
P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 3A 3 F E B R U A R Y 1 9 6 4 

Effect of Collisions on Electron Waves in a Plasma in a Magnetic Field 
AGNAR PYTTE AND RONALD BLANKEN 

Department of Physics, Dartmouth College, Hanover, New Hampshire 
(Received 19 August 1963) 

This is a study of the effects of electron-electron and electron-ion collisions on small oscillations in a fully 
ionized plasma imbedded in a constant external magnetic field. The first three moments are taken of the 
Boltzmann equation with the Bhatnagar-Gross-Krook collision terms. The low-temperature approximation 
is employed to close the set of equations. The moment equations and Maxwell's equations are solved simul
taneously to obtain the dispersion relation for small amplitude electron waves propagating at an arbitrary 
angle to the external magnetic field. The dispersion relation, the collisional damping included, is studied in 
various limiting cases. The most striking collisional effect is the reduction and smoothing out of the resonance 
near the electron cyclotron frequency. 

INTRODUCTION 

SMALL amplitude waves in a collisionless, uniform 
plasma imbedded in a constant magnetic field has 

been the subject of a large number of papers in the last 
decade. These contributions may be divided into two 
groups: (a) those working directly with the Boltzmann 
equation and (b) those working with a set of moment 
equations. Prominent among the group (a) papers are 
those of Gross,1 Gordeyev,2 Sitenko and Stepanov,3 and 
Bernstein.4 Reference is also made to the excellent book 
by Stix.5 The moment equation approach has recently 
been reviewed by Bernstein and Trehan,6 and by 
Denisse and Delcroix.7 

The effect of collisions on waves in a plasma has been 
receiving relatively less attention. Most frequently, if 
considered at all, a simple relaxation term is added to 
the collisionless Boltzmann equation, and moments 
taken thereof. Ideally, in a completely ionized gas, one 
should work with the Fokker-Planck collision integrals. 
Working directly with the Fokker-Planck equation, 
however, seems impossibly difficult. Even a treatment 
based directly on the Boltzmann equation with a 
relaxation term is far from easy, as has been shown by 
Lewis and Keller.8 An approach based on moments of 
the Fokker-Planck equation, while less prohibitive, also 
runs into difficulties, since even in the linear theory the 
moments arising from the collision integrals differ from 
the familiar density, velocity, and pressure moments 
resulting from the other terms in the equation. The 
problem therefore is one of finding a closed set of 
moment equations. 

The difficulties with the Fokker-Planck collision 
integrals prompted Bhatnagar, Gross, and Krook9 and 
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Gross and Krook,10 to suggest simpler collision terms, 
which would however respect the conservation laws of 
particles, momentum, and energy. Small amplitude 
wuves in plasmas without an external magnetic field 
were considered by these authors. In arriving at their 
results they make use of an ''isothermal approximation" 
neglecting temperature variations in the wave. Re
cently, Liboff11 considered waves in a plasma in a 
magnetic field using moment equations with the Gross-
Krook collision terms. He made a systematic study of 
the long-wavelength phenomena by expanding in powers 
of the wave number. However, his dispersion relation 
[Eq. 3.99)n] neglects the effects of the thermal motion 
of the particles. 

Our starting point is quite similar to that of Liboff ,u 

but we shall be concerned with high frequencies rather 
than long wavelengths. We work in what Bernstein 
and Trehan6 label the low-temperature approximation. 
The effect of the thermal motion of the electrons is 
taken into account to the first order in the temperature 
rather than to all orders as is done by Lewis and Keller.8 

We will therefore never see exponentially small effects 
like the Landau damping. On the other hand, our 
collision terms are consistent with the appropriate 
conservation laws whereas Lewis' and Keller's are not. 
Since our main concern is the effect of the collisional 
damping rather than the Landau damping, the im
portant thing is to make the collision terms as realistic 
as possible. As discussed by Bhatnagar, Gross, and 
Krook9,10 and by Liboff,11 the results obtained with the 
collision terms used here should very closely approxi
mate the results one would get if one were able to use 
the Fokker-Planck terms directly. For our purposes the 
low-temperature approximation is perfectly adequate. 
With the phase velocity assumed large compared to the 
thermal velocity, we may close the set of equations by 
neglecting the divergence of the heat flow tensor.6 

Furthermore, since we limit ourselves to high fre
quencies, the ions are assumed to be infinitely massive. 
The derivation of the dispersion relation for waves 

10 E. P. Gross and M. Krook, Phys. Rev. 102, 593 (1956). 
11 R. L. Liboff, Phys. Fluids 5, 963 (1962). 
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propagating at an arbitrary angle to the magnetic field, 
collisional effects included, is then straightforward. 

MOMENT EQUATIONS 

The electron distribution function f(t,v,t) in a 
completely ionized gas is assumed to satisfy the 
equation 

Here cr̂  is constant, n and V are given by Eqs. (2) and 
(3), while T is defined [see Eq. (4)] by 

3nKT=TrP. (10) 

With the ions infinitely massive and at rest the Gross-
Krook expression for the electron-ion collision term 
becomes 

m V 

2TKT) 

3/2 

where (df/8t)ee and (8f/dt)ei represent the change in / 
due to electron-electron and electron-ion collisions, 
respectively. We define the electron density n, the drift 
velocity V, the pressure tensor P, and the heat flux 
tensor Q in the usual way 

n=fdhf, (2) 

nV=fdhvf, (3) 

?=tnfdh(v-V)(v-V)f, (4) 

Q = w / ^ ( v - V ) ( v - V ) ( v - V ) / . (5) 

Multiplying Eq. (1) by unity, mv and m(v— V) (v— V), 
respectively, and integrating over velocity space, we 
arrive at the following moment equations: 

(6) (d»/dO+V-(»V) = 0, 

) 

+en(E+—xBj^mfdhy(--\ , (7) 

/dV 
mnl—+V-VV)+V-P 

ap 
dt 

- + V • (Q+VP)+P. V V + (P- V V r 

+ ~ ( P x B - B x P ) = f » ( f t ( v - V ) ( v - V ) 
mc J 

LW/ee W / e J ' 

Here we have taken note of the fact that the collisions 
conserve particles and that electron-electron collisions 
do not alter the electron drift velocity. The superscript 
T in Eq. (8) denotes the transposed tensor. 

Following Gross and Krook,10 we approximate the 
electron-electron collision term by: 

df\ n [ / m \ 3 / 2 

(Teel \2TTKT) 

X e x p [ - w ( v - V)2 /2#r] I . (9) 

Xexp( -wv 2 / 2# r ) . (11) ,]. 
The ion density n% is here assumed constant, as is o-ei. 
The requirement that electron-ion collisions conserve 
energy determines T to be 

T'=T+m,V2/3K. (12) 

With the expressions (9) and (11) the integrals in 
Eqs. (7) and (8) become trivial. The results—in the 
linear approximation—are given in Eqs. (21) and (22). 

DISPERSION RELATION 

We wish to study small perturbations about a stable 
equilibrium corresponding to a Maxwellian electron 
distribution at a temperature TQ. With a subscript zero 
denoting the equilibrium quantities and the subscript 
one denoting the perturbations, we write 

B=B 0 +Bi , 

E = 0 + E i , 

n—tiQ-\-ni, 

V=0+Vx, 

P=*oI+Pi , 

Q=0+Qi , 

fli=flo. 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

In Eq. (17) I denotes the unit tensor, and by Eq. (10) 
it is clear that po—noKTo. We substitute the above 
expressions in Eqs. (6)-(8), and since the perturbations 
are assumed small, we drop terms of second or higher 
orders in the perturbed quantities. The results are: 

(d»i/d*)+»oV-Vi=0, (20) 

dVi / Vi \ 
mno h V • Pi+e»o( EiH x B0 J = — v^mn^!, (21) 

dt 

aPi 

dt 
- + V - Q i + M l V - V 1 + V V 1 + ( V V 1 ) r ) 

+ — ( P i X Bo-Bo XPX)= (.ee+^ei) 
mc 

X [ - P i + * l T r P i ] . (22) 
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Here v^—n^/a^ and yei=no/(rei are the effective equal to —noeYi, we arrive at 
electron-electron and electron-ion collision frequencies. 
We will look for plane-wave solutions to Eqs. (20)-(22) c

2k x (k x E)+G;2E=*co47rwV, (28) 
and shall therefore assume that all the perturbed 
quantities vary as expp(fc.r-a>*)]: w h i d l c a n b e s o I v e d for E 

(B^Ex^ViAQi . ) = (B,E,», V,P,Q) E=i4rn*(*fil-<?kk) • \/o>(o>2-c2k2). (29) 
Xexpp(k-r-a>/)]. (23) 

This equation enables us to eliminate E from Eq. (27) 
In Eqs. (20)-(22) we can then replace d/dt by — ico 
and V by ik. When the phase velocity of the wave cc/k _. 2(a>2I—c2kk) • V ~i 
is large compared to the electron thermal velocity k*P=fnnjl ya>\ i f txV . (30) 
(KTo/m)112, it is legitimate6 to ignore V-Qi in Eq. (22), L a>(a>2-c2k2) J 
thereby achieving a closed set of equations. From here 
on we shall work within this so-called low-temperature Here cop- (fixntf/m)1* is the plasma frequency and Q 
approximation. foe v e ctor in the Bo direction with a magnitude equal 

The following factors, all of which reduce to unity in t 0 t h e electron cyclotron frequency. 
the collisionless approximation, will occur repeatedly Turning next to Eq. (22), we observe that if we take 
in the equations which follow: i t s t r a c e t h e r e s u i t i s 

7 = 1 + W " , (24) «TrP=S#ok-V. (31) 

With this expression for TrP and again making use of 

€=l+5i(^ei+^ee)/3co. (26) E(l- (23)> Ecl- (22) m a y b e written: 

Our dispersion relation is now obtained by solving o>P5+i(P x&-& xP)==^0(kV+Vk+eIk-V). (32) 
simultaneously Eqs. (21) and (22) along with MaxwelPs 
equations. Equation (20) merely serves to express m At this point it is convenient to introduce a definite 
in terms of Vi. Since m occurs nowhere else we shall right-handed rectangular coordinate system with unit 
have no further use of it. vectors £i, g2, and S8. We choose e3=B0/£o and define 

Substituting from Eq. (23) in (21) we obtain ei by 

t v k=k£i+k&z. (33) 
-iya>mnoY+ik-?+eno(E+-VxBo) = 0. (27) 

^ c ' Since P is a symmetric tensor, Eq. (32) constitutes a 
set of six independent equations for the elements of P. 

From MaxwelPs equations, with the current density The solutions are 

Pno>d/po= ek- V+2kiV1+2Qk1(2ttV1-ia)8V2)/(a)282-4W), 

P22co5/>0=ek- V-2^1(2QF1-ico6F2)/(co252-4Q2), 

P*tfo5/po=&-\+2k*Vt, 

Pl2=Pn=p0k1(a>8V2+2iQV1)/(co252-4a2) , (34) 

Pu=P^i==poL^d(k1Vz+kzV1)-iQk3V2y(cc282~22)J 

P2^Pd2^p0^8kzV2+i^(k1Vz+hV1)y^282-Q2). 

With these expressions for the elements of P substituted in Eq. (30), we see that the resulting vector equation takes 
the form 

R V = 0 , (35) 
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Rn=o>2y—^- I T — " (€+2) fe iH 
-c2k2 

4 W co252&3
2 " 

+ 
co252-4Q2 co252-ft2-

r / 2k? W \ \ 
R12 = R21=MA 1+/3 + , 

L \co252-4S22 co252 -a2 /J o252-4S22 co252-

2r2 / /: ^ 5 

La>2-c2&2 \ 5 w T - O V J 

Li 
i ^ 2 2 = —co 2 7-

coP
2co2 

_co 25 2 -412 2 c o 2 5 2 - Q 2 . 

# 2 3 = # 3 2 = i p k i k z a > t t / ( 5 V - Q 2 ) , 

wp
2(co2-c2^32) 01 

Rz3 = o)2y-
-c2k2 5L 

(e+2)h2-
c o 2 W ' 

co252-S22. 

(36) 

where the components of the tensor R may be written: 

Here p=po/mno=KTo/m is the square of the thermal 
velocity. The requirement that the determinant of R 
vanish constitutes our dispersion relation 

Det. R = 0 . (37) 

The collisional effects in Eq. (37) are contained in the 
factors 7, 5 and e [see Eqs. (24)-(26)]. If these factors 
are set equal to unity w7e recover the dispersion relation 
for the collisionless plasma. With fi set equal to zero R 
simplifies greatly and Eq. (37) reduces to the dispersion 
relation for the cold plasma. To display explicitly the 
dependence on the angle 6 between the magnetic field 
Bo and the direction of propagation k/k, we simply 
substitute k sin0 for ki and k cos0 for kz in Eq. (36). 
Our treatment can be extended to include the ion 
motion without undue difficulty. Solving Eq. (37) for 0; 
when k is real, we obtain the frequency and rate of 
damping as functions of k, while solving for k when co 
is real, we obtain the wavelength and spatial attenuation 
rate as functions of the frequency. A detailed study 
shows that the collisions modify the dispersion relation 
significantly in the neighborhood of the resonances at 
co2^fi2 and co2~4Q2. 

SPECIAL CASES 

The general dispersion relation Eq. (37) is rather 
complicated. While it is generally correct to say that 
the main effect of the collisions is to dampen the waves 
and to smooth out the resonances, it may perhaps be 
worthwhile to study the dispersion relation in detail for 
some of the simple cases where the collisional effects 
become apparent. The dispersion relation simplifies 
considerably for waves propagating either perpendicular 
to or parallel to the magnetic field. In either case we 
find Rn=Rzi—^23=^32=0. We can then immediately 

write down one solution to Eq. (37) 

£33=0. (38) 

The other solutions must satisfy 

RnR22=Ri22. (39) 

A. Propagation Parallel to the Magnetic Field 

With £ i = 0 and kz=k, Eq. (38) becomes 

co 2=WpV^/^V 1*"" 1 («+ 2). (40) 

In the absence of collisions this reduces to the familiar 
dispersion relation for longitudinal plasma oscillations 
co2=cop

2+3/3&2. Allowing for a misprint we recover the 
result in Eq. (67) of the paper by Bhatnagar, Gross, 
and Krook,9 by setting vei=0 (and hence 7 = 1 ) , and by 
replacing e by 5, which corresponds to their "isothermal 
approximation.'' 

When pk2/o)p
2, 7—1, 6—1 and e—1 are all small 

compared to unity, it is clear that co in 7, 8, and e may 
be approximated by cop, in which case Eq. (40) as 
written gives an explicit expression for co. 

The transverse modes are obtained from Eq. (39) 

co2- c2k2- coco/[7cod=0- pk2 (Sco i ^ ) - 1 ] - 1 = 0 . (41) 

Here the plus and minus signs refer to the left and right 
circularly polarized waves, respectively, also called the 
ordinary and extraordinary waves. I t is clear from 
Eq. (41) that the thermal motion (through 0) and the 
effect of the collisions become very important for 
co ̂ ±12 , leading to a considerable modification of the 
resonance. Since the equation is second order in k2, we 
can solve explicitly for either k or the phase velocity in 
terms of co, but the resulting expressions will not be 
displayed here. 
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B. Propagation Perpendicular to the Magnetic Field 

With £3=0 and ki=k, Eq. (38) becomes 

w2_ <?&-<a*ly-(im (co^-O2)-1]"1=0. (42) 

This is the dispersion relation for the well-known mode 
with Ei along B0. The large effects due to the thermal 
motion and the collisions for co2^02 are quite apparent. 
Again we observe that since the equation is of second 
order in k2, we can solve explicitly for k or the phase 
velocity as functions of w. We note that as 0 —>0, 
Eqs. (41) and (42) become identical. 

The other modes are obtained from Eq. (39) 

Q2(u2-c2k2) (o?2a2-402+2^2)2= { (w2-c2k2) 
X[7(w252--402)-^2]--wp

2(co262--402)} 
X { (co252-402)[w27-V»^26-1(e+2)] 

-pWmr1}. (43) 

This equation is third order in k2 and fourth order in o)2. 
Explicit solutions can be given in a number of limiting 
cases, however. Thus we note that if 0=0, the solutions 
are consistent with Eq. (40) and the common 0 = 0 
limit of Eqs. (41) and (42). If the thermal motion is 
neglected, 0=0, Eq. (43) yields 

w2=wp
27~1+i(^2+027-2) 

± i[(^2-027-2)2+4cop
2027"3]1/2, (44) 

which reduces to the result of Gross1 in the absence of 
collisions. 

We can also solve Eq. (43) in the limit o>2<^c2k2, 
obtaining the two modes 

X [ e + 2 - (2T+5)2(472-52-75W^-2)-1], (45) 

w2=4Q2r2+#fey-1r1 

X [ 1 + ( 2 T + 5 ) 2 ( 4 7 2 - 6 2 - 7 5 W O - 2 ) - 1 ] . (46) 

The hybrid frequency given in Eq. (45) is consistent 
with Bernstein's4 Eq. (52) in the absence of collisions 
and for O2»o>p

2. For 0 = 0 Eq. (45) reduces to Eq. (40). 

C. Propagation in an Arbitrary Direction 
in a Weak Magnetic Field 

With the propagation vector k neither perpendicular 
nor parallel to Bo, Eqs. (38) and (39) are no longer 
satisfied, and we must return to the complete dispersion 
relation, Eq. (37). Under the simplifying assumption 
of a weak magnetic field, 02<$Cw/, we find the following 

solutions to the lowest order in the small quantities 
Q/<Op,Pfy<op*: 

a)2=Wp
27-1+^27-1r1(6+2) 

+n2y-2sm26(l-o)p
2/yc2k2), (47) 

w 2 = ^2+^27~l+^27-iriWp2(7^2+^2)^ 

±wp
2y~2Qcos6(c2k2+o)p

2y-1)^2. (48) 

In the absence of collisions Eq. (47) reduces to Eq. (76) 
of Bernstein4 after changing the sign of his last term. 
In the limit c—» °° and without collisions we recover 
the result of Gordeyev.2 Equation (48) reduces to 
Bernstein's4 Eq. (77) if we ignore collisions, set 0=0 
and restore the missing o)p in his last term. We observe 
that the results above are consistent with Eqs. (40) and 
(41) for 6=0 and with Eqs. (42), (44), and (45) for 
0=7r/2, provided the appropriate limits are taken. 

D. Propagation in an Arbitrary Direction 
in a Strong Magnetic Field 

Finally we shall treat the case: 02^>w/)>>^2, cJ££>up. 
To the lowest order in co//02 and /3k2/a)p

2 we find one 
solution to be 

w 2=^ 2 cos26>[7™1+^H-27"1r1(€+2) 
-w2 sm2d(Q-2+y-2c~2k-2)2- (49) 

In the absence of collisions and in the limit c —•> °o this 
result agrees with Lewis' and Keller's8 Eq. (5.34). As 
they correctly point out the factor sin20 is missing in 
Bernstein's4 Eq. (58). For the electromagnetic modes 
we obtain the solutions: 

co2=c8*2+«pV1[7ac8*2-iQ2 sin20 

± 0 ( 7 W cos20+iO2 sin40)1^2](7VF-O2)-1 (50) 

and for the hybrid mode, 

c*2=Q2y~2+up
2y~l(y2c2k2 sin20-2O2)(7VF-O2)-1, (51) 

where we have also ignored the small thermal correc
tions. Again we find that these results are consistent 
with those obtained for 6=0 and 6=T/2. 

While other interesting limits of the dispersion 
relation, Eq. (37), exist, we shall not pursue these any 
further here. In conclusion we would like to point out 
that many of the collisionless limits of our results were 
first obtained through treatments based directly on the 
Boltzmann equation.1-"5 «8 In our opinion we have 
demonstrated that these results are more easily arrived 
at from the moment equations. 


