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[Using (B4) and <yP
2=2 we find for Du, 5=0.38°, 

0.51°, 0.86°, 1.31° at 300, 400, 500, and 600 MeV. For 
Z?i5 one finds 0.22°, 0.25°, 0.4°, 0.6°, 0.84°, 1.1°, 1.37° 
at 300, 400, 500, 600, 700, 800, 900 MeV. For Fn 8 is 

0.36°, 0.50° and 0.68° at 700, 800, and 900 MeV. 
For # i 9 S is 0.37°, 0.56° and 1.05° at 1700, 2000, and 
2500 MeV. The same parameters give for Pu 5=12° 
at 900 MeV.] 
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The 2V-A and A-A potentials caused by the exchange of two pions are calculated in the static theory, taking 
into account the resonance Fi* in the w-A system and the (3-3) resonance in the w-N system. The recoil of 
the baryons is included in an approximate way. It is shown that the presence of these resonances diminishes 
the spin-dependent part of the central potential and the tensor potential, and increases the spin-independent 
part of the central potential. The triplet potential turns out to be slightly stronger than the singlet potential 
at large distances, and slightly weaker than it closer in. If the resonances are omitted, the triplet potential 
is the stronger over the whole range. This last result is in mild disagreement with other work. Its relation 
to the choice of a one-channel or two-channel formalism is discussed. 

1. INTRODUCTION 

SOME experimental evidence on hypernuclei and on 
double-hypernuclei is now available and some phe-

nomenological analyses of this evidence have been made 
with a view to determining the nature of the N—A1 and 
A—A forces.2 

Various workers3 have estimated the two-pion ex
change contributions to these potentials using meson 
theory. However, no account seems yet to have been 
given of the effect upon these forces produced by the Fi* 
resonance in the ir—A system and the 3 — 3 resonance in 
the TT—N system together.4 The main purpose of this 
paper is to estimate this effect. 

We shall take the 2—A parity to be even, as has now 
been almost conclusively established/ and we shall 
make the experimentally probable assumption that the 
Fi* resonance at 1385 MeV in the w—A system is a P3/2 
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1 See R. H. Dalitz, Enrico Fermi Institute for Nuclear Studies 
Report No. EFINS-62-9, 1962 (unpublished) for a review of the 
N—A interaction. 

2 H . Nakamura, Progr. Theoret. Phys. (Kyoto) 30, 84 (1963); 
S. Iwao, Nucl. Phys. 26, 1 (1962); R. H. Dalitz, Phys. Letters 5, 
53 (1963). 

3 J. J. de Swart and C. K. Iddings, Phys. Rev. 126, 2810 (1962) 
and references cited therein; J. J. de Swart, Phys. Letters 5, 58 
(1963); A. Deloff, ibid. 5, 147 (1963); R. Schrils and B. W. Downs, 
Phys. Rev. 131, 390 (1963). 

4 M. Uehara[Progr.Theoret. Phys. (Kyoto) 24,629 (I960)]has 
discussed the effect of the (3-3) resonance upon the N—A. 
interaction. 

6 R. D. Tripp, M. B. Watson, and M. Ferro-Luzzi, Phys. Letters 
8,175 (1962); H. Courant, H. Filthuth, P. Franzini, R. G. Glasser, 
et al., Phys. Rev. Letters 10, 409 (1963); R. H. Capps, Nuovo 
Cimento26, 1339 (1962). 

state,6 having the same mechanism as the I=J= 2 reso
nance in the 71— N system. The Chew-Low theory for 
the pion-nucleon interaction can then be extended in a 
straightforward way to the pion-hyperon interaction, 
and the TV—A and A—A potentials can be calculated by 
the method given by Miyazawa,7 a method in which the 
resonances of the T—N and w—A systems can be 
treated. 

It has been pointed out by Charap and Fubini and by 
Gupta8 that the static limit of the two-pion exchange 
potential is not well defined. The difficulty comes from 
the fact that, when the two-pion exchange potential 
V(x) is written in the form 

V(x)--
• / 

dm2p (m2) exp (—mx)/x, (1.1) 

the inverse baryon mass expansion of the spectral func
tion p(m2) does not converge at the lower mass end 
(m —> 2mT). The relativistic effect is therefore important 
in the asymptotic region (x —><*>)? where the static limit 
would appear to be most justified. Akiba9 has examined 
the accuracy of the inverse nucleon mass expansion, 
showing that this expansion provides us with a reason
able numerical approximation. Our calculation will be 
meaningful except for extremely large distances where 
I V(x)\ will be negligibly small, and of course for very 
short distances. 

6 L. Bertanza, V. Brisson, P. L. Connolly, E. L. Hart, I. S. 
Mittra, et al, Phys. Rev. Letters 10, 176 (1963); J. B. Shafer, 
J. Murray, and D. O. Huwe, Phys. Rev. Letters 10, 179 (1963). 

7 H . Miyazawa, Phys. Rev. 104, 1741 (1956); M. Konuma, 
H. Miyazawa, and S. Otsuki, Progr. Theoret. Phys. (Kyoto) 19, 
17 (1958). 

8 T. M. Charap and S. P. Fubini, Nuovo Cimento 14,540 (1959); 
15, 73 (1960); J. M. Charap and M. J. Tausner, Nuovo Cimento 
18, 316 (1960); S. N. Gupta, Phys. Rev. 117, 1146 (1960). 

9 T . Akiba, Progr. Theoret. Phys. (Kyoto) 27, 241 (1962). 
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There is an arbitrariness in the definitions of the N—A 
and A—A potentials which is connected with the number 
of channels which are to be considered in the solution of 
the Schrodinger equation. If we took two channels, 
N—A and N—2, then the potential V would be a 2X2 
matrix, 

LFSA FS SJ 

We shall, however, work in a one-channel formalism, so 
that V is now a single element. 

The main difference between the one-channel and the 
two-channel formalisms lies in the treatment of the 
diagram in Fig. 1 which possesses an intermediate state 
having no virtual meson. (We shall discuss only the 
N—A case as the A—A case is quite similar.) In the two-
channel formalism, Lichtenberg and Ross,10 following 
the treatment of the nucleon-nucleon interaction given 
by Brueckner and Watson,11 have argued that Fig. 1 is 
a repetition of the simplest graph for FAS and must be 
omitted from the calculation of FAA. In the one-channel 
approach, however, Fig. 1 must be included as it cannot 
now be interpreted as a repetition of lower order graphs. 
In the two-channel formalism there are other interpreta
tions of Fig. 1 which are not equivalent to that of 
Lichtenberg and Ross, and which in fact lead to different 
N—A potentials. For example, if we adopt the pre
scription of perturbation theory which leads to the 

FIG. 1. Repetition 
diagram. 

N 

n 

N 

n 

N 

FIG. 2. Diagram 
for the N—A inter
action. 

TMO potential in the N—N case,12 we should obtain a 
nonzero contribution from Fig. 1 corresponding to the 
"probability term" of Fukuda, Sawada, and Taketani.13 

This ambiguity is absent from the one-channel treat
ment, which is an important consideration in its favor. 

Unfortunately, as noted by Lichtenberg and Ross,10 

the one-channel formalism possesses a severe dis
advantage which is also connected with Fig. 1. The 
mathematical expression corresponding to Fig. 1 con
tains an integrand whose denominator involves the 
factor (A+T) where A is the mass difference M^—MA 
and T is the kinetic energy of the baryons in the inter
mediate state. In the static model, the baryons are con
sidered to be fixed and T is ignored. The validity of this 
approximation is discussed and an attempt is made in 
Sec. 4 to take account of the motion of the baryons in 
an approximate way. 

In Sees. 2 and 3 the potentials for the N—A and A—A 
interactions are derived. The calculations of the poten
tials are presented in Sec. 5 and are discussed in the light 
of other work in Sec. 6. The range of validity of a useful 
approximation suggested by Matsumoto, Hamada, and 
Sugawara14 is discussed in an Appendix. 

2. THE AT-A POTENTIAL 

We shall use units in which h=c=tnT— 1. 
Following Miyazawa,7 we write the 5-matrix element 

corresponding to the lowest order diagram Fig. 2 as 

1 1 

2 (2TT) 
— E f [dAkdW-
:TT)8 M ' J J 

(i'k'\SW\ik)(i'-k'\SM\i-k) 

(£o2-co*2)(£o,: -a>*'2) 
(2.1) 

10 D. B. Lichtenberg and M. H. Ross, Phys. Rev. 107, 1714 (1957). 
11 K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023 (1953). 
12 M. Taketani, S. Machida, and S. Onuma, Progr. Theoret. Phys. (Kyoto) 7,45 (1952). 
13 N. Fukuda, K. Sawada, and M. Taketani, Progr. Theoret. Phys. (Kyoto) 12, 156 (1954). 
14 T. Matsumoto, T. Hamada, and M. Sugawara, Progr. Theoret. Phys. (Kyoto) 10, 199 (1953). 
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where 

+T^r^((r^«k)(or^«kO}+C^(^o)nvn<cr^.k/)(v^-k)] expp(k—kO-xjvGw*', (2.2) 

< i T ^ > [ ^ ) = 2 ^ ^ (2.3) 

are the matrix elements for the w—N and w—A scattering parts. The function Vk is a cutoff factor which we choose 
to be exp(—k2/2km

2), where km is the momentum corresponding to the nucleon mass.15 The functions AH, B&, Cjy, 
A&f and CA are given in terms of the r—N and w—A scattering cross sections by the dispersion relations in the 
static approximation, 

Aw(ko) = ~—~T+— —( r ) + / —( : - ) , (2.4a) 

1 rdp/crZi{p)-{-2<7n(p)\ 1 fx dp/<rss(p)+2an(p)\ 
BN%)= / —( — ) + / —( — ) , (2.4b) 

12ir Jo u>p\ o>p—ke—te / 12ir Jo <ap\ ccp-j-ko—ie ' 

-4wfN
2 1 radp/4<n1(p)+4au(p)+(rsz(p)\ 1 fdp( <ru(j>) \ 

cN(ko)= —+-— —( : )+— / —( r)> (2-4c) 
ko-j-ie 36T Jo cop\ ccp—ko—ie / 4TTJO a)j,\«p+^o—*e/ 

4T/A2 1 / • " # / <r,(# \ 1 f* dp/2a1(p)+*,(j>)\ 
Ai(ko)= —h— / —( r ) + ~ ~ / __/ __1 (2.5a) 

A+^o—ie 2irJo t»P\up—ko—ie/ 6TT J a o>p\ uip-\-ko—U / 

4wf^ 1 rdp/2^{p)+<rz(p)\ 1 f*°# / az(p) \ 
cA(*o)=—•—r+— / —( — ) + — / —(" — )• (2-a) 

Here jV(=0.08) and /A2 are the renormalized T—N and ir—A—2 coupling constants, (rntM is the total cross section 
of the w—JSf scattering in the state (/,/) and <r2j is the total cross section of the TT—A scattering in the state with 
angular momentum / ( = § or f).16 

If we insert (2.2) and (2,3) into (2.1) we obtain 5 in the form S =*—2wi8(0)F(|XJV—XA|). We can interpret F 
as the potential acting between the two baryons at XJV and XA. On performing the integrations over ko, hf and over 
the directions of k and k' we find 

F O ^ - Q c r j r V * , ) ^ (2.6) 
where 

S(y,*) = 3(4irM 
jNl rap 

fN%fAHFm(%z)+2Go&(y,z)}+-—~ / —n(p){2FQo}p(y9z)+G^P(y,z)} 
12w2Jo w« 

/A2 f ° ° # 
+ / ~<rzz(p){2FA*p(y}z)+GA<ap(y}z)} 

18?r2 J Q oop 

1 f00 r"dpdp' 1 
— / / *n(p)<r*(fO{W»*,'(yA+5G»*p'(y,*)) \f (2-7a) 
6ir4JQ Jo a>pWp' J 

f»2 fdp 
''JO Wp 

/A2 r'dp 

Z(y,«) = 3(4ir)*| tfh*FuSyd+~ f ~<rs(p){2F^p(y>Z)+3G0.p(y,z)} 
1 2 x 2 J o Wj, 

r ap 
/ —crz3(pX2F p̂(y,Z)+3G p̂(y,Z)} 

Jo wp 

1 r rxdpdp' -1 
— / / —-*ii(?y.(#0{4F., . , ' (y,*)+3G.^Cy,*)} . (2.7b) 
6?r4J0 i o ^JjWp' J 

18 No cutoff factor appears In Miyazawa*s formula, but we introduce a cutoff factor, following G. F. Chew and F. E. Low, 
Phys. Rev. 101,1570 (1956), for the convenience of computation. 

16 Cutoff factors in the integrands in (2.4) and (2.5) are suppressed. For the Low equations of the pion-hyperon scatterings, 
see, e.g., A. Komatsuzawa, R. Sugano, and Y. Nogami, Progr. Theoret. Phys. (Kyoto) 21, 151 (1959), and R. H. Capps and 
M. Nauenberg, Phys. Rev. 118, 593 (1959). 
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The functions F and G are defined as 
1 r00 ksink(y+z) 

F*» (y,«)= / dk vk
A, (2 8a) 

1 r00 &sin&(3;+2) 
<?XM(y,»)= / ^ vh*. (2.8b) 

2(2TT) 3 ^ (X+M) JO (COA+X)(CO,+M) 

In writing (2.7) we have omitted terms which contain <ru(p), an(p) or a1(p)) as we assume that the T—N scattering 
is dominated by the 3—3 resonance and that the w—A scattering is dominated by the F j* resonance in <rz(p). 

The potential (2.6) can be expressed as a sum of central, spin-dependent and tensor parts 

V(X) = VO(X)+VS(X)(VN-VA)+VT(X)SM, (2.9) 

where 
(cTArx)(aA-x) 

SNA=3 (ON • OTA) 
#2 

and 
r 2 a2 d4 i 

Vo(x) = -\ + [ E M + Z ( ^ ) 1 = ^ , (2.10a) 
Lx2 dydz dy2dz2J 

2 r l a d i a2 

F a ( * ) = - - + - + - — P ( y , * ) - 2 ( y , * ) ] v - « , (2.10b) 

i r 2 a a i a 2 

F r ( * ) = H [ S ( y , « ) - 2 ( y , « ) ] ^ « . (2.10c) 
3#L# cty dzJdydz 

3. THE A - A POTENTIAL 

We shall use primes to distinguish our quantities from those used in Sec. 2. The potential F ' ( |x i—x 2 | ) acting 
between two A particles at xi and x2 can be written 

V,(x)^V,f(x)+Vsf(x)(ov^)+VT
,(x)Sl^ (3.1) 

where Vo'(x), Vs(x) and VT(X) are given by Eqs. (2.10) but with the functions S,(y9z), Z(y,z) now replaced by the 
functions &(y,z), Zf(y,z) defined as 

S ' ( ^ ) = 3(4TT)2 / A 4 { F A A M + 2 G A A ( J , 2 ) } + - — / ~<rz(p){2FA„p(y,z)+GA„p(y,z)} 
L 6TT2 JQ Up 

— / ^t(?Vi(^0{4F.^(y,«)+sG-w(y^)} » (3-2a) 
144x4 ,/ o ./ o WpWp. 

Z'(y,0) = 3(4^)2 fi*FA&(y>z)+— / —<r3(/.){2i?Awii(y,2)+3GAw,(3',2)} 
L 6ir2 Jo o>p 

+ 7 7 7 ^ / / ^ ( # > 8 ( ? 0 { 4 F . , . , ' ( y , 8 ) + 3 G . w ( y > « ) } . (3.2b) 

4. THE RECOIL CORRECTION 0f the baryons in the intermediate state can be obtained 
The neglect of the recoil kinetic energy of the baryons by setting the magnitudes of the momenta of these 

is least reasonable in the evaluation of the graph in baryons equal to that of the exchanged pion, namely k. 
Fig. 1. In the formula for the N—A potential, part of The denominator (0+A) in Go A is then replaced by 
the function GoA(y,z) arises from this diagram, while ( A + ( & 2 / 2 W J V 2 ) + ( & 2 / 2 W 2 2 ) ) and is included in the inte-
the function F arises only from the crossed diagram, gration over k. 
The denominator (0+A) in GOA is the energy denomina- Similarly, in the formula for the A—A potential, the 
tor of the no meson intermediate state of Fig. 1. A denominator 2A which appears in GAA(y,z) is replaced 
rough estimate of the effect of the recoil kinetic energy by 2(A+ (k2/2m£)). 
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5. CALCULATIONS 

It is convenient to replace the integrals over az(p) 
and <Tzz(p) in Eqs. (2.6) by a simple rational approxi
mation suggested by Fubini.17 The integrals over p 
always have the form 

_L/-*_!«_. (5„ 
12w2 J o cop (o)k+o)p) 

The TT—N and w—A cross sections may both be written 
in the Breit-Wigner form, 

12TT LT(p)/2j 
<r(p) = , (5.2) 

p2 ZE-Ery+\T(p)/21* 

(paY 

l+(pa)2 

Here a is the channel radius which we take to be 1. The 

These quantities and their derivatives were evaluated 
numerically using an IBM-1620 computer. We took the 
cutoff momentum km to be 6 and the coupling constants 
fN

2 and /A
2 to be 0.08. 

I n the Figs. 3 we present the N—A and A—A poten
tials as continuous lines. The potentials which would 
obtain in the absence of the resonances were calculated 
by setting gN2—gA2=0 and are given as dashed lines. 
Both these calculations employ the recoil correction. 
The dotted lines in Figs. 3 are the potentials which 
result when the resonances are taken into account bu t 
the recoil corrections are omitted. 

I t is clear t ha t the presence of the resonances leads 
to a considerable increase in the central spin-inde
pendent potential Vo and to a decrease in the tensor 
potential VT. The resonances tend to diminish the 
magnitude of the spin-dependent central potential Vs, 
and actually cause it to change sign a t short distances. 
The effect of the recoil correction can be seen to be most 
pronounced a t short distances, where it leads to diminu-

17 S. Fubini, Nuovo Cimento 3, 1425 (1956). An alternative 
approximation is to replact &{p) in Eq. (5.1) by the quantity 
127r2g2^r5(a>p-cor), where g2 = T(pr)/2pr

s. The integral then reduces 
exactly to the form g2/(cofc+cor). This approximation will be valid 
when the denominator <ap(<ak-\-(op) of Eq. (5.1) varies only slowly 
across the resonance region of <r(p). For <TM(P) and a^(p)) this 
approximation is less accurate then the one adopted. 

width T(p) a t the resonance energy Er is 90 MeV for 
0-33 (p) and 50 MeV for az(p). The quant i ty Er and the 
total energy of the pion-baryon system E are both 
referred to the center-of-mass frame. I n evaluating (5.2) 
we replace (E—Er) by its approximate value (uP—a)r), 
where cor= 1.91 for 0-33(p) and cor= 1.79 for <rz(p), in units 
of the pion mass. Equation (5.3) taken a t the resonance 
energy then gives y2=38 MeV for 0-33(̂ 0 and 7 2 = 2 5 
MeV for 0-3 (̂ >). The quant i ty (5.1) was evaluated 
numerically for several values of up between 0 and 6 and 
it was found to be representable to an accuracy of 
within 0 .5% by the form suggested by Fubini,15 

gN,£/(<*h+<*Nth), where 

gN
2=O.Q57, 0 ^ = 1 . 8 3 for <r88(£), 

g A
2 =0.047, O>A=1 .79 for <rz(p). 

With these approximations for the integrals over the 
cross sections, the Eqs. (2.6) and (3.2) can be written 

tions in the magnitudes of all potentials. At larger dis
tances the recoil correction becomes negligible. All these 
features are common to the N—A and A—A potentials. 

6. DISCUSSION 

The experimental evidence for the N—A interaction 
comes from the study of A hypernuclei. The evidence 
for double hypernuclei is as yet meagre, and so our 
results for the A—A interaction will not be discussed in 
this section. From the analysis of the mesonic decay of 
A # 4 , the N—A potential appears to be deeper in the 
singlet state than in the triplet state, although this has 
not been established conclusively.1 

In the singlet state the central potential is 
Vi= Vo—SVs and in the triplet s tate it is Vz= Vo+Vs. 
Our calculations for these two quantities are given in 
Fig. 4 for the N—A case. When the resonances are 
included we see tha t a t short distances the potential is 
slightly more at tract ive in the singlet state bu t farther 
out the triplet potential is stronger. If the resonances 
are omitted, the triplet state is preferred throughout. 

Lichtenberg and Ross10 have used the Brueckner-
Watson method to obtain a result for the two-channel 
N—A potential matrix (1.2), taking no account of the 
3 — 3 or F i* resonances. They solved the Schrodinger 
equation with this potential outside a hard core and 

2(y,s)+Z6,,s) = 6 ( 4 7 0 1 / ; ^ 
+*h*gJ{FA»N(y,z)+GA»N(y,z)}/3+^^ (5.4a) 

n(y,z)-Z{y,z) = 6{±Tr)2lfN
2f£G^ (5.4b) 

H'(y,s)+Z'(y,s) = 6 ( 4 x ^ ^ 
+4^A4{^WAcoA(y,2)+GcoAcoA(y,2)}], (5.5a) 

E ^ ) - ^ * ) = 6(47r)T/A^^ (5.5b) 
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including recoil and resonances 
— — including recoil, omitting resonances 

omitting recoil, including resondnces 

including recoil and resonances 
including recoil, omitting resonances 
omitting recoil, including resonances 

- I0-J- - I .0 

- lO-L-I.O 

(a) (b) 

FIGS. 3(a) and 3(b). The iV-A and A - A potentials. The quantities V0) Vs, VT, IV, VB', VT' of Eqs. (2.9) and (3.1) are plotted 
against distance x. The calculations which took account of the recoil correction give rise to the continuous lines (where the resonances 
are included) and to the dashed lines (where the resonances are omitted). The dotted lines result from the calculation which ignored the 
recoil correction but took account of the resonances. For #>0.85, the potentials have been increased by the factor 10. 

derived values for the singlet and triplet scattering 
lengths. The singlet scattering length exceeded the 
triplet scattering length, implying that the effective one-
channel potential would be more attractive for the 
singlet state than for the triplet state. This result is in 
disagreement with ours, for we find that in the absence 
of resonances the potential is more attractive in the 
triplet state, provided that a common hard core is 
assumed for the two states. The disagreement may 
imply that the single-channel treatment is inadequate 
at short distances, but we consider that our estimates of 
the potentials at large distances are reliable, as in that 
region the main source of error in our calculation, which 
is the recoil correction, is small. 

Lichtenberg and Ross chose the coupling constants 
JN2, /AS2, /ss2 to be all equal. De Swart and Iddings3 

refined the work of Lichtenberg and Ross and varied 
the core radius and the coupling constants to fit the 
scattering lengths derived from the potential deduced 
from the experimental hypernuclear binding energies. 
The extremely small branching ratio18 for the decay 
Fi*—»7T+2 compared with the decay Fi*—>7r+A 
suggests that / s s

2 is in fact much smaller than /AS2. 
18 R. H. Dalitz, in Proceedings of the International Conference on 

High-Energy Physics at CERN, edited by J. Prentki (CERN, 
Geneva, 1962), p. 391. 
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FIG. 4. The N—A central potential in singlet and triplet states. 
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In our work, by using Eq. (5.2) for the w—A cross 
section, we have assumed that the ratio (Fi* —» x + S ) / 
(Fi*—>7r+A) is zero. Thus, although our calculation 
does not involve /ss2, we have made an implicit assump
tion that /ss2=0. It would be interesting to repeat the 
calculation in the two-channel formalism with /ss2 set 
equal to zero and with the effects of the resonances 
included. 
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APPENDIX: THE "MHS" APPROXIMATION AND 
THE EFFECT OF THE CUTOFF 

Matsumoto, Hamada, and Sugawara14 have suggested 
that, since the quantities CO&/(O>A;+X) and co*/ (co&+/*) 
are slowly varying functions of k, the integrals i7xM(y,s), 
GxM(y,s) may be replaced by the approximations 

FUy,*)=-
d\(y+z)a^(y+z) r°° vk*ksmk(y+z) 

GxM^r 

2(2*0*3* 

a\(y+zW(y+z) 

2(27r)3ys(A+M) Jo 

dk- (Ala) 
«** 

vk
Ak sink(y-\-z) 

dk . (Alb) 
<o*r 

FIG. 5 
a .- MHS approximation with Vh = I 
f : MHS approximation with Vk=exp(-ky2k m) 

If vk is set equal to unity, the above integrals may be 
performed analytically. The function a\(y+z) is chosen 
to be the value of «*/(«*+X) at the first maximum of 
sin&(y+s), and will then be a slowly varying function 
of (y+z). If the differentiations in Eqs. (2.10) are 

FIG. 5. The validity of the MHS approximation for the N—A 
potential. The continuous curves are the results of the MHS 
approximation with the cutoff factor »*=1. These curves can be 
obtained analytically by Eqs. (A3). The dashed curves are the 
results of the MHS approximation with flfc=exp(—k2/2km

2), and 
the dotted curves are the results obtained when the MHS approxi
mation is not made. In all cases the recoil has been ignored. 

carried out treating the functions a\ as constant, the 
potentials reduce to the following analytic forms: 
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for the A—A system, where Kn is the modified Bessel 
function. 

The effect of the presence of the resonance terms, 
which are the ones which involve gN2 and gA

2, can now be 
clearly seen. 

This "MHS" approximation leads to a useful simpli
fication only when the cutoff factor vk is set equal to 
unity. The divergences in the derivatives of the func
tions FiptyyZ), G\p(y,z) are avoided by differentiating 
after the integration over h has been performed. It is 
interesting to see the variations in the final potentials 
caused by the replacement of ^ = exp(—k2/2km

2) by 
Vk—1, and to this end we calculated numerically the 
integrals in (Al) with vk = exp(—k2/2km

2), and evaluated 

the corresponding potentials. These are compared with 
the potentials given by (A2) and (A3) in Fig. 5 for the 
N—A case. For comparison we also present the poten
tials calculated without recoil and without any approxi
mation to F or G. The effect of recoil cannot be included 
in an MHS approximation. It can be seen that the 
MHS approximation is useful for radii exceeding 0.6 
units, but that at shorter distances the neglect of cutoff 
in the MHS approximation produces overestimates of 
the more acceptable potential in which the cutoff has 
been included. At short distances of course, the recoil 
correction also becomes very important, and it may be 
necessary to work with the two-channel formalism to 
include the recoil satisfactorily. 


