ) ( JC 0 +5C/ -w^) /X0) . (5) 

This result is well known.7 In order to find explicit 
expressions for the components of the wave function at 
time /, it is necessary to derive the matrix elements of 
the exponential unitary operators on the right-hand side 
of (5). The operator exp[— (i/h)F^i] is formed from 
the diagonal Hermitian operator FZ=KZ+JZ, and is, 
therefore, itself diagonal. In order to evaluate the matrix 

elements of the second operator, exp[-~(i/#)(3Co+3Ci' 
—o)Fz)t], we make use of the following relation,14 which 
holds for any time-independent Hermitian operator, 0: 

^ « » ° * = S { e x p [ - (i/ti)S-lOSt]}S-\ (6) 

Here 5 is a time-independent unitary matrix such 
that S~~lOS is diagonal. Therefore, the matrix 
tio^j--{i/h)SrlOSf\ is also diagonal, and the matrix 
elements of exp[— (i/h)Of\ are known when S is known. 

The relation (6) can be proved by expanding the 
exponential operator in a power series, as follows: 

S{exp[~ (i/h)S-1OSf\}S~l 

= S{1- (it/h)S-1OS+ (1/2!) (it/ft)2 

xis-wss-wst)—}s-1 

= 1 - (ti/h)0+ (1/2!) (it/h)202 =drC'/»o«. 

For the case of the magnetic resonance of a single 
(uncoupled) spin, the matrix S considered as an operator 
is identical with the rotation operators defined by 
Wigner15 and applied to the solution of magnetic reso­
nance problems by Salwen6 and Series.12 For coupled 
spins, the interpretation of S is not so straightforward, 
but S can always be constructed from the eigenfunctions 
of the Hermitian operator 0 occurring in exp[— (i/h)Ot]> 
Thus, if <j>n is the eigenfunction of 0 associated with the 
eigenvalue Xn, so that 0<£n=An#n, then Spn—{<t>n)p, 
where (<K)# is the ^th component of <£». The problem of 
finding the matrix elements of the exponential unitary 
operator (6) is thus reduced to the algebraic problem 
of finding the eigenvalues and eigenfunctions of the 
time-independent Hermitian operator 0, that is, of 
3£o-\-3Ci~-a)Fz in our case. 

We can then restate the formal solution (5) of the 
wave equation for coupled spins under magnetic reso­
nance conditions as follows: 

lKO = exp[ - (i/fyF&t]S{expl-- (i/ti)t 
XS-1(Ko+K1'-a>Fz)S~]}S-y(0). (7) 

This equation is essentially identical with Eq. (20) of 
Salwen's paper.6 Our subsequent procedure will differ 
from his, however, in that we shall find analytical ex­
pressions for the matrix elements of S by an algebraic 
solution of the secular equation associated with the 
eigenvalue problem mentioned above. This will then 
enable us to derive equations for the components of 
\l/(t); the validity of these equations is not limited by the 
use of perturbation theory, as stated earlier. 

ZEEMAN RESONANCES OF ATOMIC HYDROGEN 

The simplest of all atomic systems involving two 
coupled spins K and / is the one for which k=% and 
y= | , as in atomic hydrogen, where K now refers to the 
nuclear spin and / to the electron spin. It is convenient 

14 W. Franzen, Bull. Am. Phys. Soc. 8, 19 (1963). 
15 E. Wigner, Gruppentheorie und ihre Anwendung auf die 
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Arbor, Michigan, 1944), Ch. 15. 
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to express the spin Hamiltonian to begin with in an 
uncoupled (kjmkm/) representation. The representation, 
of dimensionality (2&-f l ) (2 j+l ) = 4, is such that, for 
example, 

fl 0 0 0] 

0 
0 

- 1 
0 

We shall assume that the symbols 3C0 and 3CX refer to 
the components of the Hamiltonian in the coupled 
(kjFntF) representation, so that the Hamiltonian in the 
uncoupled representation is £7(3Co+3Ci)£/-1, where U is 
a unitary matrix which defines the transformation from 
the uncoupled to the coupled representation. I t is then 
easily shown that 

h 
UiWo+WdU-1^-

fcooy—W0 &+WF/2 

0 

— COOy — WOjfc—03 p/2 

COF 

-o>ike
i<at 

0)F 

o>Qj+o)ok—o)F/2 

0 

W i y 6 T * 

-co0/+coofc+Wjp/2. 

Here o)F is the hyperfine resonance frequency in zero 
field. The transformation to the coupled representation 
denned by U will diagonalize the time-independent part 
of the Hamiltonian. A second transformation to a singly 
rotating frame of reference then yields the expression 

OCo+3Ci'~coFs=* 
Xi—w 

A/2 
B/2 

0 

A/2 B/2 
X2 0 
0 X3 

- C / 2 D/2 

0 1 
-C/2 
D/2 

X4+WJ 

(8) 

3C/ is denned by (4), and the other symbols are 
denned as follows: 

X2 = i [ - (coo 2 +co/ ) 1 / 2 - Jco F ] , 

X3 = i [ (coo 2 +co/) l / 2 - |co F ] , 

X4= %( — 0)o.+<tiOk+h<*F) , 

A=cclj c o s ^ + c o i ^ s i n ( ^ ) , 

B = G>I; sin (§17) —ojifc c o s ( ^ ) , 

C=coi;. sin(§i?)+«ifc cos (31?), 

Z)=coiy cos(§i;)-a>ifc sin(Jiy), 

coo=co0i+coOA., 

COST? = coo/ (CO0
2+COF2)1/2 ; sin?? = COF/ (CO0

2+COF2)1/2 . 

The energies h\h h\2l fi\z, and #X4 are the eigenvalues 
of the time-independent Hamiltonian (Breit-Rabi eigen-
states). The ordering of the states is such that the 
subscripts 1, 3, 4 refer to the upper hyperfine multiplet 
(F=l), with wi?=l , 0, — 1, respectively, while the 
subscript 2 refers to the JF = 0 , niF=0 state. 

Since our interest is directed toward the Zeeman 
resonances in the upper hyperfine multiplet ( F = 1), we 
shall confine our attention to the submatrix of (8) which 
involves states 1, 3, and 4, namely, 

Wo+3Q,i-o)FM=h\3l+fi 
f5+Aco B/2 0 

B/2 0 D/2 
0 D/2 S-AcoJ 

(9) 

Here, 8=001$—%o*u= (Xi—X3)—J(Xi—X4) measures the 
frequency separation of the single and double quantum 
resonances, and Aco=|coi4—co measures the deviation of 
the frequency co of the rf field from the double quantum 
resonance frequency |coi4. I t is evident that single 
quantum resonances will occur when Aco=8 and Aco = — 5, 
while a double quantum resonance corresponds to the 
condition Aco=0. The significance of 8 is illustrated in 
Fig. 1. 

The definitions of the frequencies B and D given 
above involve both the electron nutation frequency «i 
and the nuclear nutation frequency coifc. For all practical 
purposes, wik is completely negligible compared to co .̂, so 
that B and D can be written B=ooism(irj) and 
D=oi cos(Jiy), where cosrj=oco/ (O)O2+OOF2)1/2, as above . 

If the eigenvalues of 3C0+3Ci'—Q>FZ are written 
ft(X3+0"*)> where i= 1, 3, or 4, then the frequencies <rt- are 

d,i) 

F-0 

(1,0) FIG. 1. Schematic 
diagram of the hy­
perfine multiplet of 
atomic hydrogen, il­
lustrating the signifi­
cance of the parame­
ter 8. Energy is 
measured vertically 
and magnetic field in­
tensity horizontally. 

(1,-D 

(0,0) 
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the three roots of the cubic equation 

O - (I)«]«- [Q)52+ (A«)*+ (IW][>- (f)5] 
- ( M 2 ( A " ) 2 - (2/9)5*- (i)Wl»] 

+ Aw( |K 2 cos i j=0 . (10) 

These roots are given by 

<71=(f)S{l-Gcos[(27r+e)/3]}, 

< r i= ( t )«{ l -Gcos ( t f )} , (11) 

<r4= ( f ) « { l - G cos [ (4x+e) /3 ]} , 

where 

G= [l+3(Aco/5)2+ (f) ( c o x / W 2 , (11a) 

cos0=G~3{ 1 + (9/8) (coi/5)2[l+ (3Aco/5) COST?] 
-9(Aco/S)2}. ( l ib ) 

If the eigenfunctions of 3Co+3Ci'—o>Fz belonging to the 
eigenvalues h(\z+o-i) are written 

5i= 
ot% 

lyo 

where i = l , 3, or 4, then the three simultaneous equa­
tions (3C0+3Ci'—wF*)£;=^(\3+(Tj)£t- can be solved by 
inspection for the three components of the normalized 
eigenfunctions: 

a*= 1-
(5+Aco-o-;)2 

(co1
2/8)(l-cosr /) 

/l+cosr/X/S+Aco-o-iV"1""172 

+ 11 
\ 1 — COST// \ i 

r 5+Aco 

\ 1 —COST//\5—Aw-

o—o-̂  i 

[ ( v f ^ c o ^ l - c o s ^ ^ J " 

/ 1 + C O S T ? \ 1 / 2 / 5 + A O ; - ( 7 A 

\ 1 —COST?/ \5—Aco—a J 

m 
(12) 

a i 

0 
ft 

LTi 

0 
1 
0 
0 

« 3 

0 
ft 
7 3 

# 4 

0 
ft 
TJ 

matrix S will be given by 

S= 

and the matrix elements of 
e x p [ - (i/ti) (JCo+JCi'-co^,)/] 

= 5 { e x p [ - (i/h)S~1(3Co+^i-^F2)St2}S~1 

are known. Thus, if we write 

{exp[- (f/*)(aeo+aei/-«P ,.)/]}»p=JRllp 
then, for example, 

•#ii= ( |ai |2e~ l V l f+ | a 3 | 2 e - ^ + \a^\2e~i<Tit)e-M, 

Rzi= (ai*i5i^-4Vl<+a:3*/?3e-^3<+a4*ft5-^40^~a3<, (13) 

^4i=(ai*Tie- tVl '+a3*T3^~ i ( r3i+a4*7^~^40^~ iX3*-

Similar expressions hold for the other matrix elements. 

If we assume that the system is in the F=l, tnF=l 

state initially, so that 

<K0)= 

then Eq. (5) gives for the wave function at time t, 

<K0= (14) 

Returning now to the complete (four-state) space, the momentum, is defined by 

0 
-^31 

L Raeiat. 

This is a complete solution of the problem from which all 
properties of the system can be inferred. As examples of 
the usefulness of this solution, it will be of interest to 
examine its application in two limiting cases. 

TRANSVERSE PROJECTION AT DOUBLE 
QUANTUM RESONANCE 

The wave function (14) is expressed in a representa­
tion in which the time-independent part of the spin 
Hamiltonian is diagonal. In this representation, the 
operator FX} the x component of the total angular 

Fx=-
2 

0 (1-sim/)1/2 (l+sim?)1/2 0 

(l-sim?)1 '2 0 0 (l-simy)172 

(l+sim?)1 '2 0 0 (l+sim?)1/2 

0 (l-sim?)1 '2 (l+sim?)1 '2 0 

(15) 

where cos77=co0/(coo2+coi?'2)1/2, as before. The eigenfunc- and the projection of (14) on $+ is given by 
tion of this operator corresponding to the eigenvalue 
+fl i s KRne~i<at+ (l+sinr)y

,2Rn+Raei»t~]$+. 

V+~2 

1 
(1-sim?)1 '2 

(1+sim?)1'2 

1 

^ ^ The absolute square of the coefficient multiplying $ + in 
this expression measures the probability of finding the 
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coupled spin system in the state <3>+: 

P(+fi) = l{l+smrj\Rn\
2+2(R(R1^Rile

tii-t) 
+2(l+smVy!Wn4L(Rn*-Rii)e

i«q}. (17) 

Here (R denotes "real part of" and # denotes "imaginary 
part of." 

The components Rn(t), Rn(t), and Rn(t) of the wave 
function (14) satisfy the initial condition Ru(0) = l; 
Rzi(0) = R±i(P) = 0. Ra(t) is always very small except 
when the frequency co of the rf field approaches the 
double quantum resonance condition Aaj=|wi4—co=0. 
When this condition is satisfied, then [ Rn (t) | as well as 
i(R[R11*(t)RA1(t)e

2i<at'] become large periodically. There­
fore, the probability of finding the spin system in the 
eigenstate (16) of Fx oscillates at twice the resonance 
frequency co near a double quantum resonance. 

The explicit form of the term §GiZRii*Rii#iat'] at 
exact double quantum resonance can be inferred from 
Eqs. (11), (12), and (13) by setting Aco=0. It 
follows then that <n= (|5){l+[l+(coi/6)2]1/2}, az 

= (P){l-[l+(coi/5)2]1/2} and cr4=5, so that 

^ii=sin2(Jr7){cos2(ip) e x p [ - (Jfl) (*+coi8)1/2] 
+sin2(|p)exp[(^)(52+co1

2)1/2]} 
+ cos2Gb) exp [ - (|i5/)], 

Rzl=—2i sin (£17) sin(|p) cos(|p) (18) 
XsinCi/^+cox2)^2], 

Rn=sin(h) cos(§r?){cos2(Jp) 
Xexp[ - ( ^ ( P + w i ^ ^ + s i t f t t p ) 

Xexp[(J«)(«»+Wl»)^]-exp[- (JtW)]}, 

where 
8 

cosp= . 
(62+CO!2)1/2 

This holds without approximation. A particularly 
simple form of the term §(R(JRH*JR4I6

2*W0 is obtained 
when the single and double quantum resonances are 
well separated, so that (coi/5)<3Cl. Then 

||(R(i?n^4ie2-0l 

. f rw /wA- i 
==i sm??j COST?—cos77 cos —( — 1 cos2toJ 

r«i//coi\"i I 
+sin —(—J sin2con . (19) 

We shall see later that coi(«i/5) is proportional to the 
nutation frequency at double quantum resonance. We 
may, therefore, regard Eq. (19) as describing an oscilla­
tion of a transverse component of the angular momen­
tum at twice the resonance frequency modulated at the 
nutation frequency. (For simplicity, we have ignored 
the fact that the peak of the double quantum resonance 

does not occur at co=|coi4, but is slightly shifted from 
this value, as discussed later.) 

It is clear that Rn*Rne2io)t is an off-diagonal element 
of the density matrix of the coupled spin system. Any 
physical arrangement in which such off-diagonal matrix 
elements are probed, as in magnetic induction, or in the 
cross-beam light modulation experiments referred to 
earlier, should reveal the existence of the double fre­
quency oscillation discussed above. 

APPROXIMATE FORM OF TRANSITION PROBABILITY 
AT DOUBLE QUANTUM RESONANCE 

To establish the correspondence between the exact 
solution of the Zeeman resonance problem for atomic 
hydrogen given by Eqs. (11)-(14), and Salwen's solu­
tion obtained by a different method,6 it will be of 
interest to derive an approximate expression for the 
probability that the spin system has left its initial state, 
valid in the vicinity of a double quantum resonance in 
the limit of widely separated single and multiple 
quantum resonances. In this limit, characterized by the 
condition (coi/5)<<Cl, the predictions of the two solutions 
should agree. 

The probability that the system described by the 
wave function (14) has left its initial state is given by 

l- |^n|2=4{|a1 |2 |a3 |2sin2[^(cr1-cr3)] 
+ |a3|2|a4|2sin2[J/((r3-cr4)] 

+ |a4|2|ai|2sin2[^(c74-(71)]} (20) 

in accordance with (13). When (COI/5)<<<1, we can obtain 
a simpler form of this expression by expanding Eqs. 
(11a) and (lib), which define the parameters G and 
cos0, in powers of (coi/5) and (Aco/S), keeping in mind 
that near a double quantum resonance (Aco/S) is at 
most of order (coi/5)2: 

cos0^1-(27/2)M, 
where 

M=[(Aco/5)-K*>i/S)2 cos^+CHcox/S)2 sim?]2. 

The angle 6 is evidently very small near the double 
quantum resonance. We can, therefore, use the expan­
sion of the cosine for small values of its argument to 
obtain the following approximate expressions for the 
roots (11) of the secular equation: 

<r3^-5{i(co1/5)2[l+ (Aco/5) cosvl-hfa/dY) , (21) 

(T4^Cl+i(wi/5)2-K1 /2]. 

These expressions are correct to order (Aco/5)2, 
(AOJ/5) (coi/5)2, and (coi/5)4. Evidently <T% is very small 
compared to ci and o-4 near Aco=0. It follows that |or3|

2 

is also very small, and the first two terms of (20) can be 
neglected in comparison with the last one: 

l - |^n |2^4|a1 |2 | a4|2sin2B/((T1-(r4)] . (22) 
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In the expressions for |a 4 | 2 and | a i | 2 given by the 
first of Eqs. (12), the middle term in the brackets 
is also negligibly small compared to the first and last 
terms near the double quantum resonance, so that 

\OLi 
r | /i+cosy+Aco-^y-i-
L \ 1 — cost?/ \5—Aco—aj J 

= l+cot 2 | 

= c o s ^ ) , 

?7\rcos0— tan (rj/2) sin$—1 

2/Lcos<£+cot(V2) sin<£+ :i 
(23) 

where we have set 

c o s 0 = | 7 — ) - i W & ) 2 cost? |M-1 / 2 . 

Similarly, 

r / l + c o s ^ x / S + A w - o - A 2 ! - 1 

\aA\*d l+(— )( ) 
L \ 1 — COST?/ \5—Aco—o-4/ J 

cos0-~tan(??/2) s i n ^ + l " ] 2 ! - 1 

= l+cot 2 | 

= sin2(§0). 

.cos#+cot (77/2) sin$- m 
(24) 

The probability that the system has left the initial state 
is, therefore, 

1— [i^ii|2=sinV'sin2[J/(o-i—0-4)] 

(Ao>-co*)2+Oi2 

Xsin2{C(Aco-co*)2+Oi2]1/2}. (25) 
Here, 

Oi= (t)«i(«i/«) sin*= (i)co1(co1/5)[l+(co0/co^)2]-1/2 (26) 

is the nutation frequency at exact double quantum 
resonance, and 

a>* = (i)o)i(«i/«) C0S)?= (|)co1(co1/5)[l+(co^/coo)2]-1/2(27) 

is the amount by which the peak of the double quantum 
resonance curve is shifted from the expected value 
Aco= (|)coi4~w=0. These two features of the solution, 
as well as the absence of a factor of -| in the argument of 
the sin2 factor of the resonance formula (25), as com­
pared to the usual Rabi formula16 for single quantum 
transitions, agree exactly with the predictions of 
Salwen's perturbation theory solution.6 

DOUBLE QUANTUM ZEEMAN RESONANCE IN 
ALKALI METAL VAPOR 

In the discussion above, atomic hydrogen was chosen 
as the simplest of all coupled spin systems undergoing 
magnetic resonance. Next in complexity are monatomic 
vapors of elements that consist of one-electron atoms of 
nuclear spin k greater than J, as one of the alkalis. 
Multiple quantum transitions induced among the 
Zeeman levels of the hyperfine multiplets of such atoms 
have been studied by Kusch2'4 and Kastler's group,17 

and analyzed by Sal wen11 and Winter.8 

Nevertheless, it will be of interest to apply our method 
of analysis to a particular case of double quantum 
Zeeman resonance in such atoms. Such an analysis is 
justified first of all by the fact that the theory developed 
for atomic hydrogen may be applied directly to this 
case, with only minor modifications, and secondly by the 
importance of the example chosen to the analysis of 
events observed in optically pumped vapors. 

The formulation of the problem proceeds exactly as 
in the case of atomic hydrogen. We shall assume again 
that the nuclear magnetic moment is positive and that 
the nuclear nutation frequency coik=ykHi is negligibly 
small compared to the electron nutation frequency 
a>i i=|7y|fl'i. Recalling the definitions of 3C0 and 3Ci' 
given by (2) and (4), the operator 3Co+3Ci'—coF* in the 
coupled representation is defined by the following ma­
trix of dimensionality 2 (2^+1) : 

3Co+3Ci-o>F2=h 

A i ~ « ( * + i ) 

0 
0 

\2—u(k—i) 
0 

~hbib^i3 

0 

1 
•I) 

haibwij 

0 

laiaawiy 
X4—cc(k—f 

0 

0 
—IM2C01, 

0 
X6—co (ft—I) 

(28) 

Here #Xi, fikz, &X5, • • • are the energies of the station­
ary states (Breit-Rabi eigenstates) in the F=k+% 

hyperfine multiplet, listed in order of decreasing ntF, 

whereas fo\2, #X4, • • • are the corresponding energies in 
the F=k—J multiplet, also listed in order of decreasing 
tnF. The other symbols are defined as follows: 

ai=cos(ii7fc_i/2), 

Z>i=sin(J?7/b-i/2), 

a 2 = cos ( ^ - 3 / 2 ) , 

62=sin(J?7&-3/2), 
1 61.1. Rabi, Phys. Rev. 51, 652 (1937). 
17 A. Kastler, J. Opt. Soc. Am. 47, 460 (1957). 

(29) 
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where 

cosrjn 
O>O+[2W/(2&+1)]COF 

{coF
2+[W(2^+l)]coFcoo+coo2}1/2 ' 

(30) 

We now direct our attention to the Zeeman resonances 
among the uppermost three sublevels of the F=k+% 
hyperfine multiplet in the low field limit, that is, in the 

limit where coo=cooi+cooA. can be neglected in comparison 
with the hyperfine resonance frequency CCF in the ex­
pression (30) for cosr?m. This is a situation comparable to 
the atomic hydrogen case, although in that case we had 
no restriction on the intensity of the steady field Ho. To 
this end, we select out from the matrix of 3Co+3C/—wFz 

the submatrix which describes the interactions of these 
states, namely, 

3CQ+Wi-wFz=h 

This can be written 

5Co+5C/-co^=^[X3-co(^-i)]l+^ 

Xi-o>(*+i) m/l2(2k+iy^ 0 
a>i/[2(2JH-l)1/2] x8-o>(fe-J) «]#'*/(2JH-1) 

0 o)1k
1l2/(2k+l) X B - « ( * - § ) 

8+Ao) cc1/l2(2k+iy2'] 0 
coi/[2 (2k+l)1'2] 0 C01&1'2/ (2*+l) 

0 o)1k
1'2/(2k+l) 8- Aw 

(31) 

(32) 

where, as in the atomic hydrogen case, 8=un 
= (Xi~X3)—J(Xi~X5) is a measure of the frequency 
separation of the single and double quantum Zeeman 
resonances, and Aco=§o>i5—o) measures the departure of 
the actual frequency o> of the rf field from the double 
quantum resonance frequency Jcoi5. 

Equation (32) can be compared directly to Eq. (9) 
which describes the interaction of the three F=l 
Zeeman substates of atomic hydrogen. We can apply all 
the expressions derived for atomic hydrogen also to this 
case by replacing COS77 used there by (2k— l)/(6/e+l), 
and coi by r 1 =[(6*+l) 1 / V(2*+l)>i . 

Let us assume that the system is initially in the state 
F=k+%, mF=k-\-^ (state 1). Then at exact double 
quantum resonance, in accordance with (19), the proba­
bility of finding the coupled spins in the eigenstate of Fx 

belonging to the eigenvalue +& is given by 

6&+1 

[^(2^+l) ] 1 / 2 j /2^- l \ / 2 £ - l \ r T i y r A - j 

1\6*+1/ W + l / L 4 \ 5 / J 

4T(T)] Xcos2co/+sin sin2co/ (33) 

On the other hand, for small values of Aw (vicinity of 
double quantum resonance), in analogy with (25) the 
probability that the system has left that state will be 

a2 

(Aco-co*)2+0 : 
sin2{C(Aw-co*)2+a2]1/2} • (34) 

The nutation frequency at exact double quantum reso­
nance is now given by 

0= [^2/2(2A:-r-l)3/2>i(wi/5), (35) 

shifted from the expected value Ao>=0 by an amount 

co*=[(2£-l)/8(2£+l)2>i(wi/5). (36) 

These expressions differ from the corresponding ex­
pressions for atomic hydrogen in that their validity is 
restricted to relatively moderate values of the intensity 
of the applied steady magnetic field Ho, that is, to values 
of Ho such that <oo= (17y | +7k)Ho<Zio)F, as stated earlier. 
I t is precisely under these conditions, however, that 
double quantum resonances can be observed. In con­
trast, in the case of atomic hydrogen the shift in the 
double quantum resonance frequency given by (27) 
would be unobservably small when COO<3CCOF, so that 
C O S T ^ I . Therefore, (33), (34), (35), and (36) describe a 

realistic physical situation. 
Furthermore, it is of interest to note that optical 

pumping with circularly polarized resonance radiation 
containing a single D line18 tends to produce an excess 
population of the substates with the largest values of 
mpy that is, precisely of those states whose interaction 
has been considered above. 
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APPENDIX: MAGNETIC RESONANCE OF 
SPIN ONE PARTICLE 

To illustrate the method of treating magnetic reso­
nance problems presented here, it is of interest to apply 
it to a well-known case, the magnetic resonance of a 
spin one particle. The wave function at time / is related 
to the initial wave function by 

\l/(t) = expl-(i/h)Jzo)f\ 

X e x p [ - (i/h) (Jz c o s M - / . sinr)2OQK0) > 

and the peak of the double quantum resonance will be 18 W. Franzen and A. G. Emslie, Phys. Rev. 108, 1453 (1957). 
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where 
sinf=coi/2S2, 

cosf= (coo-co)/212, 

2fi=[co12+(co0-co)2]1/2, 
C0i=|7y|fiT1 , 

coo= Ir/ l-ffo, 

H= (i cosco/+j sma)t)Hi+kHo. 

Now in the /^-diagonal representation 

(l/*)(/.cosf+7«sinf) = 
cosf sinf/v2 0 

sinf/v2" 0 sinf/v2 
0 sinf/V2 -cosf 

The eigenvalues of this matrix are w= + l, 0, — 1. 
The components of the corresponding eigenfunctions 

are then related to each other by 

sinf 

Y» 

v2(w—cosf) 

sinf 
= 1 
VZ(w+cosf) 

On normalization, these lead to the three eigenfunc­
tions 4>m, with m= + l, 0, —1, which constitute the 
three columns of the matrix S: 

S= 
(i)(l+cosf) -(v2/2)sinf (i)(l-cosf) 
(V2/2) sinf cosf - (v2/2) sinf 

(i)(l-cosf) (V2/2) sinf (i)(l+cosf) 

We have chosen the arbitrary phases of the three 
eigenfunctions in such a way that for f=0, i.e., zero rf 
field intensity, they reduce to the forms 

respectively. 

'll 
0 
0 

y 

0 
1 
0 

, and 
f°l 
0 
l̂j 

The matrix S so defined has the property that 

S~l (Jz cosf+J * sinf )S=Jz. 

In this form, S considered as an operator is identical 
with the rotation operator used by Series.12 The corre­
sponding matrix S which occurred in our analysis of the 
magnetic resonance of the F=l hyperfine multiplet of 
atomic hydrogen reduces to precisely this form for 5=0, 
that is, for zero steady field (exact coincidence of single 
and multiple quantum resonances). 

The solution of the magnetic resonance problem is 
then given by 

lKfl = exp [ - ( t / * ) / ^ ]S{exp[ - (i/h)Jg7QQ}S-hp(0). 

The matrix elements of both exponential operators are 
now known since they are formed from the diagonal 

f l l 
operator Jz. Thus, for an initial state \f/(0) = 

HD-

. X I ' 
f[sin2(S2/) sin2f +cos(2tit)-i sin (20/) cosf ]er<» 

- V2 sin(120 sinf [sin(to) cosf+i cos (12/)] 
[ - [ s in 2 p)s in 2 f>^ f 

Then the probability of finding the spin in the state 

°1 • • • 
0 at time / is given by 
1 

sin4 (12/) sin4f 
<af 

[coi2+(co0-co)2]2 -4J-[>i2+(coo-co)2]1/2 

and the probability of finding it in the eigenstate of Fx 

belonging to the eigenvalue —fo, that is, in the state 

-.1 
will be given by 

{J[l—sin(woO sin(coi/)]}2 

==i^"{5 —8 sin(co0/) sin(coi/) 
— cos(2o)o0_ cos(2coi/)+cos(2coo/) cos(2coi/)} . 

Again we note that the x projection oscillates at twice 
the resonance frequency. 


