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Calculation and Comparison to Experiment of Magnetoresistance 
in the Noble Metals* 
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Calculations of magnetoresistance in metals have been made taking into account the contributions of 
open orbits. Details of the open orbits in copper have been worked out and the specific resistance has been 
calculated for a number of current axes. Results of experimental measurements of transverse magnetoresist
ance in oriented single crystals of copper and silver are reported. These results have been compared to the 
calculation and both experimental and theoretical curves are given. Fermi surface neck diameters have been 
derived from the data and comparison is made with data obtained from magnetoacoustic attenuation 
experiments. 

INTRODUCTION 

MAGNETORESISTANCE measurements in single 
crystals have recently been used to give sig

nificant information on the Fermi surface in a number 
of metals. The interpretation of experimental curves is 
based on the theoretical work of Lifshitz et al.1 who 
pointed out the possibility of open-electron orbits in 
many metals and the effects these will have on the 
magnetoresistance. 

In this paper we give an extension of the work of 
Lifshitz and compare the details of the calculation with 
experimental results obtained on oriented crystals of 
copper and silver. In particular, a relaxation time is 
assumed to exist and an expression is obtained for the 
distribution function. Details of the open orbits in 
copper are worked out assuming a nearly spherical 
Fermi surface. Transverse magnetoresistance curves 
are calculated for magnetic field directions near (001) 
and currents parallel to (310), (210), (110), and (100) 
axes. The results are then compared to the experi
mental curves obtained for these same current axes. 

Experimental results are also given for the Fermi 
surface neck diameters in copper and silver. These 
results are compared with recent measurements of 
Bohm and Easterling2 on copper and silver using 
magnetoacoustic attenuation. 

THE SOLUTION OF BOLTZMANN'S EQUATION 

The Boltzmann equation is 

-e(E+<r*vXH).v/= - (/-/o)/r 

if a relaxation time r is assumed to exist. The number 
of particles at p in dp is 2(2wfi)~zf(p)dp and /0 is the 
unperturbed Fermi distribution regarded as a function 
of energy, e which in its turn is a function of the 

* Research supported in part by the U. S. Army Research 
Office, Durham, and the U. S. Atomic Energy Commission. 

1 1 . M. Lifshitz, M. la. Azbel, and M. I. Kaganov, Zh. Eksperim. 
i Teor. Fiz. 31, 63 (1956) [translation: Soviet Phys.—TETP 4, 41 
(1957)]. 

2 Henry V. Bohm and Vernon J. Easterling, Phys. Rev. 128, 
1021 (1962). 

momentum. With / = / 0 + cp this is 

- ^ ( E + ^ 1 v X H ) . v ^ + r - V = ^ o ' v E . 

This first-order partial differential equation for <p can 
easily be solved along the characteristic curves that are 
tangent to the force field E+vXH/c. If it is assumed 
that E is small enough then the characteristics (the 
orbits of the electron in momentum space) can be taken 
tangent to vXH (otherwise the current would not 
depend linearly on E). Now define a parameter JJ, along 
the orbits so that if /x is changed by dfj, the position on 
the orbit is changed by dp=\Xndfji, where H = n # . 
Then 

d(p/dfi=\Xn'V(p 

and the Boltzmann equation becomes 

where 

and 

The solution of this 

1 di 

a djx 

(p=erfo^i»E 

a = c/(erH). 

equation for t|r is 

4 GO=oLe"" / e-«»'v (ji')dix'. 
J n 

(1) 

This result is given by Wilson3 [Eq. (8.55.3)]. Note 
that this is the only bounded solution so in fact i(r is 
determined uniquely. The origin of the parameter /z is 
obviously irrelevant. Since 

J ii 
>'<&*'= 1, 

ifc is a mean of v along the orbit by a distance of about 
\/a in the direction from which the electron has come. 

3 A. H. Wilson, The Theory of Metals (Cambridge University 
Press, New York, 1953). 
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The conductivity tensor is easily shown to be 

2 r dS 
cr = —e2T I vtlr— 

(2TT&)3 J v 

integrated over the Fermi surface inside the Brillouin 
zone. This surface integral can be written as a double 
integral by using the parameters M and pu (the com
ponent of the momentum parallel to H); the result is 

or= e2r / ly^diidpn. (2) 
(2TT&)3 J J 

If a is large we have the formula 

ifc = v4V/a+0( l / a 2 ) 

obtained by integrating by parts the integral for i|r. 
This gives the usual expansion of the conductivity for 
small TH (high temperatures and low fields), e.g., the 
first term gives the conductivity tensor at zero field 
[cf., Wilson Eq. (8.2.6)].3 

If a is small tjr will depend on a long stretch of the 
orbit and this will mean that the conductivity will, in 
general, be a very complicated function of the direction 
of the magnetic field. But if the orbit is periodic (i.e., 
either closed or open and periodic) then the integral for 
t|r need only be performed over one period and 

l-er«">J0 Jo 

FIG. 1. Planes containing a two-dimensional lattice of necks 
connected together by the spherical part of the Fermi surface. 
(a) Section parallel to (001) for 2=0, (b/2); (b) section parallel 
to (110) for x—y=0; (c) section parallel to (110) for x—y 
= ±(6 /2 ) ; (d) section parallel to ( i l l ) for x+y+z=0, (b/2), 
(2b/2), (36/2). 

where /*0 is the period. The second term is a particular 
integral and the first term a solution of the homo
geneous equation for i|r. 

If afiQ is small this can be expanded in ascending 
powers of a the first term of which is 

1 r^ 

Mo Jo 

as would be expected from the fact that ^ is a weighted 
mean of v. The projection of t(r perpendicular to H can 
easily be calculated from 

dp/djjL = \Xn 
or 

Yi=nXdp/djj,, 
so 

tk i=M (r
1nXAp+.. . , (3) 

where Ap is the difference of momentum from beginning 
to end of the period. If the orbit is closed this first term 
in the series is zero and the next term reduces to 

ifei Ox) = a J / //Vi (M')<V 
I Mo Jo 

-nX[p(M)-p(0)] j + ---. (4) 

Equations (3) and (4) were obtained by Lifshitz et al} 
[Eqs. (20), (21), and (19), respectively], but of course 
the value of the constant part of (4) and the magnitude 
of the vector in (3) are not given by them since these 
depend on the existence of a relaxation time. Note that 
for a closed orbit /xo is the rate of change of the area of 
the orbit with energy and Lifshitz et al.1 defined the 
effective mass for the orbit by 

jU0=27TW*. 

DESCRIPTION OF THE FERMI SURFACE 
OF Cu AND Ag 

The reciprocal lattice is body-centered cubic and if 
the cube is of side b then | 5 ( ± 1 , ± 1 , ±1) are basis 
vectors for this lattice. The volume of the Brillouin zone 
is bz/2 and a sphere of half this volume has the radius 
0.391 b. The Fermi surface consists of a set of such 
spheres centered at each lattice point, except that the 
spheres are slightly deformed and, in fact, join together 
through necks in the (111) directions where the unde-
formed spheres are only 0.084 b apart. The centers of 
these necks (the center of the hexagonal faces of the 
zone) are at the points J6(=bl, ± 1 , ±1) plus any 
reciprocal lattice vector. If the origin is moved to 
— \b{ 1,1,1) then it is easily shown that the centers of 
all the necks are at the points %b(l,m,n), where /, m, 
and n are arbitrary integers, i.e., the necks are on a 
simple cubic lattice where the cube has side b/2. The 
origin has been chosen at a neck and there is a sphere 
centered at f£(l,l,l). 
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There are several planes that contain a two-dimen
sional lattice of necks that are all connected together 
by the spherical part of the Fermi surface. These are 
the planes 2=0, b/2, x—y = 0 (but not d=b/2), and 
x+y+z=0, (6/2), 2(6/2), 3(b/2), and the section of 
the Fermi surface by these planes is shown in Fig. 1. 
The orbits in these planes are all closed. 

It is clear that if the orbit plane is tilted through a 
small angle 6 about some axis in one of these planes 
(except x—y= ±6/2), say about an axis in the direction 
[/raO] in the plane 2=0, then the tilted plane will not 
cut through the necks some distance from the axis and 
there will be an open orbit with a mean direction praO]. 
In fact, if the necks extend a height h above and below 
z=0, i.e., the planes z=zhh just traverse the necks, 
then necks will only be traversed within a distance 
h cot0 of the axis (for small h) until the tilted plane 
intersects the planes of necks z=dzb/2. If, however, 
the tilt of the orbit plane is too large it will be impossible 
to traverse necks indefinitely in the [/w0] direction 
and the orbit will be closed, unless the axis [/m0] 
contains a line of connected necks. The axes []100], 
C110], and []010] contain such lines of connected necks 
and no matter how large the tilt of the orbit plane 
there are always open orbits for these axes. The axes 
[110], [111], and [001] in the (110) plane and the 

axes [011], etc., in the (111) plane are similar lines of 
necks. 

Now consider the axis [310]. For brevity, use b/2 as 
a unit of length so that the plane 2=0 has a square 
lattice of necks and the side of the square is 1. Take the 
magnetic field in the direction [13X] so that the orbit 
planes are 

x—3y+\z=p (5) 

and these planes are tilted by 6 from the plane 2=0, 
where tan#=101/2A. If the necks extend a distance h 
above and below the plane 2=0 (as above) then in 
order that the plane, Eq. (5), should go through the 
neck at (x,y,0) (x, y integers) it is necessary that 

x—3y—\h<p<x— 3y+\h. 

From this it is easy to find the possible types of orbit 
for each value of \h. At the critical values of \h: 1, f, 
2, f, 3, • • • a new line of necks can be traversed and the 
type of open-orbit changes. For \h<l there are no open 
orbits. In Fig. 2, the section of the Fermi surface by 
the above plane is shown for Xh up to 3. It will be 
noticed that there are two types of open orbits, one has 
a period of 6 quarter-circles and is seen in KX/z<§, 
the other has a period of 10 quarter-circles and can be 

i < xh < y z 

(a) 

< H < 2 

U>) 

OR 

O R 

2 < Ah < 5y 2 < H 
(c) 

c\h- : Ah 
(d) 

FIG. 2. Open orbits for the [310] direction, (a) Simple open orbit for 1<A&<§, period of 6 quarter-circles; (b) 10 quarter-circle 
period open orbit for §< \ /z<2; (c) 6 or 10 quarter-circle period open orbit for 2<A/z<§; (d) 6 or 10 quarter-circle period open orbit 
forf<AA<3. 
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seen in f <\h<2. These open orbits have the smallest 
value of MO apart from those for the £1.00] and [110], 

The next shortest period for an open orbit is 12 
quarter-circles and occurs for the axis [[210]. If the 
magnetic field is in the direction [12k] and the orbit 
plane is 

x— 2y+kz=p, 

where the angle of tilt is now given by tan0=51/2/A. 
Again the critical values of kh are 1, rj, 2, ^, • • • and 
there are no open orbits for \h<l. The open orbits are 
all the same and those that occur up to\h=2 are shown 
in Fig. 3. 

The periods for open orbits in all other directions are 
much larger except for the Q00] and [110] directions. 
For [[100] the period is just 4 quarter-circles and for 
[110] the period is 2 or 6 quarter-circles. For the [100] 
axis take the magnetic field in the direction [Oik] and 
the plane of the orbit 

y+kz=p. 

AtXA=|, 1 & 9 
J-J 2> *} 

new rows of necks are added and 
the open orbits up to XA=f are shown in Fig. 4. 

For the £110] axis take the magnetic field in the 
direction £1IX] and the plane of the orbit to be 

oc—y+kz=p. 

Again \h=%, 1, §, • • • are critical and orbits for kh up 
to f are shown in Fig. 5. 

It is easily seen from Fig. 1 that for H near [110] 
the axes [331], [113], [221], [112], [110], [001], and 
[111] have similar open orbits to those that we have 
described for the [310], [210], [100], and [110] axes 
for H near [001]. 

CALCULATION OF THE MAGNETORESISTANCE 

Free-Electron Fermi Surface 

Since the necks are quite small most of the orbits 
are just circles (approximately) and the first step to 
understanding the resistance is to calculate the con
tribution to the conductivity tensor from circular 

l < X h < y 3 / < Xh < 2 x 2 

Goo] 

n 
—7 

X h < i ^ ]/2<\h<\ ! < X f i < $ £ 

(a) (b) (c) 

FIG. 4. Open orbits occurring for the [100] direction up to X& = §. 

orbits. We shall just assume e = p2/2m so that dfM=md6 
on the circle. At the point on the circle for which ^ is 
required we suppose 0=0 and use rectangular axes as 
shown in Fig. 6.3a 

Then^n = z>n and 

* .=a / e-ameVx (cos0, smd)mdO 
Jo 

= v± cos/3 (cos/3, sin/3), 

where 0</3<7r/2 and cot/3=am, i.e., i^ has the mag
nitude Vi cos0 and is rotated by /3 from Vj.. All appear
ances to the contrary this is the same as Wilson's3 Eq. 
(8.51.3). The x components of the conductivity tensor 
are determined by 

/ yi^idfji=mvi2
 COSJS / (cos0, sin0) 

X (cos(0+0), sin(0+/3))</0 

cos0 sin/3 

- sin0 cos/3 _ 
= irmvi2 cos/3 

Also 

/„ 

r cos0 sin/3 "1 

L — smflcos/3J 

\l/ndij,= 2iwivu2 and / Vi^urf/x= / Vi \^idfjL=0. 

If all the orbits were circular and the Fermi surface 
was a sphere the conductivity tensor would be obtained 
by just integrating the above results with respect to pn 

which gives 
cos20 cos/3 sin/3 0] 

1 e2rpz 

3ir2 fizm 
- cos/3 sin/3 

0 

cos9/3 

0 

(6) 

which is just the sum of a projection operator parallel 
to H and a rotation operator through the angle (—/3) 
about H (together with a scale factor). 

FIG. 3. Open orbits occurring for the [210] direction up to \h — 2. 

36 Note added in proof. A left-handed coordinate system has been 
used in Fig. 6. The final answer is not affected, but a right-handed 
system can be constructed by placing ijrj. and Vi in the fourth 
quadrant and measuring 6 in a clockwise direction. The minus 
sign in the conductivity tensor (Eq. 6) is then shifted to the other 
cos/3 sin/3 term. 
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The resistivity tensor is the reciprocal of this: 

1 -tanfl Ol 

9 = 3 ^ 
fizm 

tan/3 

0 

1 

0 

and it is clear that if the potential drop is measured in 
the direction of the current the result is just the same 
as if /3=0, i.e., there is no magnetoresistance. However, 
the electric field is rotated by fi away from the current 
so that there is a Hall effect and p is the Hall angle. 

Open Orbits 

We first consider in detail the calculation of the 
magnetoresistance when the current is parallel to [[310] 
and the magnetic field is near the [[001] direction. In 
Fig. 2 the possible open orbits are shown when the 
magnetic field is tilted by 6 from [001] and 0 is de
creased (as X is increased) from the value at which open 
orbits appear for the first time (tan0= 101/2 h) to the 
value at which closed hole orbits appear for the first 
time (tan0= 101/2 h/2). Consider first the region of X, 
1<X&<§, and suppose the central Brillouin zone has 
its necks at the points (#,?)= (0,0), (1,0), (0,1), and 
(1,1) on the planes 2=0 and z= 1. Then, if p in Eq. (5) 
lies between the values — 3±(X^—1), the necks at 
(0,1), (1,1), and (2,2) are traversed and in Fig. 2(a) 
the circle with —3 inside it is the section of the Fermi 
surface inside the central zone. If p lies in —1± (\h— 1) 
the necks at (0,0) (1,1) (2,1) are traversed and the 
circle with —1 inside it is inside the central zone. 
Finally, if p lies in l=b (XA-1), the necks at (0,0) (1,0) 
(2,0) are traversed and the + 1 circle is in the central 
zone. There are, therefore, three separate ranges of 
momentum parallel to H for which there is an open-
orbit traversing the central zone near z=0 and each 
of these ranges is of thickness 2(XA—1)/(10+X2)1/2. 

: X h < ^ °/z l <Xh < */ 

(c) 

FIG. 6. Plot showing relative directions of Vx and fa, 

If TH is large then ijr is a constant all along one of 
these orbits and we can calculate fa from Eq. (3), 
where Ap= (3,1,0) and 

tlr1= (3TTW)-1IIX (3,1,0), 

since the length of a quarter-circle of orbit in units of n 
is trnr/2. Now consider the interval of p, —3± (\h— 1), 
then (integrating only inside the central zone) 

/ 
yLfadfx= 2nX (1,0,0) (37rm)-1nX (3,1,0) 

(the 2 is due to the fact that there are two open orbits). 
The integral over this range of pu multiplies the above 
result by 2(X&-1)/(10+X2)1/2. Note that this must be 
multiplied by (b/2)z if the dimensionless unit of mo
mentum is not used. The calculation for the other two 
ranges of p is the same and, if the three answers are 
added and multiplied by 2 to account for the similar 
orbits near the plane z= 1, we find 

2<?T / 6 \ 8 1 
o\u= 

(2*-*)' 
where 

( - ) —nX(3,l,0)nX (3 ,1 ,0 )^ , (7) 
W vm 

4 2(AA-1) 
€(X)=10 

3 (10+X2)1'2' 
(8) 

FIG, 5. Open orbits occurring for the [110] direction up to X& = §. 

for the contribution to the conductivity tensor due to 
open orbits if 1<XA<§. 

For f <\h<2 the open orbits just considered are 
still. possible, for example with p in the range 
—3±(2—X/?), and the contribution to the conductivity 
tensor due to them is given by Eq. (7) with 

4 2(2-XA) 
£(X) = 1 0 -

3 (10+X2)1/2 
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and these orbits are of diminishing importance. There 
are also new orbits as shown in Fig. 2(b); e.g., if p is in 
the range — J=b(X/z—§) then the necks at (0,1), (1,1), 
(2,2), and (1,2) are traversed, if (2,1) is traversed 
instead of (1,2) then p has to be in the range 
— f ± (\h—f). The thickness of these ranges of pu is 

2(X/z-f)/(10+X2)1/2. 

For the contorted orbits on the right that occur when 
p is near — J, — f, §, and f, t^ is 

(Sirm^nX (3,1,0), 

and the contribution of these to OPU is given by Eq. (7) 
with 

1 2(XA-f) 
£(X)= 10 . 

5 (10+X2)1'2 

For the simple orbits on the right that occur when p is 
near — #, " 2 ? 2 

1 2(XA-|) 
£(X) = 1 0 -

3 (10+X2)1'2 

Similarly, with the orbits on the left and orbits near 
2=1. The result for orn is Eq. (7) with 

4 2(2-XA) 
£(X) = 10-

4 4\2(XA-§) 
1 0 I - + - ) — — . (9) 

3 (10+X2)1'2 \5 3/(10+X2)1/2 

For 2<X/*<§ the open orbits shown in Fig. 2(b) are 
still possible though their thickness is now decreasing 
and the orbits shown in Fig. 2(c) begin to appear near 
£ = - 4 , - 2 , 0, 2 and p=-S, - 3 , - 1 , 1, 3. For this 
range of \h en is given by Eq. (7) with 

m 
- < $ 

4 4 \ 2(f-Xfc) _/4 4 \ 2(XA-2) 

(10+X2)1'2 \5 
+ 10(-+ D (10+X2)1'2 

= 10 (32/15) (10+X2)-1'2. (10) 

A little thought will show that this result remains true 
forallX&>2. 

The above calculation only gives four of the nine 
components of the conductivity tensor and those only 
for the open orbits. In fact this is enough to estimate 
the magnetoresistance as we shall now show. First let 
us choose new rectangular axes 1, 2, and 3 that are 
parallel to (3,1,0), nX (3,1,0), and n, respectively. The 
an that we have just calculated in this system of 
coordinates (o-#, ij=l, 2) can be written 

where 

1 e2rpz[-0 0 

3TT2 WrnLO A£-

3 / ^ 3 

3r0 0 -j 

J_0 AiJ 
(11) 

4 = — (—) =1/(2*0 = 0.159, 
2\2fi/ 4w2\2pJ 

and the factor in front of the expression has been chosen 

J// [31 Oj 

ANGLE OF H FROM [poi ] 9 

FIG. 7. Graph showing calculated values of the function £(X) 
as the magnetic field sweeps through the [001J pole. Current 
parallel to [310]. Specific resistance is a constant times this 
function. 

to be the same as for the free-electron conductivity Eq. 
(6). We must add to Eq. (11) the result for all the 
circular orbits which will nearly be Eq. (6) if the necks 
are small. Now if we use the fact that a is small then 
# is near 7r/2 and sin/5= H , cos/3=ain-{ , and 
again assuming the necks are small the 1, 1 component 
of the resistivity tensor, i.e., the specific resistance in 
the [310] direction, is 

Wm / A^ 
37T2 ( ]+. 

e2Tp*\ ,a2m2/ 
(12) 

The function J (X) from Eqs. (8), (9), and (10) is shown 
in Fig. 7 with h taken to be 0.1, which is close to the 
experimental value found for copper. It will be noticed 
that the break in the curve at 0=11.9° is due to the 
two types of open orbit, in effect the contorted orbit 
pulls down the maximum of £. 

For the [210] current direction the open orbits for 
H near [001] are all of the same type (Fig. 3) and it is 
easily shown that 

* J U L = 

le2r /b\* 1 1 
— ( - ) — nX(4,2,0)nX(4,2,0)-£, 
Wh)A2/ irm 20 

2e2 

(2irh) 

where 
4 2(A&-1) 

£(A) = 20X , K X K f 
6 (5+X2)1'2 

= 20(4/6)(5+X2)-1'2, f<X*. (13) 

The function £ is shown in Fig. 8 with h again taken to 
be 0.1. The resistance is given by Eq. (12) with this 
new £, but the same A. 

For the [100] current direction the open orbits are 
again all of the same type (Fig. 4) and 

O i l 

2e2r /&V 1 
^TTTd'J —nX(2A0)nX(2,0,0)K, 

(27rw)3\2/ -KM 
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J // [210] 

FIG. 8. Calculated values of £(\) plotted for the [001] pole 
and [210] current direction. 

where 

f(X) = 4X-
2\h 

\h<h 
2 (1+X2)1 '2 ' 

= 4(4/2) (1+X2)-1'2, \h>h 

(14) 

The resistance is again given by Eq. (12) and £ is shown 
in Fig. 9. 

For the [110] current direction the open orbits are 
of two types (Fig. 5) with /xo=7rw or 3wm and 

ffj.1 = ( - ) —nX(110)nX(U0)if, 
(2irfi)z\2/ irm 

where 

*(X) = 2X-
4 2\h 

1 (2+X2)1'2 

4 2(1-XA) /4 4\2(XA-£) 

XA<* 

= 2X \-2[ I )-
1 (2+X2)1'2 \ 3 l/(2+X2)1/2 ' 

= 2(16/3)(2+X2)"1/2, 

i < X ^ < l 

XA>1. (15) 

The resistance is given by Eq. (12) and £ is shown in 
Fig. 10. The break in the curve at 0=8° is due to the 
two types of open orbits. 

For H near [110] and the current directions [331] 
and [113] there will be a resistance similar to that 
found for the [310] axis above, i.e., with a break in it 
due to two types of open orbits. For the [221] and 
[112] current directions the resistance is similar to 
that found for the [210] axis above and there will be 
no break because there is only one type of open orbit. 
For currents in the directions [110] and [001] the 
resistance is like the [100] case above and has no break, 
but the [111] axis has a break, since it is like the [110] 
case above. 

EXPERIMENTAL RESULTS 

Transverse magnetoresistance measurements have 
been made on a large number of oriented specimens of 
copper and silver and the results analyzed according 

FIG. 9. Calculated values of £(X) plotted for the [001] pole 
and [100] current direction. 

to the theory discussed above. In the case of copper, 
specimens 15 to 20 mm long with 1-mm2 cross sections 
were prepared by acid sawing from large copper single 
crystals. Back reflection Laue techniques were used to 
orient the crystal for cutting. Final accuracy of the 
sample axis orientation was | ° . The specimens were 
mounted in a sample holder and immersed in a bath of 
liquid helium. Ratios of the room temperature resistance 
to the resistance at 4.2°K ranged from 1500 to 1800 for 
the as grown samples. In a number of cases the ratio 
was increased to 4000-5000 by oxidizing the sample 
for 24 h before making measurements. This increased 
the magnetoresistance anisotropy by a factor of 5, but 
data taken before and after oxidation gave the same 
result for the angles between maxima. 

The silver specimens were prepared by growing 
randomly oriented single crystals six inches long with a 
square cross section 1 mm on a side. Seventy crystals 
have been grown and fifteen were selected whose axes 
were within one degree of the stereo triangle boundary. 
Specimens 2\ in. long were cut from these crystals. 
Both 99.999% and 99.9999% purity silver was used. 

ANGLE OF MAGNETIC FIELD FROM [OOl] 

FIG 10. Calculated values of £(A) plotted for the [001] pole 
and [110] current direction. 
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The resulting room temperature to helium temperature 
resistance ratio was 500 and 1000, respectively. 

All of the measurements have been made in a mag
netic field of 13 500 G. The potential drop across the 
specimen was measured with a Rubicon microvolt 
potentiometer, the unbalance of which was fed into a 
photoelectric galvanometer and amplifier system 
driving a chart recorder. The sensitivity of the system 
was 5X10~9 V. A recorder tracing of the potential drop 
across the sample was made as the magnet was rotated 
through 360° with the field perpendicular to the sample 
axis. 

Experimental rotation diagrams are shown for copper 
and silver in Fig. 11. The high double peaks occurring 
symmetrically about the low-index poles are due to the 
open-orbit regions discussed above in the theoretical 

section. These maxima in the resistance show an H2 

field dependence and the angle of separation can be 
used to calculate the neck diameter of the Fermi 
surface. 

The maxima are located inside the open-orbit regions 
and as was pointed out in the section on calculation of 
magnetoresistance, the maxima occur at an angle for 
which closed hole orbits are first possible. This can be 
seen for example in Fig. 2(c) for the [310] current axis. 
The closed hole orbit is indicated by the light closed 
curves and first occurs for \h—2. The function £ has its 
maximum value at the corresponding value of 0 which 
is considerably less than the value of 6 for which open 
orbits first occur, i.e., tan0= 101/2 h or \h= 1. The angle 
between the two maxima for each current direction can 
be used to give an independent determination of the 
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FIG. 11. Transverse magnetoresistance rotation curves obtained 
for copper and silver, (a) Recorder trace for [310] axis of copper; 
(b) recorder trace for silver. Crystal axis 14° off (XI1) toward 
<110>. 

FIG. 12. Gnomonic projection of data obtained for the [001] 
pole. Polar coordinates are used with 0 as the angle and tan0 as 
the radius. <f>_ is the angle between the current direction and the 
direction [110]. 0 = angle at which hole orbits first occur. The 
half-squares are drawn using the formula tan0sin0 = 2/z[ooi]/v2. 
(a) Data from copper, (b) Data from silver. 

Fermi surface neck height h. For field directions 
sweeping through the £001] pole it is readily verified 
that if 0 is the angle between the current direction and 
the direction [110], then hole orbits first occur at an 
angle 6 given by 

7r 3TT 

tan0 sin<£= 2/z[0oi]/v2, -<<£<—, 
4 4 

where h is in units of (b/2). 
If polar coordinates are used with <£ as the angle and 

tan0 as the radius, then the above equation is a straight 
line making intercepts on the [100] and [010] axes of 
2A[ooi]. The directions of H for which hole orbits are 
just possible is a square of diagonal 4fe[0oi] in this 
gnomonic projection in which [001] is used as a pole. 
In Fig. 12 we show half of two such squares with the 
experimental points obtained for copper and silver. 
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The values of 2/?[ooi] found for copper and silver are 
2A[ooi] = 0.21 and 2&[ooij = 0.19, respectively. There is 
no obvious reason why the maxima for the various 
current directions should all lie on the same straight 
line, although the fit for the copper data appears very 
close. It may be that the more complicated open orbits 
occurring for arbitrary current directions are just com
binations of the simpler orbits like [[310] worked out 
above. 

When H sweeps through the [110] pole, the closed 
hole orbits occur at an angle 6 given by 

tan0 sin<£= 2&[iio]/v5>, 

where &[iio] is the neck height in the [110] direction 
and </> is the angle between the current direction and 
the [111] direction. 

In a gnomonic projection with the pole in the direc
tion [llO] this is a straight line with intercepts of 

(a) (b) 

FIG. 13. Gnomonic projection of data obtained for the [ l lO] 
pole. The half rhombs are drawn using the equation tan0sin<£ 
= 2/z[iio]/\5. <f> and 9 are again defined as in Fig. 12. (a) Data from 
copper, (b) Data from silver. 

2h[iro] and v2^[no] on the [110] and [001] directions, 
respectively. The region for existence of hole orbits is 
a rhomb and the appropriate rhombs for copper and 
silver are shown in Fig. 13. A fit with the experimental 
data gives 2^[n0] = 0.29 for copper and 2&[no] = 0.23 for 
silver. It should be noted that there is twice the amount 
of information at this pole since for example [331] and 
[113] are independent current axes. 

In the case of copper three experimental points are 
shown in Fig. 13(a) for the [001] current axis. Two of 
these points were obtained from the same crystal the 
smallest and largest values of 6 being measured from 
two different (110) poles while the middle value was 
obtained from a different crystal. This variation in 
angle is probably due to the extreme sensitivity of the 
rotation diagram to orientation when the current is 
along a low-index direction. This was first pointed out 

TABLE I. Comparison of experiment and theory for the mag-
netoresistance peaks near the [0012 pole for four different current 
axes. The value of A^/iamf is equal to the calculated magneto-
resistance at the peak and should be compared to the experimental 
value of p(#)/P(0). 

p(H) At 
Exp. a- Exp. 

Current axis esu Theo • £ p (0) (am)' 

[310] 2.56X1021 1.06 90 130 
[210] 1.23 X1021 0.88 50 26 
[110] 2.15X1021 1.54 85 140 
[100] 2.39X1021 1.57 104 170 

by Klauder and Kunzler4 for the [001] current axis. 
The "rabbit ears" which occur experimentally for the 
[001] axis have not been accounted for theoretically. 
The largest values of 6 are obtained from poles for which 
the "rabbit ears" are smallest. 

The large value of 6 found for the [111] current 
directions can be accounted for from the calculation of 
the magnetoresistance for this current axis. The result 
is similar to Fig. 10 calculated for the [001] pole with 
J parallel to [110] and shows the resistance continuing 
to rise beyond the point where closed hole orbits first 
occur. This is indicated by the change of slope in Fig. 10. 

The magnetoresistance curves calculated theoreti
cally for field directions near the [001] pole were com
pared with the experimental measurements. In par
ticular, a relaxation time was calculated from the 
residual resistance measurement for the [310] sample 
of copper. This was found to be r=ma/ne2 = 1.2X10-10 

sec using the measured value of <r. The conductivity 
of the [310] sample at helium temperature was meas
ured as 2.56X1021 esu which is consistent with a room 
temperature value listed in tables of 5.7X1017 esu for 
copper and gives a ratio of 4500 for this sample. Using 
the above value of the relaxation time, the calculated 
magnetoresistance at the peaks near [001] should be 
130 times the zero-field resistance, 

{Ay (am)2 =130). 

The experimentally measured value of the ratio p (H)/ 
p (0) for the peak was 90. These results along with those 
from the other three axes for which the open orbits 
have been analyzed and the function £ explicitly calcu
lated are listed in Table I. We have listed the experi
mental value of the conductivity at helium tempera
ture, the experimental value of the ratio p(H)/p(0), 
the calculated value of £, and the calculated value of 
A f/ (am)2 at the peaks. 

In three cases the value of (A%/(am)2) is higher than 
the experimental value oip(H)/p(0) while for the [210] 
current axis (A£/ (am)2) is lower than the experimental 
value p(H)/p(0) by a factor of 2. The low experimental 

4 J. R. Klauder and J. E. Kunzler, in The Fermi Surface, edited 
by W. A. Harrison and M. B. Webb (John Wiley & Sons, Inc., 
New York, 1960), p. 125. 
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FIG. 14. Experimental points obtained by Bohm and Easterling 
(Ref. 2) for copper and silver using ultrasonic attenuation, (a) 
Drawing indicates projected neck thickness for copper in the 
[0012 dirctioens; (b) drawing indicates projected neck thickness 
for silver in the [001] direction. 

value of p(H)/p(0) for the [210] axis relative to the 
others is due to the lower value of the conductivity and 
the fact that £ has a smaller value for this current axis. 
The low value of £ is due to the fact that the open 
orbits for the [210] current axis have longer periods 
(12 quarter-circles) than those found for the other 
current axes which were analyzed. This can be seen by 
comparing the orbits in Fig. 3 with the other orbits 
pictured in Figs. 1 to 5. 

These results depend on the measurement of the 
zero-field potential drop across the sample, and this 
was measured with an accuracy of d=lX10-8 V which 
corresponds to one division on the fine dial of the 
potentiometer. If the potential drop were in error by 
a factor fX (potential drop), then the experimental 
value of p(H)/p(0) would be multiplied by l/f and 
the theoretical value by l//2 . For example, the potential 
drop in zero field for the [310] axis was 0.025±0.01 /zV, 
and the maximum values of the factors l/f and l/f2 

could therefore change the numbers in Table I on the 
order of 50%. Within this uncertainty the experimental 
and theoretical values are in fair agreement. 

The theoretical results have been calculated using 
the assumption of an isotropic relaxation time. As 
discussed by Ziman,5 this is probably not true and one 
might expect a considerable variation between, say, 
the belly and the neck of the Fermi surface. Information 

5 J. M. Ziman, Phys. Rev. 121, 1320 (1961). 

on this anisotropy in the relaxation time might be 
obtained by analyzing data obtained from samples with 
the same current axis containing different impurities. 
More accurate experimental measurements and more 
detailed analysis will be necessary, however, before any 
definite information can be obtained. 

Slow rotation diagrams were run for a number of 
samples in order to pick up changes in slope in the 
resistance peaks such as predicted for (310) in copper 
(Fig. 7). A well-defined change was not observed in 
this sample, although a number of other samples did 
show a definite change in slope such as the experimental 
curve for silver shown in Fig. 11. 

COMPARISON OF MAGNETORESISTANCE WITH 
MAGNETOACOUSTIC ATTENUATION 

Bohm and Easterling2 have made very complete 
measurements of the Fermi surface in all three noble 
metals using magnetoacoustic attenuation. In Fig. 14 
we reproduce their results (in units of b/2) for the neck 
shape in the (110) plane for copper and silver. Two 
tangents have been drawn to the necks which are traces 
of (001) planes, i.e., they have the equations z=±h 
and define the neck height in the [001] direction. As 
we have seen, the magnetoresistance measurements for 
H near the [001] pole give 2/?[0oi]:=0.21 for Cu and 
0.19 for Ag which are in good agreement with 0.205 
and 0.17, respectively, calculated using the data of 
Bohm and Easterling. 

From Bohm and Easterling's data on Cu, it is clear 
that the open-orbit regions about the [001] pole will 
be limited by the curvature of the Fermi surface rather 
than by the neck diameter in the (111) plane. The 
importance of this curvature can be seen by calculating 
the neck thickness in the [112] direction assuming the 
open orbits to be limited only by the neck in the (111) 
plane. This gives 0.26 as calculated in a previous paper6 

which is considerably less than the value of 0.30 ob
tained by Bohm and Easterling. In the case of silver, 
the curvature does not seem to be as important in 
limiting the open orbit regions. 

The magnetoresistance measurements with H near 
the [110] pole give the thickness of the necks in the 
[110] direction as 0.29 for Cu and 0.23 for Ag. The 
acoustic attenuation measurements of Bohm and 
Easterling give 0.30 for Cu and, assuming a circular 
neck, 0.22 for Ag (this is their measurement in the 
[112] direction). 
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