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as 
aH/«H2=0.8283±0.0090. (4) 

Taking the value «H 2 = (5.564db0.028)a0
3 for the experi­

mental wavelength of X=5870A, the value of the 
dynamic polarizability of the ground state of atomic 
hydrogen is found to be, 

aH=(4.61±0.07)ao3 (5) 

with the error assignment on a purely statistical basis. 
This result is in good agreement with the theoretical 

value 
aH=(4.66dz0.01)a0

3 (6) 

as calculated using time-dependent perturbation theory11 

and evaluated for the experimental wavelength. 
Podolsky's calculation7 and that of Dalgarno and 

I. INTRODUCTION 

A MAJOR problem in theoretical atomic physics, as 
in other many-particle problems, is the role of 

correlations, particularly for observables other than the 
total energy. The only correlations included in the usual 
first approximation, the Hartree-Fock approximation, 
are those arising from the Pauli exclusion principle. The 
value of the total energy of an atom obtained in this way 
is, of course, quite accurate, being good to within one 
percent in most cases. The errors in other quantities 
can, however, be very much greater. 

In the past, two main approaches have been followed 
in improving this situation in atomic physics problems. 
The variational approach, in which the electronic 
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Kingston10 are accomplished by expanding the index 
of refraction (or polarizability) in inverse powers of the 
wavelength in such a way that the sums over inter­
mediate states are eliminated. The value and error 
assignment quoted above was obtained by a direct, 
but laborious, evaluation of the second-order perturba­
tion theory from the well known expression for the 
polarizability of an atom in the nth. quantum state, 

f(n\n)e2/m 
«»(«)=E , (7) 

which includes a sum over a complete set of states and 
an integration over the continuum states. Here, w is the 
applied angular frequency (2wc/X), un',n the Bohr 
frequencies, and f(n\n) the oscillator strengths. 

separations are introduced into the wave function, 
has had good success for two-electron systems, but has 
not yet proved practical for heavier atoms. The con­
figuration-interaction method, in which linear combina­
tions of Slater determinants are used, has been mainly 
useful for light atoms. The results show that the wave 
function improves very slowly as the number of 
configurations is increased. Little work has been done 
on the correlation problem for medium and heavy 
atoms. 

In recent years, however, there has been substantial 
progress in treating correlations in infinite many-particle 
systems. In addition to developments in perturbation 
theory, two nonperturbative approaches have been 
developed and proved useful in several different 
contexts. These are the Bardeen, Cooper, and Schrieffer 
theory of superconductivity,1 and the random-phase 

1 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 
1175 (1957). 
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A procedure for treating correlations in atomic structure is introduced and applied to the calculation of 
excitation energies, oscillator strengths, and photoionization cross sections. The method is the extension of 
the Hartree-Fock theory known as the random-phase approximation, which has already been applied to a 
number of other many-body problems. In this application to atomic physics results are given for the follow­
ing atoms in column II of the periodic table: beryllium, magnesium, calcium, and strontium. These atoms 
all have x5 ground states, and only excitations to lP states are considered. The general conclusion of the 
study is that the values of the oscillator strengths and photoionization cross sections are changed signifi­
cantly by the correlations, while the changes in the values of the excitation energies are quite small. Where-
ever comparison with experiment is possible, the inclusion of these correlations improves the agreement be­
tween theory and experiment. Their effects are, however, not as marked as in highly degenerate infinite sys­
tems or in nuclei. 
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approximation used in the theory of the electron gas.2 

Valatin and others have formulated these theories as 
natural generalizations of the Hartree-Fock approxima­
tion.3 In this context it seems natural to apply these 
new theories to systems with a finite number of degrees 
of freedom. This has already been done extensively for 
atomic nuclei.4-6 The original successes of these tech­
niques for very large systems does not necessarily mean 
that they are suitable for finite systems, or even that the 
conditions for their applicability are the same. Instead, 
it must be expected that their usefulness will depend on 
the details of the unperturbed level spectrum and 
interparticle interaction, and that a demonstration of 
the smallness of other correlations must be made in 
each case. 

In the present work, the random-phase approximation 
is applied to some problems in atomic structure. 
Theoretical values of excitation energies, oscillator 
strengths, and photoionization cross sections are given 
for beryllium, magnesium, calcium, and strontium. 
The correlations of the valence electrons cause signif­
icant shifts in the values of the oscillator strengths and 
photoionization cross sections while the values of the 
excitation energies are changed very little. This 
indicates that the Hartree-Fock model may be satisfac­
tory for the calculation of energies and, at the same 
time, be a poor model for the calculation of other 
observables. The largest shift in the values of the 
excitation energies was about 5%, and a shift of this 
magnitude occurred only for the lowest excited level. 
For the higher levels, the excitation energies were 
changed a negligible amount by the correlations. In 
contrast to this, the values of the resonance oscillator 
strengths were changed by about 30%, and the values 
of the oscillator strengths to higher levels were changed 
by factors of 3 to 20 (one case only). The photoioniza­
tion cross section near threshold was also shifted a 
large amount by the correlations. The values of the 
uncorrelated and correlated cross sections typically 
differ by a factor of about 5. 

The detailed comparison of the numerical results 
with experimental data is neither possible nor appro­
priate at this stage. It is not possible because many of 
the oscillator strengths computed here have not been 
measured, and very few have been measured more than 
once, so there remains uncertainty in the correct 
experimental values. The situation is the same for the 
photoionization cross sections. The comparison with 
experiment is not appropriate because of the nature of 
the computations. It will become clear as the theory is 

2 D. Pines, in Solid State Physics, edited by F. Seitz and D. 
Turnbull (Academic Press Inc., New York, 1955), Vol. 1, p. 368. 

3 J. Valatin, Phys. Rev. 122, 1012 (1961). 
4 S. Takagi, Prog. Theoret. Phys. (Kyoto) 21, 174 (1959). 
5 G. E. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys. 22, 

1 (1961). 
6 See also the review by B. R. Mottelson, Proceedings of the 

International Conference on Nuclear Structure, Kingston (North-
Holland Publishing Company, Amsterdam, 1961), p. 525. 
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developed in the next section that the Hartree-Fock 
orbitals would be the best choice for the basis set of 
states. Because of the great numerical complexity of 
generating such a basis set, the orbitals used for the 
basis were generated in either a Hartree or Thomas-
Fermi central field. The main purpose of the present 
calculations has, therefore, been to study the effects of 
the correlations included in the random-phase approxi­
mation, rather than to seek close agreement with 
experiment. On the other hand, the correlations 
definitely are in the right direction for improving the 
agreement between theory and experiment. 

Another motivation for this analysis was the possible 
existence of collective states in atoms similar to the 
plasmons in the dense electron gas and the states in 
nuclei responsible for the giant dipole resonance. The 
present work attacks this question with the same kind 
of formalism used to treat these other states, but 
modified to take into account the basic properties of 
atoms expressed in the independent-particle model wave 
functions and residual coulomb interactions. For the 
restricted class of atoms studied, there seems to be 
little evidence of strong collective effects, although this 
statement depends somewhat on the particular interpre­
tation placed on the numerical results obtained here. 
The possibility of such collective states was first studied 
by Wheeler and Fireman with semiclassical and Thomas-
Fermi methods.7 A similar study has recently been 
reported by Brandt and Lundqvist.8 

The theory has been formulated in L-S coupling 
since this is most suitable for the atoms under considera­
tion. The formulation in terms of j-j coupling can, of 
course, be made in a straightforward manner. Only 
excited P states are considered, but continuum as well 
as bound states are included. The structure of the theory 
is such that this restriction leads to the inclusion of only 
the dipole part of the electron-electron interaction. 

Although when this work was performed, the experi­
mental situation was quite bad, it is showing signs of 
improvement. A Russian group recently reported 
accurate oscillator strengths for the resonance as well 
as for a few other transitions.9-12 Except for these 
results, values for higher transitions are virtually 
nonexistent. Furthermore, there is no theoretical work 
on these oscillator strengths. Of the existing theoretical 
work on resonance oscillator strengths, only Trefftz's 

7 J. A. Wheeler and E. L. Fireman, A.S.I. Publication No. 
U-099, 1957 (unpublished). 

8 W. Brandt and S. Lundqvist, Phys. Letters 4, 47 (1963). 
9 Yu. I. Ostrovskii, N. P. Penkin, and L. N. Shabanova, Dokl. 

Acad. Nauk SSSR 120, 66 (1958) [English translation: Soviet 
Phys.—Dokl. 3, 538 (1958)]. 

10 Yu. I. Ostrovskii and N. P. Penkin, Opt. i Spektroskopiya 
10, 429 (1961) [English translation: Opt. Spectry. (USSR) 10, 
219 (1961)]. 

11 Yu. I. Ostrovskii and N. P. Penkin, Opt. i Spektroskopiya 
11, 565 (1961) [English translation: Opt. Spectry. (USSR) 11, 
307 (1961)]. 

12 N. P. Penkin and L. N. Shabanova, Opt. i Spektroskopiya 12, 
3 (1962) [English translation: Opt. Spectry. (USSR) 12,1 (1962)]. 
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on magnesium13 and calcium14 includes correlation 
effects. The status of theory and experiment on the 
photoionization cross sections has recently been 
reviewed by Ditchburn and Opik.15 Taking into account 
the recent measurement for strontium,16 the cross 
sections near threshold are now available for magne­
sium, calcium, and strontium. On the theoretical side, 
a Hartree-Fock calculation was made by Bates and 
Massey in 1941.17 Indeed, accurate results for the 
Hartree model have not been generally available, 
although a program for this purpose has been used for 
many years at the Rand Corporation.18 Cooper recently 
published Hartree calculations for rare-gas atoms, and 
similar results for column I I atoms are presented in 
this paper.19 Both Cooper's calculations and the present 
work are based on the Rand program. 

The main theoretical structure for this paper is 
presented in Sec. I I . Here the fundamental equations 
are derived, properties of the model discussed, and 
expressions for the oscillator strengths and photo­
ionization cross sections presented. These general 
formulas are reduced to a form suitable for numerical 
computation in Sec. I l l , and some details of the 
numerical analysis are given. The results for the five 
atoms studied are then summarized in Sec. IV. Section 
V contains some discussion of these results. 

II. THEORY 

A. General Discussion of the Random-Phase 
Approximation 

An important step in the theory of the electron gas 
was Brueckner and Gell-Mann's perturbation calcula­
tion of the ground-state correlation energy.20 To obtain 
this result, which is exact in the limit of infinite density, 
these authors summed the contributions from the 
"ring" diagrams, each of which is infinite for Coulomb 
interactions and plane-wave electron states. The 
difficulties of this kind of perturbation calculation were 
then circumvented with a canonical Hamiltonian 
formulation due to Sawada and collaborators.21,22 I t 
has since been realized that these two methods have 
practically the same physical basis as the classic 
work of Bohm and Pines,2 Landau's theory of the 

13 E. Trefftz, Z. Astrophys. 28, 67 (1950). 
14 E. Trefftz, Z. Astrophys. 29, 287 (1951). 
15 R. W. Ditchburn and U. Opik, in Atomic and Molecular Proc­

esses, edited by D. R. Bates (Academic Press Inc., New York, 
1962), Chap. 3. 

16 R. D. Hudson and P. A. Young, Bull. Am. Phys. Soc. 7, 433 
(1962). 

17 D. R. Bates and H. S. W. Massey, Proc. Roy. Soc. (London) 
A177, 329 (1941). 

18 R. L. Latter (private communication). 
19 J. W. Cooper, Phys. Rev. 128, 681 (1962). 
20 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 

(1957). 
21 K. Sawada, Phys. Rev. 106, 372 (1957). 
22 K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout, 

Phys. Rev. 108, 507 (1957). 

Fermi liquid,23 and the time-dependent Hartree-Fock 
theory.3,24 

Sawada's theory has a number of attractive features. 
First of all, the effect of dynamical correlations on the 
properties of excited states can be calculated. Second, 
the canonical formulation can be easily generalized to 
other kinds of many-particle systems. Both of these 
features were exploited in the theory of superconduc­
tivity,25,26 nuclear matter,27 and finite nuclei,4-6 and it 
is these features which permit the extension to atomic 
structure made in this paper. 

The Hamiltonian for an N electron atom contains 
the Coulomb interaction between the charged particles 
and various magnetic interactions. For light and 
medium atoms, the gross term separations are deter­
mined by the coulomb interactions, and so the appro­
priate Hamiltonian is 

N / h2 Ze\ e2 N 1 

H= £ ( va
2 )+- L — 

s=i \ 2m rs / 2 s,r=i rsr 

N N 

= E Ts + i Z V„. (1) 
s=l s ,r=l 

An effective one-particle potential is introduced, whose 
eigenfunctions are combined into products to form a 
basis for the N particle system. The single-particle 
orbitals satisfy the equation 

(T9+V,)\i)=ei\i). (2) 

The Hamiltonian is now written 

H= L (Ts+Vs)+± £ vsr- £ V9. (3) 
s—l s,r=l s=l 

The last two terms are called the residual interaction, 
and Vs is usually chosen to minimize the effect of these 
terms. 

Using the basis defined above, the second-quantized 
form of Eq. (3) is 

H=X eicJd+% £ (ij Iv I IfycJcjickCi 
i i,3,k,l 

-Y.{i\V\3)ctcit (4) 

where the operators cj and a are Fermion creation and 
annihilation operators. In the absence of the residual 
interaction, the ground state would have the lowest N 

23 L. D . Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956); 
32, 59 (1957); and 35, 97 (1958) [English t ranslat ion: Soviet 
P h y s . — J E T P 3, 920 (1957); 5, 101 (1957); and 8, 70 (1958)]. 

24 H. Ehrenreich and M. Cohen, Phys. Rev. 115, 786 (1959); 
and J. Goldstone and K. Gottfried, Nuovo Cimento 13, 849 (1959). 

25 P. W. Anderson, Phys. Rev. 112, 1900 (1958). 
26 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirokov, A 

New Method in the Theory of Superconductivity (Consultants 
Bureau, Inc., New York, 1959). 

27 A. E. Glassgold, W. Heckrotte, and K. M. Watson, Ann. 
Phys. (N.Y.) 6, 1 (1959). 
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electron levels occupied. It is assumed here that this is 
a nondegenerate state which permits the definition of 
the "Fermi level" as the completely occupied subshell 
of least binding energy. One-particle states with energies 
higher than the "Fermi energy" are called "particle 
states," and are labeled with Latin letters. The particle 
operators are given by 

a^=cj, ai=d. (5a) 

Those states with energies below the Fermi energy are 
called "hole states" and are labeled with Greek letters. 
The hole operators are given by 

ba=cj, bj=ca. (5b) 

The Hamiltonian is now written in terms of these 
particle and hole operators 

H=EC+K+V8+V'+W. (6a) 

The term Ec contains no operators and thus contributes 
a constant to the eigenvalues of H. However, our 
concern here is only with excitation energies, and 
therefore Ec can be neglected. The other terms in H are 

K=Y, uaMi—lL tctbjba, (6b) 
i a 

Vs=h E {(ij\v\ap)lO(ia)CKjP)+C(ia)C(jp)-l 

+2(tf\v\af)^C1(ja)C(jP)} , (6c) 

F ' = F i + F 2 ) (7a) 

Vi=\ E (ij\v\kl)aM^aiak 
i,j,k,l 

+i E <oi8|H78>WW/», (7b) 

V2 = h L (ij\v\ka)as[_0(ja)a^ak+a^aiC(ja)li 

+ 1 E <a(8l»l7i%CC(*a)V*/»+V>7Ct(*a)], (7c) 

i,3 a, j3 

+ E T ^ [ C t ( ^ ) + C ( ^ ) ] . (7d) 

The following notation has been introduced in the above 
equations. The operators 0(ia) and C(ia) create and 
destroy a particle hole pair. They are given by 

a(ia) = ajbj, C(ia) = baai. (8) 

The subscript as after the states in a matrix element 
indicates the direct minus exchange term, e.g., 

(ij\v\klU^(ij\v\M)-(ij\v\lk). (9) 

Finally, the symbol yi}- is defined by 

yij=T,a(ia\v\ja)&8-(i\V\j). (10) 

Note that the y# would vanish if V were the Hartree-
Fock potential. 

In the treatment of the electron gas in the random-
phase approximation, only K the "kinetic energy," and 
Vs, the particle-hole interaction, in Eq. (6a) are 
retained, and the Hamiltonian consisting of these two 
terms is diagonalized with the aid of some further 
approximations. Actually, the exchange matrix element 
appearing in the third term of Vs is not included, as it 
does not contribute to the correlation energy of the 
high-density electron gas. 

The electron cloud in an atom is physically quite 
different from the infinite electron gas, however, and if 
our calculation is to be meaningful, the approximations 
made in finding the eigenvalues and eigenstates of the 
Hamiltonian must be reasonable for the treatment of 
atomic structure. In the next subsection the Hamil­
tonian is approximately diagonalized, and the approxi­
mations made along the way are evaluated in the 
context of this application to atomic structure. 

B. The Eigenvalue Equations 

Atomic states in Russell-Saunders coupling are 
designated by the total orbital and spin angular 
momentum, their projections on an axis, and the energy. 
In the following we treat only x5 ground states whose 
energy is designated by E0. The basic variable of the 
theory is an operator which creates an excited state of 
H when it acts on the ground state. It is designated by 
A^(LM,SMs,E). The eigenstates of H are designated 
by |0), \LM,SMsjE), etc. The equation defining 
Ai(LM,SM8,E)i& 

[H,A\{LM,SMS,E)~]= (E-E0)AKLM,SMS,E). (11) 

When both sides of Eq. (11) act on |0), we see that 
A^(LM,SMs,E) has the desired property. Taking the 
conjugate of Eq. (11) and again letting it act on |0), 
we see that 

A(LM,SMs,E)\0) = 0 (12) 

because E0 is the lowest eigenvalue of H. This result 
will be useful in the derivation of the eigenvalue 
equations. 

It will prove convenient to introduce operators which 
create and destroy pairs of definite orbital and spin 
angular momentum. These operators are given by 

0(LM,SMS,{WL}) 

= eir/2 £ (-l)^i*(la--maltfni\LM) 

X (sa-Ha?iPi\SMa)C1(ia), (13) 
C(LM,SMs,{i(*}) 

X (sa—fiaSm\SMs)C(jia). 

The quantities Za, ma, sa, ix* are the orbital and 
spin quantum numbers describing the single-particle 
states. The phase of the vector coupling coefficients 
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is taken from Condon and Shortley.28 The phase factor, 
(~l)WflrfMa arises because a particle and a hole are 
being coupled together, not two particles. The notation 
{ia} indicates that the quantity does not depend on the 
individual orbital and spin projection quantum num­
bers. Finally, eir/2 is inserted to make the entire coeffi­
cient real. 

For reasons which will become apparent shortly, the 
eigenvalue equations are derived by considering the 
relation 

(LM,SMS,E\ (E-H)O(LMySMs,{ia})\0)=0, (14) 

which becomes, after a little manipulation, 

(E-Eo)(LM,SM8,E\Ct(LM,SMs,{ia})\Q)^ (15) 

We further reduce Eq. (15) by using Eq. (12) 

(E-Eo)(01 [A (LM,SMs,E),0(LM,SMs,{i*})l | 0>- (01 [A (LM,SMS}E)£H7C^LM,SMS,{KX})I1 10) = 0 (16) 

with a similar equation involving C(L—M, S—Ms, {ia}). Thus far, we have proceeded by formal, exact, manipula­
tions. We must now consider the approximations necessary to obtain solutions to Eq. (16). 

The first approximation is to specify the form of A^(LM,SMs,E) as 

Ai(LM,SMs,E)= £ Zg(LM,SMsA{™})CHLM,SMs,{ia}) 
Hoc} 

+h(L-M, S-Ms, E, {ia})C(L-M, S-M8, {**})]. (17) 

The g's and h's are real amplitudes to be determined by the eigenvalue equations. This form of A^(LM,SMs,E) 
implies that the excited states are expressible mainly as linear combinations of single pair states, i.e., states with 
one electron excited out of the ground-state configuration. The amplitudes designated by h(LM,SMs,{ia}) arise 
because the operator A^(LM,SMs,E) acts on the true ground state in which various numbers of pairs may be 
excited. By choosing this form of Ai(LM,SMs,E) we also see that 

(0\a(LM,SMsA^})\^)^{^\C(LM,SMs,{^})W"=^y (18) 

since a matrix of transformation exists between the C 
operators and the A operators. Further, this matrix is 
nonsingular because the excited states are linearly 
independent. Thus, it has an inverse and we can write 

(0\CKLM,SMs,{™})\0) 

= <0| E Zd(L'M,S'M8,E,{ia})Al(L'M,S'M8,E) 
L',S',E 

+e(L'M)S'Ms,E,{ia})A (UMJS
fMS}E)']\0) = 0. 

If Ai(LM,SMsjE) contained a term which accounted 
for two pair excitations, i.e., a term of the form 

CKLM,SMsJia})a(L'M'3S'Ms',{M) 

by the same argument as above, we would find 

(01CKLM ,SMsAi<A)CKL'M \S'M *',{#}) 10>=0, 

form of A^(LM,SMs,E) and their existence has an 
adverse effect on the numerical results for these two 
atoms as will be seen in Sec. IV. 

Since the form of A^(LM,SMs,E) has been pre­
scribed, the commutators in Eq. (16) can be evaluated. 
All operators in Eq. (16) are products of Fermion 
creation and annihilation operators so it is straight­
forward to evaluate their commutators. For example, 

[C(ia),C(i/3)]=[Ct(ia),Ct(i/5)]=0, 

The next approximation is now made. It consists of 
assuming that the ground-state configuration is a good 
approximation to the true ground state. To put it more 
precisely, consider an expansion of the true ground state 

<01 C{LM,SMsA^})C{LfMf
iS

fMs
,Am) 10>=0. 

(19) 
|0>=&|*o>+£.f.|*.>, (20a) 

We are completely neglecting the two pair excitations, 
but we still assume that Eqs. (19) hold. 

It should be noted that cases exist for which Eq. (17) 
is not a suitable approximation. For example, calcium 
and strontium have low-lying levels which are best 
described as having both valence electrons excited. 
Such levels are not accounted for by our choice of the 

where |<£o) is the ground-state configuration and the 
J<£s) are any excited configurations. The assumption 
made here is that 

$o«l , & « 1 . (20b) 

28 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, New York, 1957). 

Thus, we will ignore any quantity that contains 
products of the £s's, but retain those quantities that 
contain first powers of the £5. For example, (0|«»%y|0) 
is neglected since it is a sum of terms bilinear in the £s. 
Indeed, the ground-state expectation value of any 
operator which has a destruction operator to the right 
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and a creation operator to the left, regardless of what is will be given to illustrate the method. First, consider a 
in between, can be neglected according to the above very simple case, 

assumption, i.e., ^ ^ {0\[_A(LM,SMs,E),CKLM,SMs,{i*m\0) 

' =g(LM,SMs,E,{ia})+terms 
The question of the validity of the assumptions which contain (0|a,ta,|0) or <0|Jat^|0>. 

contained in Eq. (20b) for atomic structure cannot be 
answered with any certainty. Of course it depends Thus, 
strongly on the basis states, and the Hartree-Fock basis /c\\rA(jM c u F) CUTM SM (' \)1\Q) 
would be expected to be most satisfactory. Quantitative ^ ' L ' 8i ' ^ 5>* ' ~" ' 
work pertinent to this question was done on helium by —g{LM ,<bM s,E,{ta)). (/I; 
Green and coworkers who expanded a Hylleras varia- F o r t h e s e C Q n d e { c o n s i d e r Q n e t e r m i n F g 
tional wave function into a series of Hartree configura­
tions.29 The results for that atom showed that the Vs=h H (ij\v\aP)C(ia)C(jf3). 
largest £s was ~0.03. This then serves as an indication *.«,y,0 
that the assumption may be valid for atomic structure 
calculations. We n o w t a ^ e c °g n i z a n c e °f the fact that all the states 

With the help of the Fermion commutation rules and s t u d i e d h e r e a r e s i n S l e t s t a t e s 5 t h u s w e w r i t e 

the two basic approximations described above, we can (I —m Itn-fLM) 
now write Eq. (16) as a linear equation for the g's and 0(LM,{ia})= E — — h^CK^)> (22) 
h's. The entire derivation is tedious, but two examples m»^ -\/2 

i.e., the spin designation is dropped from 0(LM,SMs,{ia}). It is understood that these states are eigenstates of 
total spin with eigenvalue zero. 

By straightforward evaluation 

(0\lA(LM,E)lVs',&(LM,{ky}m\0) 

Qy—myhntklLM) 
= 1 E <yM«/5>E (-1)"* 8ltiliy{0\lA{LM,E),C(ia)(8kj8y?-8y^aj-8kib,%) 

i,a,j,p my,ny V 2 

+ (hidya— 5Ta^fc+^— foibyfba)C(jl3)'] | 0) 

(ly—myhmk\LM) (lv—mvlnmn\L—M) 
= 4 E « / > | o 0 > i ; ( - l )m Y hwy E A(Z-Jf ,E, {»*»(-1)" ' 

i,a,j,p my,py V 2 mv,nv V 2 

p-\-8kj8yp8niday) , (23) 

where we have used the ground-state approximation and Eq. (19). To simplify the above, a multipole expansion 
of the Coulomb matrix element is made, and Eq. (23) reduces to 

<0| [A {LM,E),[ys'p{LM ,{ky})J] |0) 

= -2ZJL({ky},{nv})(-l)Mh(L-M,E,{nv))+ £ Jv({ny),{kv})(-l)*t' 
{nv} m<y,my,{nv} ,L',M' 

X (ly—myhmk| LM) (ly—mylnmn\ L'M') {lv—mvhmk\ L'—M') (/„—mvlnmn\ LM)h(L—M, E, {nv}), (24) 

where 

M{ky},{np)) = (XL({ky},{nv))lty (25) 

The symbol XL({ky},{nv}) designates the radial integral in the Lth term of the expansion of the interaction. 
Each term in the Hamiltonian is analyzed like Vs and the following results are found. Referring to Eqs. (6) 

and (7), the terms K, Vs, and part of W contribute to the eigenvalue equation. The term Vi describes particle-
particle and hole-hole interactions. Since we are working with a model that uses states with only one pair excited, 
we do not expect this term to contribute; a direct calculation, using the ground-state approximation, shows that 
it does not. The term V2 couples one and two pair states. This term does not contribute because of our neglect of 
the two pair excitations, i.e., using Eq. (19). The contribution from W depends on the central field chosen for the 
calculation. This will be more fully discussed in Sec. III. 

29 L. C. Green, M. M. Mulder, C. W. Ufford, E. Slaymaker, E. Krawitz, and R. T. Mertz, Phys. Rev. 85, 65 (1952). 
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Having indicated the method of derivation, we now write down the eigenvalue equations, both for 0(LM,{ia}) 
and for C(L—M, {ia}). 

(uE-m«MLMMi*})-2 £ /x({fa},{i/5})Cg(iJf,£,{i/S})-(-l)^(L-Jlf,£, {#})] 

~ E JL>({ja},{ip})(-l)M\l*-mJwi\LM)(la-^ 

Xik-m^mjlL-MML-M, E, {jp})+ E 0i\v\a^(-l)'^'V(la-mJimi\LM)(lfi-mff[imi\Lii) 

Xg(LM,E,{jp})- E yii(la-mJlmi\LM)(la-mJjmj\LM)g(LM,E,{ja}) 

+ £ 7afi(~ \)m^^(la-maUmi\LM) (k-m0hmi\LM)g(LM,E){ifi}) = 0, (26a) 

(-\r(o>B+Wia)h{L-M,E, {ia})-2 E / L ( { M , { # > ) I J M £ , { i < 8 > ) - ( - l ) * A ( £ - . ^ , £ , { # » ] 

+ E / z , ' ( { i « } , { ^ } ) ( - l ) M X / a - ^ / i W i | L ' i l f 0 ( ^ - ^ w 4 £ ' - M 0 ( / a - W j i w 4 i - M ) 

X (k-m^jmj\LM)g(LM,E,{jfi})- E </M|t>|aj>(-l)»«H-"*(/a-««J^»<|L-jlf)(//i-»Vi«»il^-jM') 

Xh(L-M,E, {JP})+ E yij{la-malimi\L-M)(lct—mJjmj\L-M)h{L-M,E, {ja}) 

- E yae(-l)^+me(la-mJlmi\L-M)(lfl-mehmi\L-M)h(L-M,E,{il3}) = 0. (26b) 

In the above, the sum over one projection quantum 
number in a vector coupling coefficient implies a sum 
over the other. We have introduced 

O)E=E~- EQ 

In Eqs. (26) the first three terms constitute the 
usual random-phase approximation. The next term is 
the exchange term which does not contribute to the 
correlation energy of the high-density electron gas, but 
there is no reason to neglect it here. The last two terms 
are self-energy terms, and their contribution depends on 
the basis set used. 

In their present form, the eigenvalue equations are 
quite general; the principal restriction being the 
requirement that the ground state of the atom be a 
closed shell configuration. These equations can be 
simplified considerably, however, when they are used 
for the particular atoms studied in this paper. We 
examine here only correlations among the valence 
electrons. Thus, the sums over hole states in Eqs. (26) 
are taken only over the valence shell. Further, this shell 
contains only s electrons, so there is no sum over the 
orbital projection quantum number. Since the only 
excited states considered are lP states, all the particle 
states are p states. The excitation energy is the same 
for all allowed values of M, so M is chosen equal to 
zero making all the particle orbital projection quantum 
numbers also equal to zero. With all the above simplifi­

cations Eqs. (26) reduce to 

(o>E~o)ia+yaa)g(10,E,{ia}~Yi Ji({ja),{ia}) 
i'} 

X[2g(10,£,{ia})-*(10,£,{ia})] 

+E««*>I«i>-7«)g(10,iS,{ia}) = 0, (27a) 

(wj?+Wt«---7a«)A(10,-E,{iQ!})--£/i({>;a},{iaj}) 
Ml 

X[g(10,£,{ia})-2A(10,£,{ya})] 

~E««*IH«i>-Tvy)A(10,JB,{7a}) = 0. (27b) 

The restriction to the valence electrons assumes that 
the correlation structure for the lower shells is about 
the same in the ground and singly excited states. It is 
this assumption which allows the treatment of heavy 
atoms with the same size matrix as used for light atoms. 
If, however, the total correlation energy were to be 
computed instead of the excitation energies, the 
interactions among all the electrons would have to be 
treated. 

We conclude this subsection by finding the normaliza­
tion condition on the eigenvectors. We desire 

(LM,E\LM,Ef)=hEW (28) 

for discrete states. This leads to 

(01 [A (LM,E),A t (ZJf ,£')]10) = 5 M , 
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or 

E \j(LM,E,{ia})g(LM£',{ia}) 

-h(L-M,EAia})h{L-M,Ef
 }{ia))~] = bEE> • (29) 

For continuum states, the Kronecker delta is replaced 
by a Dirac delta function. 

C. Oscillator Strength and Photoionization 
Cross Section 

The expressions for the oscillator strength and the 
photoionization cross sections of the transitions con­
sidered here both involve the dipole element 

Z)= E \{\M,E\ E r . | 0 > | * . (30) 
M=-l s = l 

This quantity has spherical symmetry, therefore 

0 = 3|<1O,E| E * 8 | 0 ) | 2 . (31) 

To evaluate Eq. (31) the operator z is expanded in 
terms of the particle and hole operators 

2oP = E<i|ai|a>CCt(ia)+C(ta)]+2:<t|2b><t^ 
ia i,j 

-Z(ct\s\PWba. (32) 

Thus 

D=3\(0\£A(lO,E),zopl\0)\2 

= 2 | E p{ioi}lg(^E,{ia))-h{l^EXioim\\ (S3) 
{ia} 

where p{ia) is the radial integral of r. To arrive at Eq. 
(33), the same approximations were used as in the 
derivation of the eigenvalue equations. 

The expression for the absorption oscillator strength, 
averaged over polarizations, is 

h = M Ep{ia}[g(10,£,{i«})-A(10,£,{ia})]|2, (34) 
{ia} 

where co# is given in atomic units. Similarly, the photo­
ionization cross section is, also in atomic units, 

4ir2a)ECt, 
VK= 1 E p{ia}lg{\Q,E,{ia)) 

3K (ia) 

-/K10,£,{^})] |2 . (35) 

In Eq. (35) a is the fine structure constant, and K2/2 
is the kinetic energy of the ejected electron at infinity. 
The continuum eigenstates are normalized to a delta 
function in K} i.e., 

{LM,E\LM<E')=b(K'-K), (36) 

where E is the energy corresponding to the atomic state 
with one free electron having a kinetic energy of K2/2. 
Of course, the summations in Eqs. (34) and Eq. (35) 
also involve integrations over the continuum. 

III. NUMERICAL METHODS 

The first step in the numerical evaluation of Eqs. 
(27) is the selection of a single-particle potential. The 
Hartree-Fock potential is probably the best choice, but 
the formidable numerical difficulties associated with 
generating a complete set of Hartree-Fock orbitals led 
us to a simpler choice for this first calculation. The 
potential chosen was the Hartree potential due to N~ 1 
electrons for an N electron atom. The charge density 
of one of the valence electrons was excluded from the 
potential. This is a physically reasonable potential for 
the valence orbital as well as all excited orbitals. All 
the basis states were computed in this potential, 
however; thus the orbitals belonging to inner shells were 
computed with too much screening, but these orbitals 
do not play an essential role in the theory. When 
Hartree orbitals were not available from the literature, 
the Thomas-Fermi potential for a positive ion was used. 

The effect of this choice of the central potential on 
the Eqs. (27) will now be accounted for. Consider the 
last term on the left-hand side of Eq. (27a), (ai\v\aj) 
—7#. When yi3- is written out, this becomes 

(ai\v\ aj) — E'0 '71 v \ n)as ~ 2{ja \ v \ ia) 
7 

+ (ja\v\ai)+(j\V\i). (37) 

The prime on the sum indicates that the valence shell is 
excluded, and the direct and exchange interaction with 
the valence shell is written out explicitly. The exchange 
interaction with the valence shell is exactly the same 
matrix element that appears as the coefficient of 
g(lO,E,{ja}) in the second term of Eq. (27a). Thus, 
those two terms can be combined, leaving from the 
expression (37) 

(j\v\i)-ZVy\v\iy)*s-(Mv\ia). (38) 
7 

Because of the definition of V, the above quantity 
should be small. The deviations of the quantity (38) 
from zero arise from two causes. First, the potential 
does not include exchange effects so all the exchange 
integrals are not accounted for. These exchange integrals 
involve only shells below the valence shell, however; 
exchange interactions with the valence shell have been 
treated exactly. Second, the orbitals 7 are not found 
self-consistently, so the cancellation of their matrix 
elements with the Hartree potential will not be perfect. 
Nevertheless, these deviations are assumed small, and 
only the diagonal terms (i—j) of this quantity are 
retained. The same treatment holds, of course, for 
Eq. (27b) and the equations to be numerically solved 
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become 

(f»h-Uia')g(10,E,{ia})-j:M{ia},{ja}) 
in 

X\j(10,E,{ja))-h(10,E,{ja})] = Q, (39a) 

(«*+««.')A(10rE,{w})-E/i({««},{ia}) 

\n 
X[g(10,£,{ia})-A(10;£,{ia})] = 0, (39b) 

where 
COia =Uia~7aa-(i \ V | t ) + E X * 7 I V I n)^+(ia \ V \ id) . ( 40 ) 

7 

Hartree orbitals from which the potential could be 
formed were available for beryllium30 and calcium,31 

while the Thomas-Fermi field was used for magnesium, 
also calcium, and strontium. The Thomas-Fermi field 
and the alteration of that field to that of a positive ion 
was then taken from Gombas.32 The Schrodinger 
equation with the above central fields was numerically 
integrated using a program obtained from J. Babcock of 
the Rand Corporation. It is a modernization of the 
program used by Latter33 in his extensive computations 
based on the Thomas-Fermi and Thomas-Fermi-Dirac 
models. The program is described in that paper and 
will not be further discussed here except to note that it 
reproduced hydrogen eigenvalues to six significant 
figures and wave functions to ± 1 in the fifth figure over 
the entire range of integration. This program produced 
both the bound and continuum solutions. The asymp­
totic amplitude of the continuum solutions for delta 
function normalization is (2/ir)112 and the numerical 
functions were adjusted to this amplitude employing a 
method described by Bates and Seaton.34 

For each atom the following orbitals were computed: 
(1) all the ground-state orbitals, (2) the first five 
excited, bound, p orbitals (six for beryllium), (3) 
continuum p orbitals at k intervals of 0.1 from k — 0.1 to 
1.0 for beryllium, &=0.1 to 1.2 for magnesium, and 
k—0.1 to 1.6 for the other cases. These k values are 
in atomic units. The consideration of only these states 
implies cutoffs in the sums appearing in Eqs. (39). 
These cutoffs were chosen so they will not affect the 
data for the first three or four excited states of the atom 
and the continuum near threshold. 

The next step toward the solution of Eqs. (39) is the 
evaluation of the Coulomb matrix elements using the 
basis orbitals. We must evaluate Slater F and G integrals 
to find the yaa% and also the Xz,({^a}),{ia}) must be 

30 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 
A149, 210 (1935). 

31 W. Hartree, D. R. Hartree, and M. F. Manning, Phys. Rev. 
59, 299 (1941). 

32 P. Gombas, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. XXXVI, p. 109. 

33 R. Latter, Phys. Rev. 99, 510 (1955). 
34 D. R. Bates and M. J. Seaton, Monthly Notices Roy. Astron. 

Soc. 109, 698 (1949). 

found which are given by 

XL({ia},{J<*}) 
OO 00 JJ 

= / dnf dr2Pi(rl)Pj(r2)—--Pa(r1)Pa(r2), 
Jo Jo r>L+1 

where Pi(r) is the individual orbital for the ith state and 

r>=r2, r<=fi for r i<r2 , 

r>=ri, r<=r2 for rx>r2. 

These integrals were all found by numerical integration 
using Simpson's Rule. An indication of the accuracy 
achieved was obtained by comparing the results from 
two independent programs. These results were con­
sistent to five figures. 

Due to the similarity in form between Eq. (39a) and 
Eq. (39b) they can be combined by introducing 

/(10>£J{ta}) = g(10,JS,{ta})-A(10J£J{fa>). (41) 

We find 

(o>E2--uia'*)f(10,E,{ia})-2G>J Z JL({ia},{ja}) 
{ 3 } 

X/(10,E,Oa>) = 0. (42) 

The sum over states in Eq. (42) includes an integral 
over the continuum. To solve Eq. (42) for the discrete 
eigenvalues this integral is replaced by its approximate 
value using the trapezoidal rule. This reduces the 
equations to an ordinary linear set which is then 
solved on the computer. 

The above procedure breaks down, however, when 
solutions corresponding to eigenvalues in the continuum 
are sought. To see why, we write 

2uJZ{i}JL({i*},U*})f(W,E,{ja}) 
= . (43) 

(«* 2 - a>* ' 2 ) 

Since co4</ and O)E now have continuous ranges of values, 
the denominator in Eq. (43) can be zero, and thus 
j'(10,E,{ia}) has a singularity. From Eqs. (39), how­
ever, we see that 

g(10,E,{ia}) «*+a>«/ 
. = f (44) 
h(lQ,E,{ia}) UE~o>ia' 

and thus the singularity in the eigenvector can be avoided 
by writing the equations in terms of h(103E,{ia}). The 
Eqs. (39) become 

h(10,K,{ka}) = S({K},{k})/(uK+o>ka'), (45) 

where 
rlhjMiJaUka^ia'hilOAiJa}) 

S({K},{k}) = 2\ £ 
L (3) (fOK—ajc,) 

+ , (46) 
JO {0)K — 0)Jc>a) J 
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and a>K=I+K2/2, where / is the ionization potential. 
The continuum eigenstate is now designated by K, and 
the single-particle continuum states are designated by 
k and k'. The sum over states is explicitly separated into 
a discrete sum plus an integral, and the cutoffs {yo} and 
{k0} are introduced. The problem is now reduced to 
representing the integral in Eq. (46) by a sum of 
discrete terms. In the region of integration that is not 
close to the point UK=<*&<*', the integral is replaced by 
its approximate value using Simpson's rule. Let us 
denote the remaining range of kr by 2A and write 

0.19 

/o = 2 

K^ dkf^a
fJ,{{ka)Xkfa})h{\%K,{h'a}) 

(47) 

This integral is, as yet, not denned as the integrand is 
singular. Following Rice36 and Fano36 we can write 

/o=2P 
J C+ArfftW.' / i ({fta} ,{*'a»*(10,X,{fe'a}) 

Po>KJi({Ka},{ka})h{W,K,{Ka}) 

+ K 
(48) 

where P indicates the principal part and 0 must be 
determined as an eigenvalue in the solution of the 
equations. The treatment of the principal part integral 
is given in the Appendix, and the final result is that 
Eqs. (45) are reduced to a discrete linear set. 

For the discrete eigenvalues, a matrix diagonaliza-
tion program written by W. P. Frank of Space Tech­
nology Laboratory was used.37 This program was gener­
ally satisfactory; however, if the eigenvalues were 
closely spaced, occasionally the program would produce 
incorrect results. This was controlled by scaling, and 
the incorrect eigenvalues were identified by computing 
the orthogonality of the resulting eigenvectors. 

A matrix inversion program written by B. S. Garbow 
of Argonne National Laboratory was used for the con­
tinuum solutions.38 The largest matrix studied was 
40X40, and the equations were solved to ± 2 in the 
seventh figure in this case. Mesh sizes from A& = 0.1 to 
Ak = 0.025 were used. The numerical results for these 
different meshes varied about 1%, so the results 
presented are with a mesh of A&=0.1. 

The evaluation of the dipole moment in Eq. (33) 
presents problems similar to those encountered in 
reducing the eigenvalue equations to a discrete set. 
These problems were handled in just the same manner 
as were the eigenvalue equations. 

IV. NUMERICAL RESULTS 

In this section the results of the random-phase 
approximation applied to beryllium, magnesium, cal-

35 O. K. Rice, J. Chem. Phys. 1, 375 (1933). 
36 U. Fano, Phys. Rev. 124, 1866 (1961). 
37 SHARE designation F2 RW EIGN and F2 RW VCTR. 
38 SHARE designation Fl AN F402. 

FIG. 1. Beryllium 
bound-bound matrix 
elements. 

2p 3p 4p 5p 6p 7p 
Bound states 

cium, and strontium are given. The results are given for 
each atom separately and compared with previous 
theoretical and experimental work. Some coulomb 
matrix elements computed for beryllium are displayed 
in Figs. 1, 2, and 3 to show their general behavior. 
This behavior was followed by all of the atoms. Also 
some typical eigenvectors for beryllium are shown in 
Table I. In what follows, all energies are in atomic 
units (1 a.u. = 27.21 eV), and the photoionization cross 
sections are listed in megabarns (1 Mb= 10~18 cm2). 

A. Beryllium 

We begin with a brief discussion of the coulomb ma­
trix elements. The quantity displayed is the normalized 
integral with no angular factors, i.e., the Xi({ia),{ja}). 
In Fig. 1, some bound-bound elements are shown. Note 
that these elements are largest for the low-lying states 
and decrease rapidly in the higher states. There are 
two points to be noted in Fig. 2. First, the continuum 
states are coupled much more strongly to the lowest 
bound state than to the higher ones in the important 
energy range. Second, the bound-free coupling reaches a 

0 0.2 0.4 0.6 0.8 

FIG. 2. Beryllium bound-free matrix elements. 
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TABLE I. Beryllium eigenvectors. 

Config. 

2 ^ - 2 ^ 
2s- 3p 
2s -4=p 
2s~~Sp 
2s~6p 
2s - 7 p 
2s-0.1p 
2s-0.2p 
2s-0.3p 
2s-0Ap 
2s-0.5p 
2s~-0.6p 
2s -0 .7p 
2s-0.8p 
2s-0.9p 
2s-1.0p 

2s-2p 
2s-3p 
2s-4p 
2s -5p 
2s-6p 
2s - 7 p 
2s-0.1p 
2s-0.2p 
2s-0.3p 
2s-0Ap 
2s-0.5p 
2s-0.6p 
2s-0.7p 
2s-0.Sp 
2s-0.9p 
2s-1.0p 

1P(2s -2p) 
g(10,E,{ia}) k(W,E,{ia}) 

0.9963 
-0.1520 
-0.0560 
-0.0303 
-0.0205 
-0.0152 
-0.0683 
-0.0806 
-0.0741 
-0.0587 
-0.0412 
-0.0256 
-0.0132 
-0.0042 

0.0019 
0.0057 

1P(2s-

0.1470 
0.0246 
0.0119 
0.0074 
0.0052 
0.0040 
0.0194 
0.0245 
0.0248 
0.0219 
0.0172 
0.0118 
0.0067 
0.0023 

-0.0011 
-0.0036 

0.1#) 
g(10,E,{ia}) h(10,E,{ia}) 

0.0809 
0.0715 
0.0658 
0.0757 
0.0757 
0.0744 

-0.5742 
-0.2458 
-0.1369 
-0.0836 
-0.0529 
-0.0336 
-0.0208 
-0.0122 
-0.0064 

0.0335 
0.0092 
0.0050 
0.0033 
0.0024 
0.0018 
0.0094 
0.0125 
0.0137 
0.0137 
0.0126 
0.0109 
0.0088 
0.0066 
0.0046 
0.0027 

1P(2s -Sp) 
g(10,E,{ia}) h(10,E,{ia}) 

-0.0376 
-0.0415 
-0.0566 
-0.9914 

0.0866 
0.0406 
0.0856 
0.0743 
0.0527 
0.0357 
0.0238 
0.0157 
0.0100 
0.0062 
0.0035 
0.0017 

*P(2s-

-0.0142 
-0.0036 
-0.0019 
-0.0013 
-0.0009 
-0.0007 
-0.0036 
-0.0047 
-0.0051 
-0.0050 
-0.0046 
-0.0038 
-0.0030 
-0.0022 
-0.0014 
-0.0008 

0.7*) 
g(10,E,{ia)) h(10,E,{ia}) 

0.0247 
0.0216 
0.0151 
0.0114 
0.0088 
0.0070 
0.0413 
0.0624 
0.0855 
0.1179 
0.1758 
0.3381 

-0.2825 
-0.1222 
-0.0677 

0.0151 
0.0081 
0.0050 
0.0034 
0.0026 
0.0020 
0.0108 
0.0151 
0.0179 
0.0196 
0.0204 
0.0201 
0.0190 
0.0172 
0.0149 
0.0122 

0.08h 

maximum a little above the threshold energy. The 
first point has a significant effect on the photoionization 
cross section near threshold, as will be explained later. 
In Fig. 3 some free-free integrals are shown. These 
integrals vary smoothly and generally have maximums 
near their diagonal values. The maximum values 
themselves climb to a maximum (in Fig. 3, this occurs 
near k = 0.8) and then decrease slowly. 

Typical beryllium eigenvectors are shown in Table L 
The amount of mixing of the configurations is quite 
small. However, the ground-state correlations, i.e., 
the h amplitudes play an important role in the numerical 
results. These correlations are much stronger in the 
(2$~2p) configuration than in the higher ones. 

TABLE II. Excitation energies of beryllium above the ground state. 

Level 

*P{2s-2p) 
1P(2s-3p) 
ip(2s-4:p) 
1P(2s-5p) 
Ionization 

limit 

EB 

a.u. 

0.107 
0.219 
0.251 
0.265 

Ec 

a.u. 

0.202 
0.266 
0.292 
0.311 

0.333 

77 

a.u. 

0.188 
0.266 
0.292 
0.311 

EL 

a.u. 

0.149a 

£obs 
a.u. 

0.194 
0.274 
0.306 

0.343 

d 
"Si 
CN 

X 

i 0.04 

0.02h 

FIG. 3. Beryllium free-free matrix elements. 

Excitation energies are listed in Table II. The nota­
tion is as follows: EB—the difference between the 
particle energy and the hole energy, i.e., e™ ea. This is 
the excitation energy in the central field with no 
corrections. Ec—the excitation energy computed in 
first-order perturbation theory. £ r p a the excitation 
energy computed in the random-phase approximation. 
EL—excitation energies found by previous theoretical 
calculations, and EGbs—the experimental energies. 

From Table II, it is seen that the energies are 
represented well by first-order perturbation theory, and, 
other than a 5% shift in the lowest energy, the random-
phase approximation correlations have a negligible 
effect. The value of EL was computed by solving the 
Hartree-Fock equations for the lS(2s— 2s) ground 
state and the 1P(2s—2p) excited state and subtracting 
the energies.39 

Beryllium oscillator strengths are listed in Table III. 

TABLE III. Oscillator strengths of beryllium from the ground state. 

Level h 
lP(2s-2p) 
1P(2s-3p) 
lP(2s-4p) 
lP{2s-Sp) 

2.34 
0.0280 
0.0148 
0.0079 

1.71 
0.0030 
0.0007 
0.0012 

1.82a 

a Landolt-Bornstein Tables, edited by K. H. Hellwege (Springer-Verlag, 
Berlin, 1950), Vol. 1, Part 1, p. 264. 

The notation is the same as in Table I I ; fc is computed 
with Ec and the bare dipole moment.393. In this atom as 
well as the others that are studied, the lowest energy 
transition, the "resonance" transition, has a dipole 
moment much larger than the others. This means that, 
due to the coupling, the dipole moments of the higher 
transitions in the random-phase approximation are 
affected strongly by the resonance transition. So 
strongly in fact that very weak coupling with the 

» Reference 39. 

39 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 
A154, 588 (1936). 

39a Note added in proof. The phrase "bare dipole moment" used 
in this section means the dipole moment computed in the central-
field model. 
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FIG. 4. Photoionization cross section of beryllium. 

resonance transition produces a change in thedipole 
moment of an order of magnitude or more. This 
circumstance indicates that the oscillator strengths to 
the higher levels are very difficult to calculate with any 
hope of accuracy, and probably a model more refined 
than the random-phase approximation is necessary. 
Certainly, a central-field approximation is not adequate 
for this purpose. Another difficulty in the present 
calculation is that the eigenvalues of the higher levels 
differ only in the 4th figure from the diagonal matrix 
elements so that the corresponding eigenvectors will 
not be accurate. 

In Table III, it is seen that the /rpa's for the higher 
levels are much smaller than the /c's. This arises 
because the dipole moment of the resonance level has 
the opposite sign from the other dipole moments, so a 
cancellation occurs. The resonance oscillator strength 
is reduced principally because of the ground-state 
correlations. The vector that is important in computing 
dipole moments is f (10,E,{ia)), as can be seen from 
Eq. (33). When h(10,E,{ia}) is sizable, i.e., when 
ground-state correlations are important, f (10,E,{ia}) 
is quite a bit smaller than g(10,E,{ia}), and since the 
dipole moment is squared, this size effect is doubled. 
The value of JL was computed with the Hartree-Fock 
wave functions of Ref. 39, and the experimental energy. 
There is, at present, no experimental data available 
for these oscillator strengths. Figure 4 shows the 
photoionization cross sections for low energy. The 
decrease of o-rpa compared to <rc is due to cancellation 
with the resonance dipole moment as explained above. 
As higher energies are reached, this effect diminishes, 
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and (rrpa and ac approach each other. Even at high 
energies, however, the ground-state correlations have 
an effect so the two values need not agree. There is no 
experimental information, but aTVa and arc are plotted 
along with a calculation by Bates40 who uses a coulomb 
wave function for the continuum states and an analytic 
function, fitted to a Hartree function, for the bound 
state. Figure 4 amply demonstrates that the cross 
section is sensitive to the wave functions used. 

B. Magnesium 

No Hartree field was available for magnesium, so 
the Thomas-Fermi positive ion field was used. The 
excitation energies are listed in Table IV. The results 

TABLE IV. Excitation energies of magnesium 
above the ground state. 

Level 

^ ( 3 ^ - 3 ^ ) 
^ ( 3 ^ - 4 ^ ) 
1P(3s-5p) 
Ionization 

Limit 

EB 

a.u. 

0.109 
0.179 
0.203 

Ec 

a.u. 

0.161 
0.213 
0.238 

0.269 

•^rpa 
a.u. 

0.151 
0.213 
0.238 

EL 

a.u. 

0.166a 

Edbs 
a.u. 

0.160 
0.225 
0.249 

0.281 

a Reference 13. 

are very similar to the beryllium results. The value of EL 
was calculated by Trefftz, who used a configuration in­
teraction method using Hartree-Fock basis functions.13 

The oscillator strengths in Table V to the levels of 
magnesium above the resonance level show the opposite 
behavior to those of beryllium. They are enhanced rela­
tive to the /c's because, in this case, the resonance dipole 
moment has the same sign as the others. The value of /x, 
was computed by Trefftz using the wave functions 
mentioned above.13 

The photoionization cross sections are plotted in 
Fig. 5. The coupling to the resonance level is respons­
ible for the high value at threshold. The dipole moment 
changes sign resulting in a minimum in the cross-section 
curve. The experimental work by Ditchburn and Marr41 

was not carried out far enough to observe this minimum, 
but it probably exists because such a minimum is 

TABLE V. Oscillator strengths of magnesium from the ground state. 

Level 
1P(3s-3p) 
lP(3s-4:p) 
1P(3s-5p) 

fc 
2.77 
0.0524 
0.0099 

/rpa 

1.85 
0.184 
0.0466 

h 
1.674a 

Jobs 

1.2±0.3b 

a Reference 13. b Reference 9. 

40 D. R. Bates, Monthly Notices Roy. Astron. Soc. 106, 423 
(1956). 

41 R. W. Ditchburn and G. V. Marr, Proc. Phys. Soc. (London) 
A66, 655 (1953), 
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FIG. 5. Photoionization cross section of magnesium. 

observed for calcium, and its theoretical explanation is 
the same as here. 

C. Calcium 

The Hartree and Thomas-Fermi basis were both 
used for calcium in order that a comparison could be 
made. The energy values are comparable in the two 
cases, but differences in the oscillator strengths and 
photo-ionization cross section occur. Calcium, unlike 
beryllium and magnesium, has doubly excited configura­
tions (3d-np) that are comparable in energy to. the 
configurations studied here. As mentioned earlier, 
these configurations are not included in the theory, and 
this shortcoming is apparent in the numerical results. 

The excitation energies are listed in Table VI. The 

TABLE VI. Excitation energies of calcium from the ground state. 

Level a.u. 

iP(4s-4£) 0.054 

iP(4s-5£) 0.102 
iP(4s-6p) 0.121 
Ionization 

limit 

*D. R. Hartree 
167 (1938). 

b Reference 14. 

EcT-F- -ErpaT-F- EfiH £CH 

a.u. a.u. a.u. a.u. 
0.127 0.121 0.071 0.129 

0.180 0.180 0.129 0.185 
0.203 0.203 0.149 0.207 

0.234 

and W. Hartree, Proc. Roy. 

£rpaH 

a.u. 
0.122 

0.185 
0.207 

Soc. 

EL 
a.u. 

0.1045^ 
0.1153^ 

(London) 

Eobs 
a.u. 

0.108 

0.190 
0.200 

0.225 

A164, 

TABLE VII. 

Level 

^ ( 4 ^ - 4 ^ ) 

1P(4s-6p) 

Oscillator 

/ c T . F . 

5.19 

0.062 
0.010 

strengths of calcium from the ground state. 

/rpaT 'F- JO 

3.80 4.02 

0.221 0.048 
0.052 0.008 

./rpa 

2.82 

0.168 
0.043 

II 

2.27a 

1.46b 

Jobs 

1.49° 

0.0374° 
0.0602° 

first-order perturbation theory values are not as 
accurate as in the previous two cases. The value of 
EL =0.1045 was obtained by a Hartree-Fock calcula­
tion; the value of EL~ 0.1153 was calculated by TrefTtz 

a Table III, Ref. a. 
b Reference 14. 
c Reference 10, 11. 

who used five Hartree-Fock configurations plus a 
polarization potential.14 

The listing of the oscillator strengths in Table VII 
shows a substantial difference between the Hartree and 
the Thomas-Fermi models. The bare dipole matrix 
element calculated with the Thomas-Fermi wave 
functions is about 15% larger than the Hartree value. 
The value of /L= 2.27 was computed with Hartree-Fock 
functions, while the other JL value was obtained by 
TrefTtz in the same calculations that gave the excitation 
energy mentioned above. TrefTtz took the geometric 
mean of the dipole length element and the dipole 
velocity element to arrive at the listed number. The 
experimental /values were obtained by Russian workers 
quite recently, and the accuracy is stated at a few 
percent. The fact that the second level has a smaller / 
than the third has also been observed by other workers. 
This behavior is not present in /<? or / r p a because it is 
caused by mixing with the 1P(3d—4:p) level. 

The photoionization cross section close to threshold 
has been measured by Ditchburn,42 and he finds that the 
(3d—np) XP and 3P series limit lies above threshold, 
so the autoionization lines from this series are very 
strong. He attempts to subtract out these lines to find 
the absorption arising from the (4s—kp) continuum, 
but it seems that a theoretical calculation of the cross 
section must take the (3d—tip) series into account. 
As was stated above, the random-phase approximation 
does not account for this series, so we do not expect 
satisfactory results for the cross section. 

The photoionization cross sections for calcium are 
plotted in Fig. 6 along with the experimental data. 
The fact that <rcH agrees with experiment at threshold is, 
in our opinion, just a coincidence. The enhancement of 
(Trpâ  is due to coupling with the resonance level, as in 
magnesium. A previous theoretical calculation by Bates 
and Massey, using Hartree-Fock wave functions, gives 
a threshold value of o-=23 Mb.17 

D. Strontium 

The calculational results resemble those for calcium. 
The problem of the doubly excited configurations is 
present here as the 4d shell lies just above the 5s shell. 
The Thomas-Fermi basis is used. The excitation ener­
gies are given in Table VIII. 

42 R. W. Ditchburn, Proc. Roy. Soc. (London) A256, 53 (1960). 
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FIG. 6. Photoionization cross section of calcium. 

The oscillator strengths are given in Table IX. The 
experimental values are from the same group that 
measured the calcium lines. Again the second level has a 
smaller / than the third, and the explanation is the 
same as for calcium. The value of JL was calculated 
from the Bates-Damgard tables which are based onjthe 
Coulomb approximation. 

TABLE VIII. Excitation energies of strontium 
above the ground state. 

Level 
EB 
a.u. 

Ec 
a.u. 

ETpa, 

a.u. 
£obs 
a.u. 

^(SsSp) 
iP(5s-6p) 
WfSs-lp) 
Ionization 

limit 

0.054 
0.103 
0.121 

0.112 
0.154 
0.174 

0.202 

0.106 
0.154 
0.174 

0.099 
0.155 
0.177 

0.209 

Recent measurements of the photoionization cross 
section by Hudson and Young indicate that the 
(&d—np) series does not strongly affect the (5s—tip) 

TABLE IX. Oscillator strengths of strontium from the ground state. 

Level 

ip(5s-5p) 
lP(5s-6p) 
iP(5s-7p) 

fa 

4.60 
0.057 
0.010 

Jrpa JL Jobs 

3.18 1.80a 1.54b 

0.228 0.0052b 
0.057 0.0110b 

continuum near threshold, in contrast to calcium.16 

Thus, the value of crrpa may have more meaning in 
this case, and indeed it is the right order of magnitude 
at threshold as can be seen in Fig. 7. 

V. DISCUSSION 

As was stated earlier, the main purpose of this study 
was to examine the qualitative effects of electron corre­
lations on the calculation of atomic properties, and not 
to seek close agreement with experimental data at the 
present time. We see from the results that the correla­
tions have a small effect on the excitation energies; the 
largest shift is about 5% for the lowest energy, and 
there is no appreciable shift in the higher energies. 
The resonance oscillator strengths are lowered about 
30% from their bare values, while the oscillator 
strengths to higher levels and the photoionization 
cross sections near threshold are changed by orders of 
magnitude. 

The question arises as to why the correlated values of 
the resonance oscillator strengths are not closer to 
observed values, and, in our opinion, the answer is in 
the basis states used. If a Hartree-Fock basis had been 
used, the criteria for the ground-state approximation in 
Sec. II would have been more nearly met, and we could 
expect more accurate results. For example, a shift in 
the resonance oscillator strength of calcium of about 
30% is needed to lower the /value from 2.27 (see Table 
VIII) to about 1.60 (close to the observed value). Of 

0.1 0.2 0.3 
Energy above threshold in a.u. 

0.4 

a C. W. Allen, Astrophysical Quantities (The Althone Press, London, 
1955), Chap. 4, p. 77. b Reference 12. 

FIG. 7. Photoionization cross section of strontium. The asterisk 
marks the recent experimental value of Hudson and Young 
(Ref. 16). 
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course, it may be that some other kinds of correlations 
must also be included in any quantitative theory. 

The situation is less clear for the higher oscillator 
strengths and photoionization cross sections. Their 
calculation seems to be very difficult because of the 
large change in their value that weak coupling with the 
resonance level gives. An additional difficulty arises 
when there are doubly excited configurations of 
comparable energy present (autoionization in the 
continuum). In this case, the random-phase approxima­
tion is just not adequate. In general, a more refined 
model than is used here will be necessary for accurate 
calculation of these quantities. 

In the application of the random-phase approxima­
tion to the infinite electron gas and to nuclei, collective 
states are found, i.e., states that are superpositions of 
many single-particle excitations with each excitation 
having about equal weight. These states have energies 
lying above the single-particle excitations and, in 
nuclei, can have greatly increased dipole moments. 

Little indication of such collective states was found 
in the present calculation, and this can be understood by 
comparing these other theories with the present atomic 
calculation. In nuclei, for example, the unperturbed 
spectrum treated consists of a group of single-particle 
excitations, all of about the same energy and the same 
symmetry. The interaction matrix element used is 
typically 20 to 30% of the excitation energies. Since 
these states are so closely spaced and the interaction is 
so large, strong mixing can occur and collective states 
arise. On the other hand, the excitation spectrum of an 
atom is not bunched at certain energies, but is spread 
over the entire energy range. Also the interaction matrix 
elements approach 20 to 30% only in the lowest excited 
states; in the higher states, they are much weaker. 
Thus, the occurrence of a collective state in an atom is, 
a priori, much less likely, and the detailed calculations 
presented here bear this out. Of course the nuclear 
structure calculations have never been carried out with 
realistic wave functions but, instead, with oscillator 
wave functions. The collective effects in nuclei are 
also greatly enhanced by interference effects in the 
dipole-matrix element of the kind found here for atoms. 
I t may well turn out that more realistic treatments of 
the nuclear photoeffect will lead to a physical picture 
closer to the one found here than to the degenerate 
infinite Fermi gas. In any case, it does not seem appro­
priate to describe the correlated atomic states calculated 

here as collective in the simple classical meaning of the 
word. 

APPENDIX 

The problem is to represent the principal part integral 
in Eq. (48) as a sum of terms involving h(\0,K,{kfa}) 
at the mesh points K~A, K, K+A. This is accomp­
lished by writing h(10,K,{k'a}) and Ji{{ka),{kra}) in 
the interval K— A to K+A by three point Lagrange 
interpolation, i.e., let 

K2=K, 

K*=K+A, 
then 

h(10,K,{k'a}) 

2A2 

(k'-KMk'-KzMlO&iK**}) 

A2 

(k'-K2)(k'-Kz)h(10,K,{Kia}) 

2A2 

with a similar expression for Ji({ka},{k'a}). When these 
expressions are substituted back into the integral, the 
result is 

rK+* ^Wa , / i({fe} J{^a})^(10 ) ir ,{^}) 
P 

JK-A (K2-kf*) 

^G1(k9KyA)h(10,K9{Kla})+G2(kyK)A) 

Xh(109K9{K^})+Gz(k}K,A)h(l09K9{K2a}), (A2) 

where the G's are rather complicated coefficients 
involving integrals of the form 

rK+A dkkN 

P (A3) 
JK-A {K*-W) 

and values of Ji({ka},{k'a}) at the mesh points. Since 
these are known quantities, the G coefficients can be 
evaluated, and the representation in Eq. (A2) is now 
suitable for numerical treatment. 


