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Quasiequilibrium states of the spin system in a solid are described in terms of one "Zeeman" temperature 
for each spin species plus one "dipole-dipole" temperature, TD. Energy and entropy are calculated and used 
to predict the steady state of processes such as cross relaxation. It is predicted and demonstrated by an 
experiment on the nuclear spins in LiF that the state of the "dipole-dipole" system has a strong influence 
on such steady states. Continuous wave (cw) and pulse spectroscopy are discussed for systems with low TD. 
Techniques are proposed (and have been used) to measure TD and one Zeeman temperature simultaneously, 
using coherent pulse instrumentation, and for preparing a state of low TD in a large magnetic field by 
complete adiabatic demagnetization followed by sudden magnetization. A density matrix formalism is 
proposed for the description of quasiequilibrium situations in the case of "spins" with unequally spaced 
energy levels. Finally the influence of the "nonsecular" part of the spin-spin Hamiltonian on the quasi­
equilibrium states is estimated by a perturbation calculation, and the resulting description includes the 
cases of low- or zero-magnetic field and partly or completely overlapping absorption lines. 

1. INTRODUCTION 

THERMODYNAMICS is a very powerful tech­
nique for correlating various properties of com­

plex systems, because its use does not depend upon a 
detailed knowledge of the structure of the system, or 
of the exact mechanism of the rate processes involved.1 

The second law of thermodynamics has been used by a 
number of authors2"4 to obtain quantitative information 
about reversible processes in spin systems, such as slow 
magnetization or demagnetization. In the present paper, 
we use the second law to discuss irreversible spin-spin 
processes (spin-lattice relaxation will be neglected for 
simplicity): These always take place in the direction of 
increasing entropy and the steady state corresponds to 
a maximum of entropy. Our method is quite analogous 
to ordinary chemical thermodynamics.5 

We shall first consider a spin system in a large mag­
netic field, in which each spin species gives rise to a 
single ordinary NMR absorption line, the width of 
which is mainly due to dipole-dipole couplings. (A more 
general case will be discussed in Sec. 7.) Following 
Anderson and Hartmann6 and Provotorov,7*8 such a 
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national de la recherche scientifique and by the Fonds de la 
recherche scientifique fondamentale collectif. 

f Present address: Euratom, Ispra, Italy. 
1 The reader will find an exposition of most of the subject of 

nuclear magnetism, as well as references, in A. Abragam, The 
Principles of Nuclear Magnetism (Oxford University Press, 
Oxford, 1961); and in C. P. Slichter, Principles of Magnetic 
Resonance (Harper and Row, New York, 1963). 

2 A. G. Redfield, Phys. Rev. 98, 1787 (1955). 
3 A. Abragam and W. G. Proctor, Phys. Rev. 109,1441 (1958). 
4 C. P. Slichter and W. C. Holton, Phys. Rev. 122,1701 (1961). 
5 See for instance, I. Prigogine and R. Defay, Chemical Thermo­

dynamics (Longmans Green and Company, Inc., New York, 1954). 
6 A. G. Anderson and S. R. Hartmann, Phys. Rev. 128, 2023 

(1962). See also, A. G. Anderson and S. R. Hartmann, Bull. Am. 
Phys. Soc. 6, 507 (1961); S. R. Hartmann and A. G. Anderson, 
ibid. 6, 507 (1961); S. R. Hartmann and A. G. Anderson, in 
Magnetic and Electric Resonance and Relaxation, edited by J. 
Smidt (North-Holland Publishing Company, Amsterdam, 1963), 
p. 157. 

7 B. N. Provotorov, Zh. Eksperim. i Teor. Fiz. 41,1582 (1961) 

spin system can be described as a superposition of a 
number of subsystems: One "Zeeman" subsystem for 
each spin species and one "dipole-dipole" subsystem. 
A weak applied rf field can be considered as an addi­
tional subsystem. The coupling inside each subsystem 
is strong whereas the couplings between subsystems are 
weak. As a consequence, the subsystems reach internal 
thermal equilibrium independently of each other and 
one can ascribe a temperature, an energy, an 
entropy • • •, to each of them (Sec. 2). Further theo­
retical discussion and justification of these ideas is 
given by J. Philippot in the preceding paper.9 

The usual prediction of statistical mechanics that the 
temperatures of interacting subsystems become equal 
in equilibrium is a direct consequence of the hypothesis 
that the total energy is the only analytic constant of 
the motion. In the case of spin systems, this hypothesis 
is always valid for two interacting subsystems, but it 
very often breaks down when spin processes couple 
together three or more subsystems because of the very 
peculiar property of many spin processes of causing 
changes in the energies of the subsystems which are 
proportional to each other with fixed proportionality 
constants. In this latter case, a steady state can result 
in which the temperatures of the various subsystems are 
different from each other, as shown by the following 
simplified example. Consider three different spin species 
a, b, c, in a solid subjected to a large magnetic field, such 
that the following relation holds between their Larmor 
frequencies: wa=o>&+ojc. The cross relaxation process10 

in which one a-spin flips down while one 6-spin and one 
c-spin flip up conserves energy exactly, and will thus 
have a fast rate. If this process alone is taken into 
account, the changes of the Zeeman energies Ea, Eb

} 

[translation: Soviet Phys.—JETP 14, 1126 (1962)]. See also 
B. N. Provotorov, Phys. Rev. 128, 75 (1962). 

8 B . N. Provotorov, Zh. Eksperim. i Teor. Fiz. 42, 882 (1962) 
[translation: Soviet Phys.—JETP 15, 611 (1962)]. 

9 J. Philippot, preceding paper, Phys. Rev. 133, A471 (1964). 
10 N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, 

Phys. Rev. 114, 445 (1959). 
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and Ec after £ "processes" will be AEa=£fiooa, 
AEb= —%foo)b, and A £ c = — £&oc, and the two following 
independent quantities will be constants of the motion: 
Ea+Eb+Ec (total energy) and Ea/a>a+Eb/ub. Starting 
with Ea=Eb=0 and E c ^ 0 , cross relaxation will lead 
to a state in which Ea and Eb, and also the corresponding 
Zeeman temperatures, have opposite signs. 

In Sees. 3 and 4, two examples in which the dipole-
dipole subsystem plays the role of the c system in the 
above example, are worked out in detail by the pro­
posed thermodynamical method: the effects of a weak 
rf irradiation and cross relaxation. The results are the 
same as those of corresponding statistical mechanical 
calculations.6-8 Experiments on cross relaxation in LiF 
are reported which demonstrate the existence of some 
of the predicted effects. Some similar unexpected results 
of Goldburg11 on cross relaxation in quadrupolar systems 
can be interpreted in the same way, as will be shown in 
a forthcoming paper by one of us (J.J.). All these ex­
perimental results very clearly show that cross relaxa­
tion is, in fact, as much influenced by the properties 
and state of the dipole-dipole subsystem as by those of 
the Zeeman subsystems. 

In Sees. 5 and 6, a number of problems are discussed 
which have arisen while performing the experiments 
including preparation of a spin system with a low 
dipole-dipole temperature and properties of the free 
precession signals of such systems. 

In Sec. 7, we discuss the case of spins with unequally 
spaced energy levels by means of density matrix tech­
niques and show that the dipole-dipole temperature 
still is a fundamental concept in this case, whereas the 
concept of Zeeman temperatures loses much of its 
importance and should be replaced by that of the 
populations of the various isolated spin energy levels. 
The spin entropy can be computed easily, and used to 
discuss irreversible processes exactly as in the case of 
spins with equally spaced energy levels. The formalism 
which is proposed applies to any situation in which 
large numbers of equivalent "microscopic systems" are 
connected together by a weak, time-independent 
coupling. 

In Sec. 8, we investigate the influence of the non-
secular part of the dipole-dipole Hamiltonian on the 
thermodynamic properties of spin systems. A modified 
density matrix is proposed for the description of spin 
systems in quasiequilibrium, which is satisfactory in 
the whole range of magnetic fields (from zero to very 
large), and clarifies the quantitative discussion of proc­
esses such as adiabatic magnetization or demagneti­
zation, as well as cross relaxation. 

2. SPIN THERMODYNAMICS (SIMPLE CASES) 

In this section, we discuss some thermodynamic 
properties of the spin system in a rigid lattice (solid) 
containing one or many spin species, subjected to a 

11 Walter I. Goldburg, Phys. Rev. 115, 48 (1959). 

large constant magnetic field H0, in the case where the 
ordinary N M R spectrum of the system consists of a 
single, well isolated line for each spin species, spin-spin 
couplings alone being responsible for the width of these 
lines. 

The spin Hamiltonian can be written as 

5C=La5Coa+5C ,+5C , / , (2.1) 
where 

3 C o c = - % a L n H 0 - I a w 

(we chose the z axis in the direction of Ho). 3C' is the 
part of the coupling between spins which commutes 
with ]Ca3Coa (Van Vleck's12 truncated spin-spin Hamil­
tonian: terms of the type IJ J between all spins and 
terms of the type I+IJ between like spins only), 
XjD = 5C/-(-5C", where 3CD is the total spin-spin coupling. 
Superscripts are used to indicate spin species and to 
label the various spins of each kind, and subscripts to 
indicate "components" (x, y, z, + , —) of I vectors and 
miscellaneous information. 

I t has been shown experimentally3'6 that, in the case 
of large Ho and negligible rf magnetic fields, the energies 
corresponding to the various 3C0

a and to 3C' are well 
insulated from one another. Following Anderson and 
Hartmann6 and Provotorov,7*8 we shall assume that 
the spin system can be described in terms of one spin 
temperature for each of the subsystems whose energy 
is an approximate constant of the motion and we shall 
thus write the density matrix p for the total spin system 
as13 

<?' L\kTD/ a \ kTa / J 
(2.2) 

l r / x ' \ /3c0
a\ -i 

~(PL \kTD) a \kTa/J 

where the T's are the spin temperatures and (P and (P' 
are normalization constants. The term 3C" of (2.1) will 
produce weak couplings between the subsystems, re­
sulting in slow changes in the various temperatures. 
Each of the subsystems being well isolated from the 
others and in internal equilibrium, the state of the 
complete system depends only upon a few spin tem­
peratures; and properties such as energy, entropy, 
susceptibility, • • •, can be expressed as sums of inde­
pendent contributions from each subsystem. 

Treating energy in this way we obtain, using the 
linearized form of (2.2) 

E= Tr{P5C} = ED+Za E«, (2.3) 

12 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948). 
13 We only consider the case of "high temperatures" and use 

the first-order approximation in \/T of p in the calculation of all 
quantities which are of the first order in 1/T, such as energy, 
magnetization, susceptibilities • • •. Although this seems to be a 
wild approximation, even at extremely high temperature, one can 
easily show that the relative error involved is only of the order of 
fua/kT where w is the dipole-dipole or Larmor frequency and T the 
dipole-dipole or Zeeman temperature. 
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where 

Ea= Tr{p5C0
a} = ftyaH0n

a= — hcoana 

= - (l/kT«)(H0y
ahy±Ia(I"+l)Na, (2.4) 

and 

ED=Tr{p3C'} = h{y)HLnD = - koDnD 

= - (l/kTD)(HL(y)h)* Ha {*/«(/"+l)tf»} , (2.5) 

where 

# L
2 = Tr{3C'2}/Tr{ (E«,»*7fl/.an)2} , (2.6) 

<7) 2=2:a{ | / t t ( / a+l)(T a ) 2^}/ 

E a U W + W , (2.7) 
»•= (l/kTa)HQyah±Ia(Ia+ l)Na, (2.8) 

» D = {l/kTD)HL(y)ft £ a {*/«(/«+ l)tf "} . (2.9) 

Afa is the number of nuclei of type a, 7a their spin and 
a)a/2ir their Larmor frequency, Ea and Ez> are the 
energies of the a and dipole-dipole subsystems. The 
local field HL introduced here is a function of the 
orientation of H0 with respect to the crystalline axis, 
and is somewhat smaller than the local field HL intro­
duced by Abragam and Proctor,3 which would be given 
by (2.6) after substituting the complete dipole-dipole 
Hamiltonian 3CD for its secular part 3C'. The numbers 
na have a simple meaning: (ya/1 ya | )na photons at the 
Larmor frequency of a must be absorbed to bring the 
energy Ea to zero (saturation of the a magnetization). 
The auxiliary quantities COD, nz>, {y) and HL U used in 
the discussion of the dipole-dipole system have been 
chosen in such a way that they play very much the 
same role as their counterparts coa, na, ya, and H0 for 
the Zeeman systems. 

If we now consider an idealized experiment, per­
formed in a constant magnetic field, where we re-
versibly change the energy E of one of the subsystems 
by means of a thermal contact with a thermostat at a 
temperature T very close to that of the subsystem, we 
can write the change of its entropy S as 

dS={\/T)dE. (2.10) 

In the cases of interest here, we have relations of the 
type 

E=-a/T, (2.11) 

so that the entropy corresponding to a given energy is 
given by 

S=(S)B-o-h&/a. (2.12) 

We are only interested in changes in entropy, so that 
the terms (S)E=O will play no role in the calculations 
and we shall put them equal to zero for simplicity. (As 
a result of this, the "entropies" which are discussed 
below are always negative.) Combining Eqs. (2.4) to 

14 For definiteness, HL and (7) are chosen to be positive 
quantities. 

(2.9) with (2.12) one obtains for the total spin entropy S 

S=SD+ZaS% (2.13) 
where 

S«= _ (na)2ik/%Ia(Ia+ l)iV«= - (na)2aa 

and 

& = - ( » D ) W * E« /«(/«+ l)Na= ~ (nD)*eD. (2.14) 

Sa and SD are the entropies of the a and dipole-dipole 
subsystems and the o-'s, defined by (2.14), are intro­
duced in order to simplify subsequent formulas. 

3. EFFECTS OF A PROLONGED, WEAK, 
rf IRRADIATION 

Provotorov7 and Anderson and Hartmann6 have 
already discussed the effects of prolonged irradiation 
with a weak rf field at a frequency close to the Larmor 
frequency of one of the spin species, in the absence of 
spin-lattice relaxation. As a first illustration of the use 
of the techniques outlined above, we shall rederive 
their result. 

If the intensity of the rf field is low enough15 we can 
consider the rf field as a subsystem which is weakly 
coupled to the spin subsystems and whose only effect 
is to slowly change the spin temperatures. The "tem­
peratures" characterizing the rf fields used in such 
experiments being extremely high, the changes in the 
entropy of the rf subsystem will be extremely small and 
we shall neglect them in the calculation. 

The spin process involved can be described in the 
following way: One photon of energy hco is absorbed 
(co is close to co1), one spin 1 flips (An1== — 1), and the 
balance of energy goes into the dipole-dipole system: 

— ftCO+ftO)1— foo)DAtlD=0. (3.1) 

Starting from an initial situation described by (^)o and 
(WJD)O, after absorption of £ photons, the situation will be 

^ D = (^zOo+K^1—w)/coi>. (3.2) 

In the steady state of irradiation, the spin entropy 

S= - ( ^ ) V - (nD)*<rD (3.3) 

considered as a function of £, has its maximum value 
and the n's are given by 

( COD } (CO1 — W ) V D 

(»x).= ( » 1 ) o + — M o — , (3.4) 
I co1—co J(T1coD2+(a>1—CO)VD 

(nD)s-= {U^S^COD/O-D^—CO)} . (3.5) 

The corresponding spin temperatures, which are usually 
very different from one another, are exactly those pre­
dicted by Anderson and Hartmann6 and Provotorov.7 

15 The condition for this, when co is close to one of the oja is 
discussed in Refs. 6 and 7, The case of irradiations at frequencies 
which induce multiple spin transitions will be discussed in a future 
paper. 
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Let us now consider the kinetics of this weak rf ir­
radiation. As usual, the rate of absorption of photons, 
d£/dt, is proportional to the imaginary component 
x " ^ ) of the rf nuclear susceptibility x(<o) which itself 
consists of two terms, Xz(co) and XD(co), originating 
from the terms in Xo1 and in 3C' in the density matrix p 
(2.2): 

dt 
= jrx̂ (w) = 2 r j » / ^ + w y ^ J . (3.6) 

K is a constant proportional to the square of the rf 
field, Xz(o)) is the susceptibility of a system character­
ized by nl9^0, tiD—0 (i.e., the case of ordinary N M R 
absorption experiments in large magnetic fields) and 
XD(o)) corresponds in the same way to the case nl~0, 
fiD^O. The quantities {x!r/n) appearing in (3.6) are 
independent of the state of the spin system because 
both x" &nd n a r e inversely proportional to the corre­
sponding temperature. In the steady state of rf ir­
radiation, d^/dt—Q and the ratio no/n1 is given by 
(3.5). This imples that, in all cases, one has 

flDCTD (CO — O)1) 

XD"(O>) = Xz"(a>) 

nLax COD 

T1 HL(y) (cu-co1) 
*z" (« ) , (3.7) 

TD Hoy1 COD 

which is just the relation already derived by Anderson 
and Hartmann6 between the rf susceptibilities x"(w) 
of systems in which the order entirely lies in the dipole-
dipole or in a Zeeman subsystem. 

If we now introduce the values (3.2) of the n's in 
(3.6), we obtain a differential equation for £, the solution 
of which approaches the steady-state value expo­
nentially with a time constant /* given by 

1 X z " ( w ) | <TD, 
-=K 1+-
t* n1 

aWco—kA2] 

7 W / I' (3.8) 

where the factor in the curly bracket represents the 
correction due to the finite "specific heat" of the dipole-
dipole system. 

The generalization of the above method to more 
complex situations, such as one photon—many spins 
processes for instance,16 is straightforward. 

4. CROSS RELAXATION 

Cross relaxation is a process in which two or more 
spins make simultaneous flips in such a way as to 
conserve Zeeman energy almost exactly, the energy 
balance being absorbed by the dipole-dipole subsystem. 
In the quantitative discussions of cross relaxation given 

16 A. Abragam and W. G. Proctor, Compt. Rend. 246, 2253 
(1958); J. Philippot, R. Deltour, and J. Jeener, in Magnetic and 
Electric Resonance and Relaxation, edited by J. Smidt (North-
Holland Publishing Company, Amsterdam, 1963), p. 563. 

TABLE I. Some properties of the nuclear spin system in a LiF 
crystal. 

The superscripts are the mass numbers of the relevant nuclei 
(F19, Li7, Li6) and the p's their natural abundances. 2N is the total 
number of nuclei in the crystal. The other symbols are defined in 
the main text. In the calculation of the local fields, the lattice 
constant of LiF has been taken as 4.01 A and lattice vibrations 
have been ignored. The Y'S are given in sec"1 G - 1 and the o-'s in 
units of k/N. 

119=1 />W = 1 . 0 

/ 7 = J ^ = 0 . 9 2 6 
/ e ^ i ^6 = o.074 
Dipole-dipole 
Cross-relaxation 

Local fields 
H0 along [100]: 
Ho along [110]: 
Ho along [111]: 

HL 

HL 

HL 

HL 

<r19= 2.0 
o-7 = 0.432 
<76=10.1 
OT)= 0.343 

7 19_2 7 7 = 

7 1 9 _ 2 7 7 _ 

= 7.77 G 
= 5.76 G COD 

= 3.73 G COD 

= 2.74 G COD 

7
1 9 = 2TTX4005.5 

7 7 = 2 T T X 1654.7 

7 6 = 2 T T X 626.5 

<7>=27rX2220 
=TCR = 27TX 696.1 

-76 =2TTX 69.6 

= 2TTX 12800 sec"1 

= 2TTX 8300 sec"1 

= 2TTX 6100 sec"1 

by Bloembergen and his co-workers,10'17 little attention 
has been paid to the influence of the dipole-dipole 
temperature on the rate and steady state of the process. 
Provotorov8 has recently drawn attention to the fact 
that the dipole-dipole temperature should be taken into 
account in discussing cross relaxation. We shall now see 
how thermodynamics can be used to do this. For sim­
plicity, we shall neglect spin-lattice relaxation and 
discuss the phenomena in the crystal LiF18 (see Table I) 
in which cross relaxation times have already been 
studied in detail by Pershan,17 and for which further 
experimental results are reported in this paper. 

In the cross relaxation mechanism proposed by 
Bloembergen and Pershan,10'17 one F19 and two Li7 

spin-flips take place simultaneously. (A possible process 
involving Li6 will be mentioned later.) Starting from the 
initial "populations" (^19)o, (^7)o, and (wz>)o, after £ 
such processes, the "populations" are given by19 

where 

n u= (^19)0+£, 

n7=(n7)o-2£, 

nD= (nD)0- (H0ycR/HL(y))^ 

7 C R = Y 1 9 - 2 7
7 . 

(4.1) 

Introducing these values of the n's (4.1) in the formulas 
(2.13), (2.14) for the total spin entropy S, we find the 
following expression for the steady-state value £s of 
£, for which S is a maximum: 

f«=-
-^\n^o+2a7(n7)o+(H0ycR/BL(y))aD(nD)o 

cr19+4<77-K#oW#L<7>)Vz> ' 
(4.2) 

17 P. S. Pershan, Phys. Rev. 117, 109 (1960). 
18 For simplicity, we neglect any quadrupolar splitting arising 

from imperfections in the cubic lattice of LiF. 
19 The superscripts indicating the nuclear species are the mass 

numbers of the relevant nuclei: F19, Li7, Li6. 
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Combining (4.1) and (4.2) will give us the steady-state 
values of the n's. The results obtained here are equiva­
lent to Pershan's in the approximation where one 
neglects dipole-dipole effects (i.e., aD=0) but exami­
nation of the numerical values of the quantities ap­
pearing in (4.2) in the case of a typical cross relaxation 
experiment shows that this approximation is a very 
rough one. 

The effect of the dipole-dipole temperature on the 
kinetics of cross relaxation can be discussed by the 
method which has been used above to obtain Eq. 
(3.8). It gives rise to corrections to the classical rela­
tion10,17 between transition probabilities and observed 
relaxation times, a result already derived by 
Provotorov8 by another method. 

In order to demonstrate the effects predicted by 
Eqs. (4.1) and (4.2), we have performed two experi­
ments on a LiF crystal,20 the results of which are shown 
in Figs. 1 and 2. Each experiment starts with the spin 
system close to thermal equilibrium with the lattice, 
in a large magnetic field, and is completed in a time 
short compared to the spin-lattice relaxation times. 
The spin system is prepared in a known state, in a 
magnetic field large enough to prevent cross relaxation 
(at least 150 G). The field is then lowered for a known 
time (0.2 sec) to the value HCR and raised again to a 
large value where n19 and UD are simultaneously meas­
ured by a pulse method (see Sec. 6). If HCR is larger 
than 120 G, cross relaxation does not take place and 
one observes the prepared state unchanged; if Hen is 
lower than 60 G, other processes "short circuit" the 
one F19-two Li7 mechanism and tend to equalize all 
spin temperatures. In the range of Hen of interest here 

20 Notes about the experiments: The (0.7 cm3) LiF crystal, 
chosen by Harshaw Chemical Company for low paramagnetic 
contamination and absence of X-irradiation had a I \ of 7 min for 
F19 and 15 min for Li7 in a field of 7156 G. Before each experiment, 
the crystal was prepared in a standard state by a stay of 1 min in 
the earth field followed by 20 min in 7156 G. The timing of the 
experiments was approximately as follows: After saturation of 
F19 (experiment B only) the crystal, rf coil, and its BNC plug 
were moved with compressed air, in less than 2 sec, from the 
Varian magnet (7156 G) through a hexagonal "field pipe" (with 
the "transfer field" # T R of approximately 230 G ON for experi­
ment B only) to the system of coils producing the "sudden" and 
"cross relaxation" fields (in experiments A and C, these fields are 
turned ON automatically by the impact of the sample in the coils). 
In experiments A and B, the field is pulsed down to HQR for 0.2 
sec by turning the current in the "sudden" field coil OFF and ON 
(switching time: about 50 /* sec). Approximately 5 sec after the 
first transfer, the "transfer field" is turned ON and the sample is 
blown back to the 7156-G region where it is subjected to a some­
what-less- than-90° pulse at the NMR frequency of F19 (lasting 
1.5 fj, sec). Nine microseconds later, the amplifier has recovered 
and the F19 free-precession signal can be observed, processed by a 
pair of orthogonal phase sensitive detectors, the two components 
displayed on a double-beam oscilloscope (Tektronix 551) and 
photographed with a Polaroid film camera. The Zeeman and 
dipole-dipole signal amplitudes were read from the pictures by 
planimetry. The weak magnetic fields HCR, # S M and HTR were 
measured with a flip-coil fluxmeter, by comparison with the 7156 
G field (measured by NMR). No attempt was made to eliminate 
the approximately 0.6 G "earth's field." No correction has been 
applied to the experimental results to take into account spin 
lattice relaxation, finite duration of the "sudden" magnetization 
or other imperfections and perturbations. 

n
D / ( n o) 

0.3 

0.2 

0.1 

ao 

n19/(n19) e q u i l . XXX 
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o I 
o o 

X X X X ° 
X X X o 

XX 

X X X 

i O O . 

_x .xx.. . 

• ° 8 

I 
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I 
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I 
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0.0 

cross relaxation field hLR (gauss) 

FIG. 1. Experiment A: Cross relaxation in LiF driven by a large 
initial dipole-dipole entropy (footnote 20) (HCR and HSM were both 
in a (0—1 — 1) plane, 15° away from the [100] direction). %B and 
n19 are the degrees of dipole-dipole and Zeeman order (proportional 
to the corresponding energies) in the LiF crystal after a stay of 
0.2 sec in the low magnetic field Hen, (w19)equii corresponds to the 
thermal equilibrium situation in the large magnetic field Ho 
(7156 G) and (WD)ADSM is the degree of dipole-dipole order 
obtained by complete adiabatic demagnetization from (quasi-) 
equilibrium in HQ (see footnote 20) followed by application of a 
magnetic field Ham of approximately 150 G in less than 1.5 y sec 
[no theoretical curve is shown here because we have not measured 
(w7)o in this experiment]. 

(70 to 90 G), the cross relaxation time is short compared 
with 0.2 sec and one should observe the steady state 
given by (4.1) and (4.2). 

In experiment A (Fig. 1), the system is prepared by 
complete adiabatic demagnetization followed by sudden 
magnetization (ADSM, see Sec. 5) in a state of large 
positive (nD)o and negligible (^19)0 and (n7)0. Cross 
relaxation is then "driven" by the dipole-dipole system 
and results in a decrease of UD together with the build 
up of a positive n19 and a negative n7 (the resulting 
nuclear magnetizations are large for each spin species 
but their sum is small). 

Experiment B (Fig. 2) is analogous to Pershan's 
experiment17: the system is prepared, by a succession 
of 90° pulses at the F19 NMR frequency, in a state of 
large positive (n7)0 and negligible (n19)0 and (nD)0. 
Cross relaxation is then "driven" by the Li7 Zeeman 
system and results in a decrease of n7 together with the 
build up of a positive n19 and a negative UD> A com­
parison between Pershan's results17 (a cross relaxation 
time of 0.2 sec in a field of about 66 G in the [100] 
direction) and the results shown on Fig. 2 suggest that 
the rate process studied by Pershan probably was the 
"short-circuit" mechanism, and not the simultaneous 
one F19-two Li7 flip. 

Abragam has pointed out to us that the process in 
which one F19 flips up and two Li7 plus one Li6 flip down, 
conserves Zeeman energy ten times more exactly than 
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n1 9 / (n , 9 )equil .XXx 

0 50 100 150 

cross relaxation field H (gauss) 

FIG. 2. Experiment B : Cross relaxation in LiF driven by a large 
initial Zeeman order of the Li7 system (footnote 20). (HCR and 
HSM were both in the [10Cf| direction.) Symbols are explained in 
caption for Fig. 1. The curves shown are theoretical predictions 
Cupper curves: w19/(^19)equii; lower curves: WX>/(WD)ADSMJ|' Be­
tween 105 and 65 G we have used formulas (4.1) and (4.2), corre­
sponding to the one F19-two Li7 cross relaxation mechanism; be­
tween 65 and 20 G we have assumed equilization of all three spin 
temperatures. The initial condition used for the calculation was 
(w7)0 = 0.73fa7)equii, (w19)0= (nD)Q = 0. 

Bloembergen and Pershan's process (see Table I) . One 
thus expects the probabilities (or relaxation times) of 
the two processes to be of comparable magnitudes in 
magnetic fields which differ by a factor of 10, approxi­
mately, and the process suggested by Abragam should 
still be observable in fields of several hundred gauss. 
Due to the low natural abundance of Li6 (7.4%), this 
new process should not cause very large changes in the 
"populations" of Li7 and F19 in our experiments, and 
we shall not discuss its effects in this paper. 

5. SUDDEN APPLICATION OF A LARGE MAGNETIC 
FIELD TO A SPIN SYSTEM 

In some of the experiments described in this paper, 
we have prepared a spin system (the nuclear spins in a 
crystal of LiF) in a state of low dipole-dipole tempera­
ture and high Zeeman temperatures, starting with 
spins in thermal equilibrium in a large magnetic field, 
by adiabatic demagnetization to zero field followed by 
sudden application of a magnetic field Ho large enough 
to isolate the dipole-dipole system from the Zeeman 
systems.21 A sufficient criterion for the necessary rate 
of increase of the field is that none of the spins should 

precess more than a small (negligible) angle in the time 
r between zero field and quasi-isolation (at a field QHL ; 
g ^ a few units) between dipole-dipole and Zeeman 
systems 

r«l/ym^qHL. (5.1) 

In the case of LiF, using 719 for 7 m a x and the value of 
30 G for qHh (^^4) , value at which Pershan17 has 
observed cross relaxation times as long as ten milli­
seconds we obtain l/7max<Z#L= 13 /* sec which is much 
longer than r in our experimental conditions where a 
field Ho of about 150 G is turned on in less than 1.5 /x 
sec.22 

Abragam and Proctor3 have shown that adiabatic 
demagnetization of a spin system, initially in thermal 
equilibrium at temperature T in a large field H, results 
in a system at a lower spin temperature Ts, described 
by the following density matrix 

Po=(i/(P){i-(x,+5c,/)Ar4: (5.2) 

where TS=T(HL/H). After the sudden magnetization 
to a field Ho, at time / = 0, the density matrix will begin 
with the initial value po, but the Hamiltonian will have 
changed from 3C'+3C" to 3C [formula (2.1)], so that 
the equation of motion for p (t) after magnetization is: 

ihdp(t)/dt=lW,,p(t)l, with p(0) = p0 . (5.3) 

In order to simplify the discussion of the solutions of 
this equation we shall use an interaction representation 
in which each new operator A will be the following 
function of the corresponding operator A : 

where 
A=U-1AU9 

U=exp{-it(3C'+Xa3C0
a)/h}. 

In this representation, Eq. (5.3) goes over into 

ihdp(t)/dt==[3t"(t),p(t)'], with p(0) 

a formal solution of which is given by 

p{t) = MpoM~\ 

pO; 

(5.4) 

(5.5) 

(5.6) 
where 

ikf=exp| —(i/h) )[ $t"{t')dtf 

Jo 

21 Related experiments are reported by R. L. Strombotne and 
E. L. Hahn, Bull. Am. Phys. Soc. 6, 508 (1961). 

5c"(/). is a sum of terms which depend on t through 
factors exp(iwtf), the values of 00 being distributed with 
a width of the order of COD (the "dipole-dipole fre­
quency") around the sums and differences of the Larmor 
frequencies of pairs of nuclei (the value zero of the 
difference is excluded). As a result, the time integral of 
3t"/h will be a small oscillating quantity, of order of 
magnitude HL/HO, and a series expansion of M in 

22 This is achieved without the use of high-power equipment by 
first passing a current of about 2 A for a few milliseconds through 
an auxiliary inductance and a well-insulated high-current 
penthode (Philips E130L), and then forcing part of this current 
to flow through the coil around the sample by suddenly biasing 
the penthode beyond cutoff. 
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powers of HL/HO will lead to a convenient classification 
of the various possible phenomena 

M=l+OlL/Ho)M1+'-. (5.7) 

In the present paper, we only consider the case of H0 

much larger than#z,, and limit our discussion to times t 
not much longer than T2^1/COD (i.e., processes which 
become very slow for large Ho will be neglected), so 
that only terms of order 1 and (HL/HQ) will be of im­
portance in the discussion of the density matrix after 
sudden magnetization. Combining Eqs. (5.2), (5.4), 
(5.5), (5.6), and (5.7), we can write these terms as 

p(0=(l/<P)D-(l/*r f l){3C' (a) 
+&"(-/) (b) 
+ (HL/HO) UlMi&'lU-i (c) 
+ (HL/Ha) UZMijjef'lU-1 (d) 
+ •• •}]• (5.8) 

As a very first approximation, we can neglect terms 
(c) and (d) of (5.8) because they contain the small factor 
(HL/HQ) and term (b) because it oscillates around zero, 
and we are left with term (a) which describes a situation 
with a dipole-dipole temperature equal to Ts, the 
initial spin temperature in zero field, and no nuclear 
magnetization (infinite Zeeman temperatures). 

Let us now consider the behavior of energy in this 
problem. The total magnetic moment being zero in 
zero field, the sudden magnetization will not change the 
spin energy, which can be computed very easily in zero 
field as 

£=Tr{p03C} = - (l/&rs)(l/(P)[Tr{3e'2} 
+Tr{3C"2}]. (5.9) 

In computing the energy after sudden magnetization, 
using (5.8) for p, one must not forget that the Hamil-
tonian now contains a term 3C0 which is the product of 
Ho with the nuclear magnetization, so that term (d) 
of (5.8), which describes a net nuclear magnetization 
will give rise to a contribution of order 1 (and not 
HL/HO) to the energy. For simplicity, we pursue the 
discussion in the case of a single magnetic ingredient 
(of Larmor frequency co0 in the field Ho) and write 3C" 
as a sum of four operators 

3e / /=5e / /-2+ae / /-1+3c / /+i+5e / /
+2, (s.io) 

where the terms in /-_/'_, I-Ve, I+I'z, and /+/'+ are 
respectively included in 3C"_2, 3C"_i, 3C"+i, and 3C"+2. 
The case of many spin ingredients can be treated in a 
similar way, and the results are straightforward gen­
eralizations of those given here. In the limit of times t 
short compared with JP2, the small spread in frequency 
of the various terms of $t" can be neglected, and the 
contributions of order 1 of the various terms of (5.8) 
to energy can be evaluated easily [[the symbols (a), 

AND VAN S T E E N W I N K E L 

L (b), (d) in (5.11) correspond to those in (5.8)]: 

E= Tr{p(03C) = - (1/kTs) (l/(P)[Tr{5C/2} (a) 
) + (Tr{ (X,/

+i+5C,/_i)2} • coscoo* 
+Tr{ (3C"+2+3e"_2)

2} • cos2o>o0 (b) 
J + (Tr{ (3C"+1+3C"_i)2} ( 1 - coswoO 

x +Tr{(JC,V2+5C,,_2)2}(l-cos2cooO) (d) 
) + • • • ] . (5.11) 

r Expression (5.11), which obviously agrees with (5.9), 
y shows that the total energy is independent of time, as it 

should be, and that part of this energy oscillates at 
frequencies o>0 and 2co0 back and forth between the 
dipole-dipole energy associated with the nondiagonal 
terms 3C"+i+3C"_i and 3C"+2+3C"~2 of p and the 
Zeeman energy associated with the longitudinal 
nuclear magnetization originating from [jlf i,3C"]. As 
times goes on, the various terms of $t" and Mi will 

' progressively come out of phase with each other, and 
one expects that the amplitude of the oscillations of the 

3 longitudinal nuclear magnetization will decay to zero 
r in times of the order of T2, in very much the same way 
' as an ordinary free precession signal. After times longer 
1 than T2, the energy will consist of two comparable 
5 terms corresponding to a dipole-dipole temperature Ts 
r and to a very high Zeeman temperature of the order of 

(HO/HL)2TS. 
1 This remark should not obscure the fact that, at 
1 times t of a few T2 after the sudden magnetization, the 
' density matrix is very far from being describable in 
} terms of two spin temperatures, as can be seen easily 

by direct calculation. The way in which spin tempera­
tures again become a good description of a spin system 
after a pulse experiment is still a very intriguing but 

' unsolved problem. 
The various methods which have been proposed for 

' preparing a spin system in a state of low dipole-dipole 
P temperature (this paper and Ref. 6) can be considered 
, as methods for transferring negative entropy from the 

Zeeman subsystems to the dipole-dipole subsystem. 
Adiabatic demagnetization followed by sudden mag­
netization (ADSM) will not cause this transfer with the 

' highest possible efficiency, because sudden magnetiza-
f tion is followed by an irreversible process which creates 

some entropy. One can easily show that the ratio of 
(negative) dipole-dipole entropy SD created to (nega-

I tive) zero field spin entropy destroyed in ADSM is equal 
to (HL/HL)2, and thus depends upon the orientation of 

; Ho relative to the crystal axes. Anderson and Hart-
. mann's "adiabatic demagnetization in the rotating 
1 frame" (ADRF) being a reversible process will give a 
. maximum efficiency. However, in systems containing 
t many different spin species, the preparation of the 
' lowest possible dipole-dipole temperature would require 
j successive ADRF of each spin species. 
i Starting with a LiF crystal in thermal equilibrium 
, in a large magnetic field? the techniques discussed above 
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will give the following (theoretical) value for the ratio 
of fiD (to which the magnitude of the observed dipole-
dipole signal is proportional) to the maximum possible 
value (nD)ma*: 

Technique 
ADSM—in general 

—Ho along [100] 
—Ho along [110] 
—Ho along [111] 

ADRF—of F19 only 
—of Li7 only 
—of Li7 and F19 

nD/(nD) 
HL/HL 

0.74 
0.48 
0.35 
0.75 
0.66 
1.00 (5.12) 

In order to check the above prediction that UD obtained 
by ADSM is proportional to HL, we have performed 
experiment C in which the crystal of LiF, already used 
in experiments A and B of Sec. 4, was subjected to 
ADSM with the suddenly applied field HSM in various 
directions perpendicular to [0—1 — 1] and UD was then 
rapidly measured in a large magnetic field of constant 
orientation with respect to the crystal axes. The results 
of experiment C are shown on Fig. 3 as a function of 
the orientation of HSM together with the corresponding 
calculated values of HL-

6. NOTES ABOUT PULSE EXPERIMENTS 

We consider a rigid lattice containing one or many 
spin species, subjected to a large constant magnetic 
field Ho in the z direction. The Hamiltonian of the spin 
system is given by (2.1), where 
npf—V^ , , ^ A an,a''n' J anj a'n' 

+ I^a,n,n'<nBan^\I+
anI-an,+I-anI+

an') . ( 6 . 1 ) 

Further discussions will be simplified if we use the 
interaction representation (A) defined by 

A = BrlAR, where R= exp — £ 3C0
a . (6.2) 

As far as the spin variables of spins of one species are 
concerned, this is equivalent to the use of a new frame 
of coordinates rotating around H0 (i.e., the z direction) 

t ° ° ° (^D)ADSM(a r b i t r 'U n i t S ) 
— HL(gauss) [0]1] [111] [100] 

Angle between H and [lOO] direction 

FIG. 3. Experiment C: Influence of the orientation of the 
suddenly applied magnetic field HSM (in a (0—1 — 1) plane) 
on the degree of dipole-dipole order (WD)ADSM resulting from 
complete adiabatic demagnetization followed by sudden mag­
netization (ADSM) in a LiF crystal (footnote 20). The measured 
values of (WD)ADSM are proportional to the amplitude of the 
dipole-dipole component of the F19 free precession signal. The 
F19 Zeeman signal observed after ADSM was very small and varied 
with orientation between 0.1 and 0.2 times its value before ADSM. 
The HL curve was computed from formula (2.6). 

at the Larmor frequency of these spins (the two frames 
coincide at /=0). 

The application of a short intense23 pulse (a "6 
pulse") of transverse rf magnetic field Hi rotating 
around Ho at the Larmor frequency cx)b/2ir of b spins, 
such that 

(Hi)x= (pulse around t=0) sinco&/ (6.3) 

(rf field in the y direction in the rotating frame), has 
an appreciable effect only on b spins and transforms 
the original density matrix p(t) into pe(t) which, when 
extrapolated back to t=0 with H1=0, is given by24 

fo(0) = exp{-id£y
b}$(0) exp{i6£y

h} , (6.4) 

where £ / is the y component of £&=]CwI6n. I n t n e 

case of a system which can be described in terms of 
spin temperatures before the pulse, p(0) is given by 
(2.2), and expression (6.4) can be written 

^(0) = p ( 0 ) - ( - 7 6 ^ o / ^ r & ) { - ( l - c o s 6 > ) £ , & + s i n ^ ^ } 
- (l/(P&rz)) { - sin20 £ W , ^ 

- (1-COS0) Zn,n',a*b [ i l *» '™' J .*» / .™' ] 

+sin(9cos(9Ew,n'<w[(^&n'6w,~25&^&w0(^6w/a;
6n,+Ix6n/2

6n/)] 
+ Sin0 Zn.n'^b LA^^I^h^} . (6.5) 

Free Precession Signals 

Neglecting small oscillating terms caused by 3C", one can write the % component Mx(t) of the magnetization of 
spins b after the 0b pulse as 

Mx (t) = Mx (t) coso> H+My sinco H, (6.6) 

23 The pulse has to last for a large number of rf cycles, but be short compared to T2. 
24 The techniques of calculation used in this section are those discussed by I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 

(1957). We have repeatedly used the property that the trace of an operator which never conserves the Zeeman energy is equal to zero. 
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where the x and y components of M(t) in the rotating frame are given by 

^ . W = Tr{7»*JB, iQ0.(O)e-1}, (6.7) 

St„(t) = Ti{y>h£y
iQfil(0)Q-1}, (6.8) 

where 

Q = e x p { - f f l e 7 * } . (6.9) 

Introducing expression (6.5) for pe(0) into (6.7) and (6.8), one obtains 

Mx(t)= (ybh/(PkTb)lsme2TT{£x
bQ(ybhHo)£x

hQ-1}, (6.10) 

My(t)= (ybh/(PkTD){lsm6-]Tr{£y
bQi:n,n^b (A»wIJ»IS^Qr1} 

+ B sin20] T r { £ / Q Ent*'<* {(i46 w ' f t n ' -25»».6» ,)(//nJ r .6 n '+/x6 w / .»» /)>Q~1}} • (6.11) 

Equation (6.11) is exactly the expression derived by 
Anderson and Hartmann6 for the envelope of the free 
precession signal of a system in which T& is finite and 
the Ta's infinite. 

I t is obvious from (6.10) and (6.11) that the rf 
phases of the Zeeman and dipole-dipole free precession 
signals are mutually orthogonal, and that these two 
signals can, thus, be separated very easily by the use of 
coherent pulse instrumentation with two orthogonal 
phase-sensitive detectors. 

Effects of Successive, Widely Separated Pu lses 

{Note added in proof. We have now investigated the 
effect of a pair of pulses separated by a time of the order 
of T2, as a function of the difference <p between the rf 
phases of the two pulses. The calculations indicate that 
when <p differs from 0 or w, the pulse pair will cause a 
partial transfer of degree of order from the Zeeman 

Equation (6.14) shows that a comparison of the effects 
on the dipole-dipole system of 7r/2 and w pulses on spins 
b will give information about the relative strength of 
the couplings between spins b and spins b, and between 
spins b and other spins. In the case of a single-spin 
species, and in the absence of exchange interactions 
(pure dipole-dipole coupling), (6.14) becomes 

EDd=ED(l-%sm26); (6.15) 

7r pulses have no effect on ED and \ir pulses multiply 
it by —J. If exchange interactions are present, the f 
coefficient in (6.15) will be modified and measurements 
of the effect of \-K pulses on ED will give information 
about the relative strength of the dipole-dipole and 
exchange couplings. 

subsystem to the dipole-dipole subsystem, and vice 
versa. Experiments have been undertaken to make a 
quantitative check of the theoretical prediction.] 

Immediately after a 6b pulse, the spin system cannot 
be described in terms of spin temperatures, but it will 
relax, with a characteristic time probably of the order 
of magnitude of T2, to a state which is described by a 
new set of spin temperatures TD6> Ta$. 

In the approximation in which M=l [formula 
(5.6)], the dipole-dipole and Zeeman energies are 
constants of the motion in the absence of rf magnetic 
field, and their value after the pulse can be computed 
using expression (6.5) for the density matrix after the 
pulse. Knowing the energies, one can compute the spin 
temperatures and predict the effects of further pulses, 
provided that the time separation between pulses is 
larger than a few T2. Elementary computations give 
the following result (E and E$ are the energies before 
and after one 6b pulse) 

0 Pu l ses and Linear Response 

In first approximation, the response of a spin system 
to a small perturbing magnetic field is a linear function 
of the perturbation. We shall now see to which extent 
this idea can be used to correlate the rf susceptibility 
x(w) = x'(<*>) — ix"{u>) (i.e., the response to a small 
linearly polarized transverse magnetic field) with the 
free precession signal following a 6b pulse. A small 
rotating rf field Hi described by Hix+iHiy=exp(ia)t) 
will thus cause a response M where Mx+iMy=2x{u>) 
Xexp(icoZ). A 6b pulse with Hi in the y direction of the 
rotating frame of coordinates can be described as 

Hix+iHiy=i I /(co) exp(io)t)do), (6.16) 

Ea
e=Ea (a^b), (6.12) 

Eb
6=Eb cos0, (6.13) 

£ D ^ ^ - s i n 2 C i / H / 6 + l ) ] 2 E ^ < w ( ^ 6 n ' & n , - - 2 5 & ^ ^ ) 2 

- ( 1 - C O S 0 ) | / & ( / & + 1 ) £-««& [ f / « ( / H - l ) 0 4 & ^ ' ) 2 ] . (6.14) 
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where /(co) is a real function of a>, symmetric around 
the Larmor angular velocity co6 of the b spins, roughly 
constant in the range of co where x(u) is appreciably 
different from 0 in the neighborhood of a>&, and falling 
to zero outside this range. An elementary calculation 
shows that 9b=2wybf(a)b). In the linear approximation, 
the response to a 6h pulse (6.16) is given by 

Mx+iMy=i I 2x(w)/(co) exp(ia)t)du. (6.17) 

Using the Kramers-Kronig relations25 to eliminate x! (w), 
we can rewrite this response as 

06(2/TTY6) expfco6/) / x " ( « ) exp[i(a>-a>b)f}da>. (6.18) 

The absorption part of the susceptibility x"(u>) is the 
sum of two terms x"z{o>) and X"D(U>), where x"z{u) is 
the imaginary part of the usual rf susceptibility of a sys­
tem with |w 6 | ^>to | and x"z>(co) is given by (3.7). Eval­
uating the integral in (6.18) in this way, one finds a free 
precession magnetization which is given by (6.6) after 
replacing the functions of 6 in the square brackets in 
(6.10) and (6.11) by 0 (i.e., the first term of their series 
expansion for small angles). 

This shows that the linear response theory can be 
used to express the free precession signal as the Fourier 
transform of the susceptibility, in the sense of Eqs. 
(6.16) and (6.17), in the case of small 0. In the case of 
large 0, a single correction factor (sin0)/0 multiplies the 
linear approximation of the Zeeman signal, whereas 
two different such factors, (sin0)/0 and (sin20)/20, 
have to be introduced for the two parts of the dipole-
dipole signal which originate from interactions between 
neighbors of different or like species. As a result of this, 
the shape of the Zeeman signal does not change with 0, 
and that of the dipole-dipole signal changes with 0 for 
systems with many spin species and not for systems of 
one spin species, as already noted by Anderson and 
Hartmann.6 

7. SPINS WITH UNEQUALLY SPACED ENERGY 
LEVELS: DENSITY MATRIX, ENTROPY 

The possibility of describing the state of a spin system 
which is not in complete internal equilibrium in terms 
of a small number of temperatures or populations 
depends upon the existence of some kind of gap in the 
spectrum of relaxation times of the system: subsystems 
must exist, inside which strong coupling results in a 
fast evolution towards a state of internal quasiequilib-
rium describable in terms of populations or a spin 
temperature. The weak couplings between these sub­
systems and with the lattice then result in slow changes 
of the populations or temperatures. 

26 See for instance the discussion given in Ref. 1 (Abragam), 
pp. 93-96. 

We shall now discuss the density matrix and the 
entropy for a simple example of such a system. Consider 
a system of spins localized on a rigid lattice (solid), the 
ordinary rf absorption spectrum of which consists of 
well separated lines. This spectrum can be interpreted 
as the superposition of the spectra of a small number of 
different kinds of microscopic systems, spins or group 
of a few tightly coupled spins,26 the linewidth originating 
partly in the ("spin-spin") couplings between micro­
scopic systems and partly in fluctuations from point to 
point in the environment of the microscopic systems 
("inhomogeneous broadening"). The total spin Hamil-
tonian can be written as 

5e=Ea3Co a+3C /+3C / / , (7.1) 
where 

5C0
fl=En5Coaw, (7.2) 

where 3C0
an is that part of the Hamiltonian of the 

isolated nth microscopic system of type a, which gives 
rise to the average spectrum of energy levels of type a. 
Fluctuations from point to point of the individual mi­
croscopic system Hamiltonian and couplings between 
microscopic systems are included in JC,s=5C/+5C//. 3C' 
contains the terms of 3Cs which commute with £ 0 3Coa 

and 3C" those which do not. 
For simplicity, we shall consider the case where each 

line of the complete spectrum originates from a tran­
sition between a single pair of levels in one kind of 
microscopic system. In this case (neglecting possible 
cross relaxations), spin diffusion will not affect the 
occupation number (population) of the energy levels of 
the isolated microscopic system. In order to emphasize 
the important roles of these populations, we introduce 
the operators 9ZTO

a the eigenvalues of which are the 
number Nm

a of microscopic systems of type a in their 
mth eigenstate (m

a) of energy 8m
a. In a representation 

in which the microscopic systems are individually 
quantized, dlm

a is defined by 

3lm
a | s tate A) = Nm

a(in s t a t e d ) - 1 s t a t e d ) . (7.3) 

The Hamiltonian 3Coa can then be written as 

3Coa=Em<§ma9lw
a, (7.4) 

where the sum extends over the ga eigenstates of each 
microscopic system of type a. The density matrix de­
scribing a system for which we only know the proba­
bilities pma of finding an arbitrary microscopic system 
of type a in the state (m°) is 

P= exp{£a,m (qm
aVlm

a)} , (7.5) 

where qma=logpm
a and, of course, £„»p m

a = 1. 
Using the same arguments as Anderson and Hart­

mann,6 or Provotorov,7 as many others have done 
already, we can now write a density matrix for the 

26 For instance, the two different types of proton pairs (water 
molecules) in gypsum. 
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complete spin system in quasiequilibrium as 

p= (1/(P') exp{ (-5e7*r f l)+i:«.m (qmaVlm
a)} . (7.6) 

In the discussion of processes involving only two 
energy levels Sia and Sf, it is sometimes convenient 
to introduce a temperature Tij denned by 

1 hi(Nia/Nf) qf-qf 
= = - — , (7.7) 

kTa &f- Sf Sia- Sf 

but it is obvious that these temperatures, which gen­
eralize the notion of Zeeman temperature, are by no 
means independent of one another and are much less 
convenient characteristics of the state of the system 
than are the probabilities pia or the average occupation 
numbers Nia=Napia (where Na is the total number of 
microscopic systems of type a). In contrast to this, the 
notion of spin-spin temperature Ts retains all its im­
portance because it describes the state of the very 
complex spin-spin subsystem. 

In what follows, we shall restrict ourselves to the 
case of high temperatures and it is then convenient to 
replace the occupation numbers Nf by the deviations 
ftia from their value Na/ga at infinite temperature 

nia=Nia-Na/ga=Na(pia-l/ga), (7.8) 

with obviously: 2 ^ w*°= 0. 
The energy of the spin system, E=Tv{3Cp} can be 

computed easily27 by using the first-order approxi­
mation of p in 1/Ts and the nm

a: 

E=E8+Ea,mEm*, (7.9) 
where 

Es= - (l/kTs) (1/(P) Tr{3C'2} (7.10) 
and 

Em"=Nm
a'Sm

a, (7.11) 
or 

Him — Vl"m &m • 

((P is the total number of eigenstates of the complete 
spin system.) 

A computation of the entropy using the standard 
formula entropy= — k Tr{p lnp} requires the use of an 
expansion of p to the second order in 1/T& and the nm

a. 
[Using a first-order expansion gives factors of 1 instead 
of the factors | appearing in formulas (7.14) and 
(7.15).] The result, which can be checked by computing 
the difference S between entropy and entropy at in­
finite temperature by the simple thermodynamic tech­
nique used in. Sec. 2, is 

entropy=k \n(P+S, (7.12) 
where 

S=SS+Za,mSm% (7.13) 
where 

Ss= - i ( l /*?V)( l / (P) Tr{5C/2} , (7.14) 
27 The following operators can be shown to have a trace equal 

to zero (or have been so chosen): 3C0°, 3C', 3C", 3C0°3C', 3C0°3C" 
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and 
Sma=-Hkga/N«)(nm«)\ (7.15) 

8. INFLUENCE OF THE NONSECULAR PART OF THE 
SPIN-SPIN COUPLING ON THE THERMODYNAMIC 

PROPERTIES OF A SPIN SYSTEM 

A spin system in complete thermodynamic equi­
librium, i.e., a system in which all temperatures are 
equal to T, is described by the density matrix 

peqUii= (1/<P) e x P { - (3e 0 +3e / +3e") /*r>. (8.1) 

If we use the formalism which has been proposed by 
Anderson and Hartmann6 and Provotorov,7 we shall 
describe the same situation by the density matrix [see 
formulas (2.2) and (7.6)] 

P = (1/<P0 e x P { - (rc 0+3e') /*r} . (8.2) 

In the limit of a large magnetic field Ho (i.e., widely 
separated energy level differences of the isolated micro­
scopic systems), the relative differences in the energies, 
entropies • • •, calculated from the exact (8.1) and ap­
proximate (8.2) density matrices are very small, of the 
order of (HL/HQ)2, and can usually be neglected (HL 
is the "local" magnetic field, due to the influence of the 
neighbors of each spin). On the other hand, the dis­
crepancy which exists between the exact density matrix 
(8.1) for the one-temperature situation (which usually 
exists in low Ho) and the density matrix used to describe 
situations with many different spin temperatures (8.2) 
leads to ambiguities in the quantitative discussion of 
processes such as adiabatic magnetization or demag­
netization, or cross relaxation, because one has to 
"jump" from one type of density matrix to the other. 
The following discussion gives a partial solution of these 
problems. 

Let us first consider the case of a single-spin species 
(N spins with equally spaced isolated spin energy 
levels). Following Philippot,9 we note that the two 
operators 3Co and 3C' [see formula (2.1)] which com­
mute with each other can be simultaneously diagonal-
ized, and we introduce as base vectors the eigenstates 
\L,n) of (3C0+3C')> satisfying the relations 

3C01 L,n) = Lficoo \ Lyn), 

X,'\L,n)=ErLn\L,n). (8.3) 

L is an integer (or a half-integer for an odd number of 
odd spins) and n describes all the other quantum 
numbers. Neglecting the "nonsecular" part 3C" of the 
spin-spin Hamiltonian, the corresponding eigenvalues 
of the energy are 

Lhaio+E'Ln, (8.4) 

the usual two-spin temperature density matrix (2.2) 
is an exact stationary state of the problem, and the 
probability of finding the system in the state | L,n) is 
given by 

(1/(P') exp{-LJto>0/kTz-E'Ln/kTD}. (8.5) 
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The influence of 30" on the eigenstates and eigenvalues 
of the energy just discussed will be small if Ho is larger 
than HL, and we can then evaluate it by ordinary time-
independent perturbation theory: In second order in 
(HL/HQ), the energy of the eigenstate corresponding to 
| L,n) can be written as 

i f e o + ^ L n + ^ L n , (8.6) 

where [see (5.10)] 

E"Ln= (l/fc>o){<A» | [X"+lj3C"_1] | L,n) 
+ K ^ | [ 3 c / ,

+ 2 X , - 2 ] | A ^ ) } . (8.7) 

A complete discussion of the perturbations due to 30", 
even in second order only, is very difficult because the 
eigenstates \L,n) are unknown. Nevertheless, some 
average properties can be evaluated as traces (as in 
Van Vleck's method of moments).12 For instance, the 
average value of Eh'm for all states of given L is given by 

(8.8) 
where 

(E"Ln) 
av. over n~ LflOi" , 

One can also show that E" Ln is not directly correlated 
to the first approximation dipole-dipole energy E1 Ln 
in the sense that 

E.L,n{£ ,L»£ , /ji»} = 0, (8.9) 

by writing this sum as a trace and noting that a reversal 
of all spins will leave E' Ln unaffected, but change the 
sign of E"i,n. 

Using these results, we can write the energy (8.6) as 

Lh{m+o>")+E'Ln+ {Ef'Ln-Llka") (8.10) 

and describe the influence of 30" as a systematic shift 
in the N M R frequency superimposed on small 
"random" perturbations of the dipole-dipole energy. 
If we now apply the standard arguments6 '7 to write 
down a two-spin temperature density matrix, the 
probability of the state which originates from | L,n) in 
the absence of 30" will be given by 

(1/CP") exp{-Lft(o)Q+u")/kTz 

-(E'Ln+E"Ln-Lko")/kTD}> (8.11) 

In the high-temperature approximation and neglecting 
terms of order higher than (HL/HQ)2, the average energy 
computed with this probability distribution is the same 
as that computed with the density matrix 

(pv 
-exp 

(3C0+3C") 

kTz 

30' 

kTD\ 
(8.12) 

which differs from the classical form by the addition 
of the term —30,"/kTz in the exponential. This density 
matrix avoids the ambiguities mentioned in the first 
part of this section: in the high-field region, it gives 
the thermodynamic properties more accurately than 

does the previously proposed density matrix (2.2) and 
in the low-field region, where good heat contact between 
the Zeeman and dipole-dipole subsystems equalizes Tz 

and TD, it goes over to the exact formula (8.1). Another 
result in favor of formula (8.12) is that if one starts 
with a density matrix of the form (8.12) without the 
term in 30" and solves the equation of motion for p(t) 
as outlined in Sec. 5, the solution executes rapid oscil­
lations around the density matrix (8.12) with the term 
-30"/kTz included. 

The calculation outlined above in the case of a single-
spin species can be extended in a straightforward way 
to the case of many spin species and unequally spaced 
energy levels, with the following result, which, as above, 
is obtained in the limit of very high temperatures, in­
cludes all energy terms up to the order of (linewidth/ 
line separation),2 and goes over smoothly to the right 
expression whenever lines overlap and come in thermal 
equilibrium with each other, or when a transition 
frequency approaches zero. 

We first decompose the "nonsecular" part of the 
coupling, 30", in a sum of terms according to the type 
of transition which they generate. For an 30" which 
only couples pairs of microscopic systems, the general 
term in this decomposition, 30"(A—>B,F~^G), will 
contain all the operators which simultaneously cause a 
transition of one microscopic system from state A to 
state B and of another one from F to G, or the complete 
inverse (A and B, or F and G can be the same state). 
To each term30,"(A —> B,F—>G) there will correspond 
in the exponential of the density matrix (7.6) an addi­
tional contribution given by 

qA—qB+qF—qo 
'30"(A-->B,F-*G). (8.13) 

When the energy difference (i.e., line separation) 
SA—SB+SF—SQ becomes comparable to the line-
width, 30" (A —> B, F —» G) will give rise to cross 
relaxation and one can easily verify that the steady 
state of cross relaxation is characterized by 

1 qA—qB+qF—qa 

kTs 8 A— &B~\- &F— SQ 
(8.14) 

If one now collects all the terms in the exponential of 
(7.6) corrected by (8.13), which are proportional to 
— 1/kTs, one finds in this case the original term 30' 
plus two new terms: 

30'+30"(A->B,F-*G) 
+ i(9lA-^B+WF-VlG)(gA~$B+SF-$G), (8.15) 

which shows clearly how 30" (A —* B, F—>G) effec­
tively becomes a part of 30' when the line separation 
goes to zero. Using (7.6) corrected by the additional 
terms (8.13), one can, for instance, give an unambiguous 
discussion of experiments in which the energy levels 
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are moved with respect to one another by changing 
some parameter (usually magnetic field, electric field, 
or orientation) of the spin Hamiltonian. 
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I. INTRODUCTION 

THE paramagnetic resonance spectra of iron group 
ions in the a-Al203 host lattice have been the 

subject of study for some years. The only ion of the 
3d2 configuration which has received attention is V3+. 
Optical-absorption measurements on V3+ in a-A\2Oz 
have been made by Pryce and Runciman1 and spin-
resonance studies are reported by Zverev and Prok-
horov2 and by Lambe and Kikuchi.3 No work has been 
reported on the isoelectronic species Cr4+ in any host 
lattice. We have performed spin-resonance and optical-
absorption measurements on single crystals of a-Al203 

containing chromium which have been grown under 
conditions favoring the stabilization of Cr4+

? rather 
than the usual valence state Cr3+ (ruby). The crystals, 
which are bright orange in color and show only a very 
faint red fluorescence under ultraviolet or green excita­
tion due to a background of Cr3+, bear no visual 
resemblance to ordinary ruby. 

The spin-resonance properties of Cr3+ (5=1) in the 
axial electric field of a-Al203 have been studied ex­
tensively.4-6 The crystal-field splitting of 0.38 cm-1 

t Supported in part by U. S. Air Force Aeronautical Systems 
Division. 
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gives rise to a rich and predictable spectrum from Cr3+ 

when resonance measurements are carried out at X-
band microwave frequencies. The S=l spin state of 
Cr4+ is readily discernible from such background Cr3+ 

absorptions by its distinctive behavior in regard to 
number of lines, angular dependence, temperature de­
pendence, and saturation behavior. A paramagnetic 
resonance-absorption line has been found which is 
attributable to a system of 5 = 1 which we propose is 
Cr4+ 

Optical-absorption measurements have revealed the 
intense spectra of defect centers rather than the absorp­
tions of the Cr4+ ion. The purpose of this paper is to 
point out the stable existence of the species Cr4+ in 
a-Al203 and to describe the spin-resonance properties 
of this ion. 

II. EXPERIMENTAL 

The crystals were grown by the Verneuil method. 
Substitution of tetravalent chromium for trivalent 
aluminum requires a method of charge compensation. 
In this case, anionic compensation was used; N3~ was 
substituted for 02~. This substitution can be effected 
by the incorporation of nitrides in the powder feed.7 

In order to maximize conversion of Cr3+ to Cr4+, the 
samples were oxidized under one atmosphere of oxygen 
at 1400°C for approximately 16 h. Because of com­
plications which can be introduced into the spin-
resonance spectrum by other transition metal ions, 
especially iron, great care was taken to prevent impurity 
contamination. Values of chromium concentration 

7 R. C. Pastor (to be published). 
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The paramagnetic resonance spectrum of single crystals of a-AhOz containing chromium grown under 
conditions favoring the stabilization of Cr4+ has been observed. Data were taken at X band at liquid-helium 
temperatures. A single absorption line was observed which is attributed to a AM=±2 transition. The 
crystal-field splitting parameter is inferred from the temperature dependence of the strength of the resonance 
to be Z>=+7 cm-1. The spectroscopic splitting factor is gn = 1.90i°0;JJ. A distribution of lower symmetry 
fields gives rise to an asymmetric line; the range of E values deduced from this asymmetry is 0 < £ < 0 . 0 5 
cm"1, where 2E is the zero-field doublet splitting. Optical absorption data and radiation effects are presented. 


