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The interaction of an intense coherent photon beam with free electrons is discussed. The photon beam is 
treated as a classical external electromagnetic field. The discussion is exact within the approximation of 
neglecting radiative corrections and the restriction to the case of a plane-wave field of arbitrary spectral 
composition and polarization properties. The scattering of a single photon out of a monochromatic beam by 
an isolated free electron is considered in detail. The cross sections corresponding to the scattering of the 
various harmonics of the incident beam are evaluated. These cross sections display a complicated dependence 
upon the intensity of the incident beam, at least for very intense beams. It is found that a mass charige in
duced in the electron by the external field shifts the wavelength of the scattered photons by an amount 
depending on the intensity of the incident beam. Other processes involving free electrons in the final state are 
also considered briefly, and a discussion of the magnitude of the effects depending upon the intensity is given. 
Two Appendices are concerned with the electron Green's function and the vacuum-vacuum transformation 
function in the presence of a plane-wave field. In the course of the discussion of the latter, the problem of 
the correct definition of the vacuum current is encountered, and it is shown that a very careful procedure is 
necessary to obtain a covariant result. 

1. INTRODUCTION 

THE development of lasers has led to the availa
bility, for the first time, of coherent photon 

beams of high intensity. Such beams give rise to a 
number of interesting and novel effects, depending 
nonlinearly on the beam intensity. The interaction of 
these beams with the elementary constituents of matter 
has not as yet been very fully studied.1 In this paper, 
we shall concentrate on the problem of the interaction 
of a laser beam with a single free electron.2 The methods 
used, can, however, be applied without difficulty to a 
considerable range of processes. 

Since the number of photons in the laser beam is very 
large, it is a good approximation to use a semiclassical 
treatment in which the laser beam is treated as an 
external unquantized electromagnetic field. In this 
paper, we shall neglect radiative corrections; but if 
necessary they could easily be included in the usual 
way by making a perturbation expansion. We shall 
make the physically plausible idealization of repre
senting the laser beam by a plane-wave field; that is, 
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1 Those phenomena which have been studied include the 
generation of harmonics and of beat frequencies. A treatment of 
harmonic generation using the usual methods of perturbation 
theory has been given by Z. Fried, Nuovo Cimento 22, 1303 
(1961). The generation of beats has been discussed from a micro
scopic viewpoint by Z. Fried and W. M. Franck, Nuovo Cimento 
27, 218 (1963). See also Z. Fried and H. M. Cha, Phys. Letters 1, 
220 (1962). Another nonlinear effect of great theoretical interest, 
but much harder to observe experimentally, is the scattering of 
light by light, which has been discussed in this context by J. 
McKenna and P. M. Platzman, Phys. Rev. 129, 2354 (1963). 

2 This problem has already been studied using quite different 
methods by Z. Fried, Phys. Letters 3, 349 (1963). It was this 
paper which supplied the principal motivation for the present 
work. 

a field of arbitrary spectral composition and polari
zation properties, but characterized by a unique 
propagation direction. The calculations are then greatly 
simplified, for it has long been known that the Dirac 
equation in an external field of this form is exactly 
soluble.3 We are therefore able to treat the external 
field exactly, without expanding in powers of the 
intensity. 

As a preliminary to the main part of the discussion 
we give in Sec. 2 a straightforward derivation of the 
one-electron wave functions in the presence of a plane-
wave field. These wave functions enter as essential 
constituents in a calculation of any process involving 
free electrons in the initial or final states. 

As a specific example of the general technique, as 
well as for its intrinsic interest, we consider in Sec. 3 
the problem of Compton scattering of a single photon 
out of the laser beam by an isolated free electron. We 
examine in detail the case of a monochromatic beam. 
In this case, as one would expect, the transition ampli
tude decomposes into a sum of incoherent amplitudes 
corresponding to the various harmonics of the incident 
beam. The corresponding cross sections are evaluated, 
and for a beam of very high intensity (photon densities 
of the order of 1027 cm"-3) are found to exhibit a com
plicated dependence on the intensity and polarization 
of the beam. Such intensities are probably well beyond 
the reach of forseeable experimental techniques, and 
the primary experimental interest would be in a non-
relativistic situation. We give, therefore, explicit ex
pressions only for the nonrelativistic limit of the cross 
sections including terms of zeroth and first order in the 
intensity. Thus we obtain the first correction to the 
Thompson scattering cross section, and the leading 
term of the cross section for first harmonic photon 
production. There is, however, another effect, an 
intensity-dependent wavelength shift of the scattered 

3 D. M. Volkov, Z. Physik 94, 250 (1935). 
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photon, which may well be observable with a more 
moderate increase in currently available laser-beam 
intensities. This remarkable effect results from a change 
in the mass of an electron when it propagates in a 
plane-wave field. 

The major results of Sec. 3 are of a purely classical 
nature. It has recently come to our attention that a 
discussion of the scattering processes considered in that 
section has been given by Vachaspati,3a using classical 
electrodynamics. His results differ somewhat from ours, 
and we discuss the relationship between the two in 
Appendix C in the course of a general examination of 
the classical aspect of these processes. We also outline 
in this Appendix an alternative classical treatment 
which corresponds closely to the quantum-mechanical 
derivation of Sec. 3 and confirms the results given there. 

The intensity-dependent parameters in the various 
Compton scattering cross sections would be large if 
these processes involved large changes in the electron 
velocity. We therefore consider, in Sec. 4, the possi
bility that the presence of a laser beam of moderate 
intensity might lead to large effects in processes, such 
as jS decay, which involve high-velocity electrons.4 We 
find, however, that there is a closure relation which 
implies that the effects are still of the same order of 
magnitude as in the case of Compton scattering. 

In Appendix A we give a derivation of the electron 
Green's function in a plane-wave field.5 This Green's 
function is used in Appendix B to show that in such a 
field the vacuum-to-vacuum transformation function 
is precisely unity. This result, which is used in the text, 
would be expected on physical grounds, and has been 
established previously for the linearly polarized case 
by Schwinger,6 using rather more indirect arguments. 
In the course of the discussion, however, we encounter 
a problem of more general interest, namely that of the 
correct definition of the vacuum expectation value of 
the current operator. We show that a covariant, and 
in fact vanishing, vacuum current can only be obtained 
by a proper definition of this quantity as the response 
to a change in the external field, and by a very careful 
consideration of the limiting process involved in the 
definition of bilinear combinations of the field operators. 
We hope, therefore, that this discussion may throw 
some light on this general problem. 

2. THE WAVE FUNCTIONS 

We are interested in laser beams of very high in
tensity. It is therefore a good approximation to treat 

3a Vachaspati, Phys. Rev. 128, 664 (1962) and Errata 130, 2598 
(1963). 

4 The possibility that beta decay rates might be appreciably 
altered by the presence of a laser beam was suggested to us by 
G. Feldman and P. T. Matthews. 

5 This Green's function has previously been calculated, in a 
somewhat implicit form, by J. Schwinger, Phys. Rev. 82, 664 
(1951) for the particular case of a linearly polarized field. 

6 J. Schwinger, Ref. 5, 

the beam as a classical external field7 Ap(x). We shall 
consider the idealization of representing this field as a 
plane-wave field; that is, a field of arbitrary spectral 
composition and polarization properties, but which is 
distinguished by a unique propagation direction. This 
direction may be covariantly characterized by a null 
vector % lying on the forward light cone,8 

n2=0, n0>0. 

We shall use the notation 

y=n*x=nllx
lt, (2.1) 

so that our plane-wave vector potential is an arbitrary 
function of y, A^y). In virtue of the null property of 
tin, any such function satisfies the wave equation 

d2A (y) = n2 {d/dyfA (y) = 0. 

We shall choose a class of gauges such that the vector 
potential satisfies the condition 

n-A=0. (2.2) 

There still exists the freedom of making gauge trans
formations of the type 

A,(y)~>A,(y)+dfl\(y)==A,(y)+nfi(d/dy)\(y). 

The field strength tensor is given by 

FfiV=dvAli—dtlAy=fiv(d/dy)A{t—nfi(d/dy)Av. (2.3) 

Now, if we calculate the transition probability for 
any process involving electrons, or other charged 
particles, we shall need the appropriate wave functions 
for these particles in the presence of the external field. 
It is therefore convenient to compute these wave func
tions here, as a preliminary to the calculations given 
later. 

Since the Dirac equation in second-order form differs 
only by a spin term from the Klein-Gordon equation, 
it is useful to consider first the wave function for an 
incoming scalar particle. This function is defined by9 

*,*(*) = <014>(x) | P, in)A, (2.4) 
7 Alternatively, one may represent the initial (final) state of 

the laser beam as an eigenstate of the positive frequency part of 
the incoming (outgoing) photon field, |4M<+>'). Such classical 
limit states have been used extensively by J. Schwinger, Phys. 
Rev. 91, 728 (1953) and 92, 1283 (1953), and have recently been 
applied by R. J. Glauber, Phys. Rev. Letters 10, 84 (1963) to 
problems of coherence involving laser beams. [See also E. C. G. 
Sudarshan, Phys. Rev. Letters 10, 277 (1963) and R. J. Glauber, 
Phys. Rev. 130, 2529 (1963); 131, 2766 (1963).] I t is not hard to 
see that, with the neglect of radiative corrections and of the 
depletion of the initial state when a small number of photons are 
scattered out of it, this formalism is equivalent to the one used in 
the present paper. 

8 We employ natural units ( c = # = l ) , and a metric such that 

n-x^finXp—noXQ—n-x. 
9 In the case of a general external field, the quantity of physical 

interest is (0, out|^(x) |p, in>A. For a plane-wave field, however, 
we need not distinguish between the incoming ̂  and outgoing 
vacuum states, since we show in Appendix B that in this case the 
vacuum-to-vacuum transformation function (0, out 10, in)A is 
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where the subscript A denotes that this quantity is Note that since n2*=n-A=0, this matrix satisfies 
evaluated in the presence of the external field A»(x) 
It satisfies the Klein-Gordon equation 

(n2~w2)^in(^)-o, 
and the initial condition 

$p
in(x)^e~ip'x as #o—> — °° . 

Here IIM is the gauge-covariant derivative 

IIM=i5M— eAp. 

Recalling that A» is a function of y only, we are led to 
look for a solution of the form 

$p
in(x) = e~ip'xf(y), 

with the initial condition 

/ ( y ) - » l as j ~ > - o o . 

Because of the null character of n, and the relation 
p2=tn2, the equation for f(y) is 

\s(d/dy)-lp(y)-]f(y) = 0, 

IP(y)=(l/2n-p)Z2ep-A(y)-<?A*(y)3. (2.5) 

This equation has an obvious solution, which gives 

aF(y)(rF(yf) = 0. 

In view of the expression obtained above for the Klein-
Gordon wave function, we look for a solution of the 
form 

^P\in(x) = g(y)e~ip'x exp\ -i\ dy'Ip(y') \upX, 

where g(y) is a matrix function of y satisfying the initial 
condition 

g(y) —> 1 as y —» — <*>. 

Substituting this expression in the second-order Dirac 
equation, we obtain for g(y) the equation 

[2 in-p(d/dy)+h«rF(y)-]g(y) = 0, 

which has the solution, satisfying the prescribed initial 
condition, 

g(y) = exp / dyf<jF{y') 
L^n-pJ-n J 

where 
= 1-

2n-p 
-yny*A(y). 

Thus, finally,11 

$PHx) = e-^*exJ-i[V dy'Ip(y')~\. (2.6) ^vxH^X^+(e/2n-p)TnyA 
L_ J _ 0 0 -J .. 

(y)] 

Xe-ipxexpi-if dy'Ip(y'))uPx. (2.10) 
By an entirely similar argument, or by using time-
reversal invariance, we find that the wave function for 
an outgoing particle, Similarly, the wave-function for an outgoing electron 

^ «,,*/ \* / , i , t M i n \ /"i >7\ 0 I momentum p and spin X, 
<V 0*0 =\P, out 10^(^)10)4, (2.7) ^ F > 

*,xout(») = <P\ out|^(^)|0)A, (2.11) is given by 

$p^(x)* = eip-xexJ-if dy'Ip(y')]. (2.8) 1S S l v e n b y 
L Jv J ^pxoutW = ^x[ l+(^/2w^)7-^(y)T-^] 

X ^ * e x p | - ; f d / W ) | . (2.12) 
We now return to the case of the Dirac equation. 

The wave function of an incoming electron of mo
mentum p and spin X, 

*P)Sn(x) = (0\\l/(x)\v\m)A, 

satisfies the second-order Dirac equation10 

(7 • IL+m) (7 • II—m)^rpx
in (x) 

(2.9) 3. HIGH-INTENSITY COMPTON SCATTERING 

In this section, we consider the scattering of a single 
photon out of an intense plane-wave beam incident on 
an isolated free electron. There is no difficulty in going 

= [II2—nt2+%e<rF(x)~]$rp\
in(x) = 0, through the usual limiting arguments with wave 

pockets, provided that we initially take the incident 
beam to be a wave train of finite duration and only 

^Pxin(x)^e~ip'xup\ as x0—> — 00 . later go to the limit of a monochromatic beam. We 
Here therefore take the initial and final electron states to 

%<rF=%<rpLVF'lv=—i(yn)y (d/dy)A(y). be states of definite momentum and spin, p, X and p', 

and the initial condition 

11 Since ^p\
in satisfies the second-order Dirac equation, and 

precisely unity. Our method of calculation would be inapplicable initial conditions which themselves satisfy the first-order Dirac 
if this were not so, since we should not be able to specify the equation, the expression x = (7 -II—m)^p\ i n satisfies the equation 
initial condition at x0 -> — 00. (yH-\-m)x-0 and vanishes in the limit x0 —> — 00. Thus x is 

10 We use Dirac matrices defined by {y»,yv} = 2gM,^and identically zero, and ^ x
i n automatically satisfies the first-order 

o'iiv = ¥Ly^7^1' Dirac equation. 
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X', and consider the scattered photon to be in a state of 
definite momentum and polarization, k', e'. The appli
cation of the usual reduction procedure gives 

<p'X',kV,out|pX,in>A 

= -i / (dx)eik''*<p'X', out | e'• j(x) | pX, in)A, 

where 
jli(x) = e^(x)yfi^(x). 

With the neglect of radiative corrections, the two-
electron Green's function factorizes into a product of 
one-electron Green's functions. Accordingly,12 

(p'X',kY, out 1 pX, in)^ 

= -ie / (dx)eik''xyp>\>ont(x)e'-yVpx
in(x), (3.1) 

where the wave functions are those defined in the pre
ceding section. We thus obtain, within the framework 
of quantum field theory, the familiar result of the first-
quantized theory which expresses the transition ampli
tude as a wave function matrix element of the inter
action term eik''xef-y representing the scattered photon. 

On inserting the expressions (2.10) and (2.12) for 
these wave functions, we obtain 

<p'X',kY, out|pX,in)^ 

= —ie I (dx) expp (pr+V—p) • x"] 

Xexp^-ij dy'Ip,(y')-ijV <*//,(/)] 

XuP'\'ll+(e/2n-p')y'A(y)y-n}Y'J 

X[l+(e/2n-#)7-»Y-il(y)>px. (3.2) 

We may now go to the limit of a monochromatic 
plane wave. For the general case of arbitrary polari
zation, we may write this in the form 

Afi(y) = Re(alie-icoy) = Re(alie~1'k'x), (3.3) 

where CtM is a complex vector specifying the amplitude 
and polarization of this field, co is its real angular 
frequency (in the frame in which n0= 1), and 

kp^QMp (3.4) 

is the corresponding energy-momentum vector. In this 
limit, there is a divergence in the amplitude. However, 
the divergent part is merely a constant phase factor 

12 In the general case, there would be an additional term in
volving the vacuum current and an additional factor of the 
vacuum-vacuum transformation function in this equation. We 
may omit these for the case of a plane-wave field in view of the 
results obtained in Appendix B, compare footnote 9. 

which has no physical effect and may therefore be 
omitted. It arises of course because we have chosen an 
infinitely long wave train. With the omission of this 
phase factor, we then find the expression 

(p'X'jkV, out[pX, in),i 

= —ie I (dx) exip[i(p'-}-k'—p) • x] 

Xexpp£ sin(k'X—a) 

+iir} sin(2k-x—2a—l3)+i{k-x'] 

XuP>\>Zl+(e/2k-p')y-Re(ae-ik'x)y'kly-S 

Xll+(e/2k'P)ykyRe(ae-ik-*)1upX) (3.5) 

where the gauge-invariant, dimensionless parameters 
£, V, T, a, 0 are given by 

rje 

/p'-a p-a\ 

V - & p-k/ 

Xp'-k p-k/' 

\p'-k p-k/ 

-(-a2) 
4 V 

f=—(-«-a*> 
4 

(3.6) 

(3.7) 

(3.8) 

We note that the phase a cannot be physically sig
nificant, since it may be absorbed by a phase change of 
Cfc. It is convenient to note here that the kinematical 
relations obtained below show that 

L(w-k)-(i/p-m>o, 
whence for all polarization states 

The limiting cases are 97=f for linear polarization, and 
?7=0 for circular polarization. 

The exponential factor involving the sine functions 
is periodic in k-x, and in order to perform the inte
gration over x it is useful to express it as a Fourier 
series. To this end, we use the generating function of 
Bessel functions 

00 

eiz sin* = £ eir6Jr(z). 
r=—oo 

Then we obtain 

exp{i£ s i n ( 0 - a ) + ^ sin[2(0—«)—£]} 
= tre-*'<*-°>Cr&rifi), (3.9) 

where 
C r ( U # = L S eWJr-2s(-H)Js(-h). ( 3 -10 ) 

These functions Cr share many of the properties of the 
Bessel functions of which they are composed. In the 
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particular case of a circularly polarized beam, they 
reduce to Bessel functions, 

The application of the Fourier inversion formula to 
the defining relation (3.9) yields 

rT dd 
Cr (f ,i?,0) = / — exp[irO+i£ sin0 

+ ^ 8 ^ ( 2 0 - / 3 ) ] . (3.11) 

Upon integrating this relation by parts, we obtain a 
relation among contiguous functions, 

2rCr+^Cr-i+Cr+i)+v(e^Cr^+e-^C^2) = 0. (3.12) 

When we substitute the series (3.9) in the matrix 
element, and perform the integration over x, we obtain 
a sum of terms involving energy-momentum 8 functions, 
of the form 

<pV,kV,out|pA,in>A 
= ~i E r {2Tr)%pr+k'-p-tr-$~]k)Tr. (3.13) 

This structure displays the decomposition of the com
plete scattering amplitude into incoherent amplitudes 
which describe the scattering of the various harmonics 
of the incident beam. The energy-momentum con
servation equation 

p'+k'=p+rk-£k (3.14) 

contains an unfamiliar term, £k. This term arises from 
the altered propagation character of the electron in the 
laser beam. The Green's function obtained in Appendix 
A shows that for large times the electron propagates 
in the beam with a mass m2+Am2, where Am2 is posi
tive, and for a monochromatic beam is given by 

Am2=je2(-a-a*). (3.15) 

As the electron propagates into the beam, its effective 
mass changes from m2 to m2+Am2, and it is plausible 
that the only component of its momentum which can 
change during this process is that along the direction 
of k. Thus the effective momentum of the electron 
inside the beam is 

p=-p+(Am2/2k-p)k, p2=m2+Am2. (3.16) 

Since f may be written as 

£ = (Am2/2k • pf) - (Am2/2k • p), 

the energy-momentum conservation equation may be 
written in the form 

p'+k'=p+rk, (3.17) 

which expresses the conservation of momenta inside 
the beam. We note that this equation can only be 
satisfied if r is a positive integer. 

The amplitudes Tr are given by 

Z W « L Cr-(tofi)M.9 (3.18) 
s=>-2 

where the M8 are spinor matrix elements which can be 
written, after some elementary spinor algebra, in the 
form 

MQ=eup>\>Zy-e'+t(k-e'/k-k')y-k']up\, 

-yQykye' 
M: = l<?<riaup>\>\ -

k-p' 
ye'ykyd' 

k-p 

M±2=zieve±i^(k'e,/k'kf)up'X'ykup\J 

(3.19) 

k x , (3.20) 

(3.21) 

with M-i obtained from Mi by the replacement 
e~i<xa—»^'aa*. The amplitude Tr is clearly invariant 
under a gauge transformation of the external field, 

Its invariance under a transformation 

of the polarization vector of the scattered photon can 
be easily verified with the help of the relation (3.12) 
among contiguous Cr functions. 

It is clear from an inspection of the matrix elements 
Ms that it is advantageous to use a gauge such that 
k-e'=0, for then M±% vanish and MQ takes on a par
ticularly simple form. However, we shall need the 
results of our computation in other gauges. Hence we 
shall not fix the gauge at this stage, but exploit the 
gauge invariance of Tr by replacing e' by the gauge 
invariant quantity 

««=€!, '- | U«'. (3.22) M/"€/ W V " 
It is then a straightforward matter to sum and average 
over the electron spins. We obtain 

<ir,|V=lEEirr |« 
X X' 

where 
•-\*t\Ar\*+{h-W/m*)\Br\*], (3.23) 

Ar= (l/m)Z2p- e'Cr-e(e-ia€'- aCr-i 

+ei"*.a*C+dl, (3.24) 
and 

|^ |2=2(r~f ) |C r |
2 +f( |C r _ 1 | 2 +|C r + 1 | 2 ) 

+ £Re[(Cr_i+CH-i)Cr*] 
+2rj Re[^Cr_iCV+i*]. (3.25) 

Note that the entire dependence on the polarization 
vector e' appears in the expression A r. Since l' is gauge 
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invariant, we may easily obtain polarization sums by 
allowing e' to range over the four coordinate directions. 
Thus 

a-kk'-b+a-k'k'b 
]C a-e'e''b=—arbi=—a-b-\ , 

k-k' 

where ax denotes the projection of a in the plane 

orthogonal to k and k\ Using the identity 

which follows at once from the momentum conservation 
equation, we then find13 

E W, - « [ * : p'-kp-k 

L m2k' • k |3,ll-lC,l 

and hence 

T<\Tr\% 
(p'-ky+(p-ky (̂ 1 

L 2m*k'-k 
\Br\ \Cr (3.26) 

It is convenient to introduce at this point a dimen-
sionless parameter v2, independent of the momenta, 
which characterizes the intensity of the incident beam. 
We define 

Am2 e2 

v2= = — ( - f a - a*)>0. 
m2 m2 

(3.27) 

It is easily seen that the squared matrix element 
(|7V|2)av contains only v2r and higher powers. It is 
convenient to extract this factor, and define Qr by 

i\Tr\2U=\e2v^QTi 

Ar 

Vr 

2 k-k' 

+ 
Br 

V" 

(3.28) 

(3.29) 

Before proceeding with an explicit calculation of the 
various cross sections, it is useful to examine the mag
nitude of the effects we are considering. If we revert 
temporarily to conventional units, we may write the 
parameter v2 in the form 

J , 2 = = (2 7 r 2) - i Q : p X X c 2 ? (3.30) 

where a==e2/4/rfe= 1/137, p is the photon number 
density of the laser beam, X is the wavelength of the 
beam, and Xc=h/mc is the electron Compton wave
length. This shows that the relevant quantity is the 
number of photons in a cylinder of radius X<?, and 
length X. Inserting the value of Xc, we obtain 

j^2X10~23pX, 

if p is in cm~3 and X in cm. Thus for a wavelength of 
the order of 5000 A, we would require a photon density 

13 It is clear from this expression that \Br\
z is indeed a positive 

quantity. 

of the order of 1027 cm-3 to obtain a parameter v2~ 1. 
Unfortunately, the photon densities of conventional 
laser beams are several orders of magnitude less than 
this, and it seems rather unlikely that densities of this 
order will be attained in the near future. However, one 
might hope to attain a photon density of, say, 1023 cm""3, 
so that J^—IO^4. This may still give rise to some ob
servable effects, which will be discussed below. An 
alternative form for v2 is 

v2— 8\2r0/Trtnc2, (3.31) 

where ro=e2/4cwTnc2 is the classical electron radius, and 
& is the electromagnetic energy density in the laser 
beam. This form exhibits v2 as the ratio of the electro
magnetic energy contained in a volume XVo to the rest 
energy of the electron. It thus demonstrates that v2 is a 
purely classical quantity, independent of Planck's 
constant ft. It also shows that to attain *>2~1 we would 
require an energy flux of the order of 3X1010 W per 
square wavelength.14 

We now return to the calculation of the various cross 
sections. We shall now restrict our discussion to the 
laboratory frame in which the electron is initially at 
rest. The differential cross section for the scattering of 
the (r— l)th harmonic is 

ddr 1 d$r 

dQ p dQ, 
<ln|2)av, (3.32) 

where p= (e2/m2cx)p2)~l is the flux of the incident photon 
beam, and # r is the phase space of the final state, which 
we now proceed to calculate. We may write this 
quantity in the form 

$,=-
2m 

So* (<f4£')50'2)<KJW ,')jW)s(i>'2- m>)e(p<>') 

Xdiip'+V-p-lr-fik). (3.33) 

The evaluation of this integral requires some care, 
because £ is itself a function of p' through the relation 

r = — [ ( i / f - * ) - ( ! / # • * ) ] . 
2 

The simplest way to proceed is to separate the inte
grations over the components of p' along k and kr from 
the remainder. Using the notation p/, introduced 
above, for the projection of p' in the plane perpendicular 

14 It is well to note here that although v2 apparently diverges 
with increasing wavelength, this divergence cannot be obtained 
in a physically realizable situation. For, in order that the field be 
a good approximation to a monochromatic plane wave, it must 
extend at least over a volume of the order of X3, and the energy 
within this volume, 8X3, must be finite. Thus, as the wavelength 
increases without bound, v* must in fact vanish as 1/X. 
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to k and k', we have 

XB\jin+2(p''kp'-V/k-k')-m*y(p'-k) 

X82(pi'-pi)S(p'-k+kf'k-p'k) 

XW-k'-p-k'-lr-Qk-k'). 

The Jacobian of the transformation is easily seen to be 
cancelled by the factor arising from transforming the 
d functions. The 0 function 0(^o') has been replaced by 
6(p'-k) since for a vector pf lying on the hyperboloid 
pf2=m2 the conditions po'>0 and p'-k>0 are equiva
lent. It is then a straightforward matter to perform the 
pr integrations successively. We obtain the expression 

3V=~ 
2m 

Ud$)b{k'2)e(h')e(k-p-k'kf 
) 

Xh{2k,'P+{m*v*k'k,/k'P)-2r\k>p-k-k,']}1 

from which it is obvious that the argument of the 0 
function is positive if r is positive. We may now evaluate 
this integral in the laboratory frame in which 

p-k=mo), p-k'—nux)', k'k'=2(jooo' sin2j0, 

where co and co' are the energies corresponding to k and 
k' and 0 is the scattering angle of the photon. The 
vanishing of the argument of the 8 function gives the 
relation between the incident and scattered frequencies, 

mrcx) 
CO = C0r 

m+ (2ro)+mv2) sin2|0 
(3.34) 

On performing the integration over k' we obtain 

coV r 

Sw2ro) J 

For r= 1 and *>2=0, this reduces of course to the usual 
formula for the Compton effect. The additional term 
proportional to v2 arises from the altered propagation 
character of the electron in a plane-wave field which 
was discussed above. Note that, despite the fact that 
Ara2>0, the effect is to make the electron appear 
lighter, for \c is replaced by the larger quantity 
Ac+*>2X/2r. This apparent paradox arises from the 
directional nature of the effect of the altered mass. In 
terms of the momenta p and pr inside the beam the 
momentum conservation equation 

p'+k'=p+rk 

is precisely that for ordinary Compton scattering with 
an incident photon of momentum rk. Hence the fre
quencies in the rest frame of p are related by the usual 
Compton formula with a Compton wavelength corre
sponding to the mass (m2+Aw2)1/2. However the effect 
of a Lorentz transformation from the rest-frame of p 
to that of p is to change this relation into the one quoted 
above. As we discussed above, it is probably not experi
mentally feasible to attain a value of v2 much in excess 
of say 10~4. AlthoughWch^a small value of this parame
ter does not lead to very significant effects elsewhere, 
it might"'well figive an observable wavelength shift, 
since such shifts can be measured with great accuracy. 

iWe now return to the evaluation of the cross sections, 
restricting our attention to the experimentally im
portant case of linear polarization, and to the radiation 
gauge. Then OfcM is of the form 

(3.35) 

and hence 

where 

a = (0,ae), 

= 1, 

(3.38) 

and the phase ft is zero. The remaining parameters 
occurring in the rih amplitude are 

W2 . 
«, 

d*r/dti= (i^Vo) VrV2r^)(?r, (3.36) 

where, as before, r0 is the classical electron radius. 
The expression we have obtained exhibits, for ex

tremely high intensities (v2~ 1), a very complex de
pendence on the intensity, and on the scattering angle 
and polarization vectors. Before examining the simpler 
approximate forms which suffice for the description of 
possible experiments, we wish to discuss the frequency 
shift implied by the general relation (3.34) between the 
incident and scattered frequencies. This relation is 
simpler if re-expressed as a relation between the 
wavelengths, 

X/= (1/V)A+[2\C+ {v2/r)\] sin2|0. (3.37) 

Vr=£r = 
rv2 sin2|0 

l+^2sin2 |03 

(3.39) 

(3.40) 

where kf is a unit vector in the direction of k'. We note 
that these parameters depend only on v2 and the angles 
involved in the process, and not explicitly upon the 
frequency of the incident beam, co. The amplitude Ar 

can be expressed in the form 

Ar= 2^2vt- e'(Cr_i+CV+i)+ (j&. £7sin2j0) 
X [ a + ( V v 2 ) ^ - £ ( C r _ i + C m ) ] , (3.41) 

and hence, recalling the definition (3.25) of Br, it is 
clear that both these amplitudes are independent of co. 
Thus it follows from the expression (3,29) for Qr that 
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the nonrelativistic limit15 is obtained simply by omitting 
the contribution of Br, and we secure16 

fd(xr\ r 
— 1 = ( ^ V 0 ) 2 

Kda/KR 2(l+*>2sin2§0)2 

Ar 
(3.42) 

As we have discussed above, the parameter v2 is 
quite small for any foreseeable experimental situation. 
We shall therefore expand our results and retain only 
terms up to order v2. This procedure yields a v2 correc
tion to the familiar Thompson scattering cross section 
and the leading term of the cross section for the first 
harmonic production. With the help of the expansions 

Ci=-t{(i+h»i?)+ow, 

we obtain 
c^-Uv-U2)+o(^), 

/d(rj\ 

and 
X E S s i n ^ + ^ - e ^ - d ' - ^ d - e O } ] , (3.43) 

( — ) ~(m)*Z2(z-z')(kf-z)+i&-z')J. (3.44) 

4. OTHER PROCESSES 

We have found in the previous section that the 
nonlinear intensity effects in Compton scattering are 
very small unless laser beams of extreme intensity are 
employed. It is natural to ask whether it is not possible 
to find some alternative process for which these effects 
would be appreciable even for beams of moderate 
intensity. The parameter in Compton scattering, 

^e\(pf*®/p>-k)-(p-®/P'k)\, 

is small because the change in the electron's velocity 
is small. I t is of the order17 e&/co multiplied by the 
change of the electron's velocity, whose order of mag
nitude is the small quantity ca/m. Thus we are led to 
consider whether a process which involves high-velocity 
electrons within a monochromatic plane-wave field 
would exhibit a large effect. We shall consider a general 

15 The nonrelativistic limit is understood to imply oo/m—co'/tn 
= 0 but not Q,/m=0. Note also that it does not imply co~(*>'. If 
one sets ^ = f = 0 , but retains the contribution of £, this non
relativistic limit becomes essentially that of Z. Fried pPhys. 
Letters 3, 349 (1963)]. However, £2 is of the same order of mag
nitude as rf and £", so that this procedure is not self-consistent. 

16 It is easy to see that the nonrelativistic limit in the general 
polarization case is also given by (3.42). 

17 We should observe that the parameter 
(ea/o)2~e2(gX3)X 

diverges as X increases without bound while SX3, which is pro
portional to the total energy of the field, remains finite (compare 
footnote 14). Thus it can have no direct physical significance. 

class of processes of this kind, but it may be helpful to 
keep a specific example in mind. Such an example is 
provided by beta decay4 in which a fast electron is 
emitted and the only other charged particle is slowly 
moving. 

The presence of spin terms is an inessential com
plication, and for laser beams of moderate intensity 
these terms are in any case unimportant; they are 
smaller by a factor of order ed/m than those which are 
independent of spinor matrices. Thus we shall consider 
a process in which a charged scalar particle is emitted, 
and which therefore involves the wave function 
<£yout*(#) calculated in Sec. 2. The complete matrix 
element for this process must have the form 

{dx)^p,^{%Ye~iA'xM{^ • •) 

= f\dx) exl-i f dy'IAy')] 

Xe*(*'-A>'*jlf(A,---), (4.1) 

where M(A,- • •) is essentially the transition amplitude 
for the process in the absence of the laser beam. It 
depends upon the total energy-momentum transfer A 
to the other particles involved in the process, as well as 
upon other energy-momentum variables which we need 
not consider explicitly. Of course, the wave function 
which appears here is not gauge invariant. There must 
be other charged particles either in the initial or final 
states. However, we shall assume that we can choose 
a gauge in which the corresponding exponential factors 
for the other particles are near unity. This will be the 
case if these particles are slowly moving, and we use the 
radiation gauge. Clearly, we could consider simul
taneously the effect of other charged particles, but this 
would merely make our treatment cumbersome and not 
essentially alter our conclusions. 

We proceed now as in the previous section. We 
introduce a Fourier series decomposition of the ex
ponential factor and then perform the integration over 
x to obtain 

T = E r e^Cr(^M^YKpf-A~[r^-]k)M, (4.2) 

where, as can immediately be inferred from the dis
cussion of the previous section, 

&ia=e(pr*a/pf-k)y (4.3) 

vei(2am = (^2/4) (__ a 2 ) {Ijpf. k) , (4.4) 

f=(««/4)(-a-a*)(i/^-*)>o. (4.5) 

Thus we have obtained a decomposition of the tran
sition amplitude into an infinite sum of incoherent 
amplitudes. Since we are considering processes in
volving particles of high momenta, in general these 
momenta cannot be measured with sufficient accuracy 
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to distinguish among the various harmonics. The 
transition rate will therefore be given by 

r = / — - —-E|c r |*yy-[f-r]») , (4.6) 

where 

= f (df)(2rY8(p'-Lr-tlk-A)\M\\ (4.7) 

and J*(df) denotes the integration over the momenta 
of the other particles in the final state. The ranges of 
the various momentum integrations are of course 
limited and must correspond to the experimental 
situation. Clearly, y(pr—[r—f]&) is the differential 
transition probability for the emission of a scalar 
particle of energy-momentum p'—[r—Qk in the 
absence of the laser beam, where, however, the argu
ment p'—[r—£~]k does not necessarily lie on the mass 
hyperboloid. 

Now, if the velocity of the emitted scalar particle 
is large, we may, as a first approximation, neglect the 
(r— $)k term of the argument of 7, for the functions 
Cr decrease rapidly with increasing index r. It follows 
from the integral representation (3.11) of the Cr 

functions that 

r 

rr ddiddi 
— I V eir(.6l-H) 

J - . (2TT)2 r 

X exp{i£[sin0i— sin02] 

+*Ml[sin(201-j8)- sin (202-/3)]} 

= 1, (4.8) 

since the sum over r yields, within the integration range, 
2wd (61—62)* The Cr functions are of course the Fourier 
components of the wave function corresponding to the 
various modes of propagation. The relation (4.8) above 
exhibits a closure property of these components. Hence 
in this first approximation, the transition rate is the 
same as that in the absence of the laser beam, 

r=r0. (4.9) 

Thus the presence of the laser beam has no large effect. 
In order to consider more closely the order of mag

nitude of the effect, we write 

y(p) = / (dx)eip-*y(x). (4.10) 

The Fourier transform y(x) is appreciably different 
from zero only in the region \x\<l/E, where E is 

roughly the largest energy available to the emitted 
scalar particle. For the processes of interest to us in 
which a fast particle can be emitted, this energy will 
be of the order of the particle mass, E~rn* One may 
easily derive, using the method outlined above for 
obtaining the closure property (4.8), the more general 
relation 

= C0(2£ sinj^, 2rj sin<p, /3+£ir). (4.11) 

Thus, on introducing the Fourier transform (4.10) of 
y(p) into the rate formula (4.6) we secure 

rW) 1 r 
r = / / (dx)y(x)ew+W-* 

J (27r) 32^i 
XC0(2£ sin§ife-a, 2t\ sin&-#3 jS+i^r). (4.12) 

Now, since7[x) is small for \x\> 1/m, we have, within 
the important integration domain, 

\k-x\<<a/m<g.l. 

Hence, the effective parameters in the problem are not 
J and 7?, but the much smaller quantities 

&/tn=0(e(l/m), rj(a/m= 0[(ea/m)2] , 

and these are of the same order of magnitude as those 
which occur in the case of Compton scattering. We 
have now achieved a form in which an expansion in 
these small parameters may be performed. We shall 
merely remark that such an expansion indicates that 
the most pronounced effects would occur in regions of 
rapid variation of the energy spectrum of the emitted 
particle. 
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APPENDIX A 

The electron Green's function in the presence of an 
external plane-wave field occurs in any process involving 
virtual electrons within a laser beam. In particular, we 
shall make use of it in the following Appendix where 
we discuss the vacuum-vacuum transformation function 
for a plane-wave field. We present here a direct and 
simple calculation of this function, and obtain a form 
which proves convenient for our later discussion. 

The Green's function is defined as 

. < 0 o u t | r ( ^ ) ^ ) ) | 0 i n ) i - • 
G(x,x';A) = i , (Al) 

(OoutJOin)^ 
where T indicates the usual time-ordered product. It 
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satisfies the equation namely 

Zm~yIllG(x)x';A) = d(x-x'), (A2) g(xj.A)= f 
(dp) 1 

. (2wYm2-p2-ie 
and the associated boundary conditions that it contain 
only positive frequency components as xa or *,' tend X e x p T - ^ (x-x')-i C' dyjp(y)\ • (A7) 
to +oo? and only negative frequency components as L / J ^ ^ W / J V / 
x0 or xo tend to — GO . We shall solve for the Green's 
function using methods which are completely analogous One may readily verify, by performing the usual con-
to those used in the construction of the wave functions tour integral over p0 that, for a field corresponding to 
in Sec. 2. We set a finite wave train, the solution we have derived satisfies 

, _ . f A\ r\7\ the correct boundary conditions. 
G(x,x ; A) = |_7*U+mJSfax ;A), (A3) W e nQW w i g h tQ w r i t e t h i s r e g u I t i n a f o r m j n w h i c h 

so that g satisfies the second-order equation ^ e dependence of the integrand on p is simple. To do 
this, we make a formal translation of the integration 

l~IP+m2-ieaF(x)']Q(x}x
f; A) = 8(x~x'), (A4) variable,18 by defining 

and has the same boundary conditions as G. We look . / . , W/i f *- T , -A f * - A ,-\ 
for a solution of the form *' =P»+^ Jy/ ^ ^ " ^ Jyf

 dyeAM ' 

(dp) <r^-(*-*'> s o that the exponent is 

(27r)4m2-p2-u P ' ' f 
—ip- (x—xf)~i I 

where as before y=n-x, y'=n-x\ Then the equation Jy 

g(x,x';A)= J - ^ - ufp(yJ) 

before y—n.7 , .___ __4 

for fp becomes where 

(2wfm2-p2-u fy 

ip'(x—xr)~i j dyJp(y) =—ipf- (x—xf)—ieA(x,xf), 

, (dp) g-ip-^x'-) r d -, • A ( x , x ' ) = / dyA(y). (A8) 

/ (2rY^- i_ie
2n-pl-i-i+J*(y)y»{y>y') y~y ' 

^ %' P s One readily verifies that the Jacobian of this trans-

/

(gp) formation is unity, and that since n-p'=n-p the 
e~ip-<-^x''>[l—fp(y,y')~], (A5) denominator may be written as 

O)4 

w h e r e j -p*+m*=-p'2+m>+M?(y,y') f dy$e*F(y), 
JP(y)= [2ep-A(y)-*A*<y)-ie*F(y)l , _ y~J J * 

2fl'p where 
1 ry 

1 9E2(yy)= ; / dye2A2(y) 
=Ip(y> e*F(y). (A6) y~V J* 

-, N + ( / dyeA(y)\ . (A9) 
The left-hand side of Eq. (A5) vanishes if we take \y—yf J y> / 

T Cy 1 Recalling that crF(y)(rF(yf)^0) we see that the term 
My ) = exp -i ayjp[y)\. involving aF may be removed from the denominator 

y by expanding to first order in <rF. Since Ap is a space-
To verify that the right-hand side also vanishes, we like vector, it follows from the Schwartz inequality that 
separate the integration over the component of p^ in { Cv Cv 

the direction of n^ from the remainder. We write 9T12 (?,/)=; (yf—y)~2\ — / dye2A2(y) I dy 

where p^ is required to lie on a three-dimensional sur-
+ dyeA(y)\ ^ 0 . 

face. Then fP(yyy
f) is independent of K, and the inte- L^»' J 

gration over K gives 18 T h e translation of an integration variable by a quantity in
volving a matrix may in general be accomplished by diagonalizing 

da the matrix and translating the integration variable by its various 
—e~ i K( y~ y , )£l — fP(y7y

/)2 — §(y^yOLl^fp(yiy')~l==Q' eigenvalues. In the present case, the square of <rF vanishes, and 
2TT it therefore cannot be diagonalized. However, since the integral 

is a continuous function of the elements of this matrix, we may 
This demonstrates that we have obtained a solution of SagonaHofm, and'thenTet^t approachftŝ frue va^aftefjer" 
the inhomogeneous second-order Dirac equation, forming the integration. 

/ 
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In particular, for a monochromatic plane wave, we 
have, for |co(y—y')\^>l, 

mi2(^y)-Aw2=je2(-e-a*)>o, (Aio) 
which shows that over long times an electron propagates 
in the laser beam with the altered mass value m2+Am2. 
Because of the positive definite character of 9Tl2(̂ ,̂ 0> 
there is no difficulty in writing our result in the explicit 
form 

f 1 fv d 
£(x,x';A) = e-ieA(x>x,) 1 : / dy\e<rF(y)-

y—y' Jv> dm2) 

XActx-x'; m2+m2(y,y/)'], (All) 

where Ac is the familiar free-field Green's function, 

(dp) 
Ac(x; m2)--

(2TrYm2-p2-ie 
(A12) 

We note that, since n-A = 0, the function M2(y,yf) 
is invariant under a gauge transformation 

Thus the entire gauge dependence of Q is contained in 
A (#,#')• This function may be expressed as the straight 
line integral 

A(x,x') = / dx^A^ix) 

dr{x-x') -A[_yf+ (y-y')r~], (A13) 

which explicitly shows that under a gauge transfor
mation, 

A{xyx') -* A(x,x')+\(y)-\(y'). 

It is convenient to write the first-order Green's function 
also in a form in which its entire gauge dependence is 
isolated in the exponential factor involving A. Ac
cordingly, we define 

= idp—eAp(x,xf). (A14) 

One easily verifies that A^ may be written in the gauge 
invariant from 

A»(x,x')= drrF.iy+iy-y^ix-xy. (A15) 

Thus, on writing the integral involving aF in a similar 
form, we achieve the structure 

G(X,X'; A) = e~ieHx,x')£y. fl+w] 

X 
d 1 

drleaFly'+iy-y')^-
dm2J 

X A c[x- x!; m2+9Tl2 (y,y)]. (A16) 

APPENDIX B 

In the text we have made use of the fact that, in our 
approximation of. neglecting radiative corrections, the 
vacuum state is unchanged by an external plane-wave 
field, or, equivalently, that the vacuum-vacuum trans
formation function is unity, 

(0out |0 in)A=l . (Bl) 

This result is to be expected on physical grounds, for 
it is clear that a plane-wave field can only change the 
momentum by some multiple of the null vector n^ so 
that from the vacuum it cannot create electron-
positron pair states, whose mass is greater than zero. 
It is the purpose of this Appendix to establish the result 
(Bl) rigorously for the general case of an arbitrarily 
polarized plane-wave field using the formalism we have 
developed. In the course of our discussion, we shall 
encounter the problem of finding a correct definition 
of the current operator in quantum field theory. We 
hope, therefore, that our considerations may shed some 
light on this problem and be of some general interest. 

The vacuum current induced by an external field is 
given by the response of the vacuum-vacuum trans
formation function to variations of this field, 

<0ou t | j ^ ) | 0 in ) A 

0M(*)>A = - — —— 
(0 out 10 in)A 

bA^x) 
ln(0out|0in)A. (B2) 

To establish the result (Bl) it is therefore necessary 
and sufficient to show that in a plane-wave field the 
vacuum current (iM(x))^ vanishes identically. It is 
usually assumed that the current operator which 
appears in (B2) is the bilinear combination of Fermi 
field operators 

j\o)fi(x) = ^(x)y°yf1q\P(x), (B3) 

but this is a very singular object, which requires careful 
definition. 

Here we have changed from our previous non-
Hermitian fields to Hermitian fields. The use of Her-
mitian fields is often very convenient for the con
sideration of the various invariance properties of field 
theory, but we employ them here simply for their 
convenience in eliminating the necessity of ordering 
the field operators, and the resulting facility of com
putation. The new Hermitian fields have an additional 
two-dimensional multiplicity characterizing the charge 
they bear, and are related to the previous non-
Hermitian fields by 

U2J \5L*(tf-*t)J 
(B4) 

The Green's function for these fields is simply obtained 
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from that of the previous Appendix by replacing the 
electrical charge e by the charge matrix 

eq <;] (B5) 

We must now use a Majorana representation of the 
Dirax matrices, in which the matrices ( T V ) are real 
and symmetric. 

The bilinear combination (B3) of Fermi field oper
ators must be defined as some limit in which the two 
field coordinates are coalesced. Since gauge invariance 
should be maintained at all stages, we shall define this 
operator as19 

iM(o> (x) = symm lim ^(x+hh^q 
e-X) 

Xexp[—ieqA(x+ie, x—|e)]^(^—|e) , (B6) 

where A (#',#") is the line integral of the vector potential 
defined in (A13). As we have indicated, the limit of 
vanishing e is to be taken in a symmetrical fashion. 
Since we wish to preserve the canonical, Hamiltonian 
nature of the theory, we shall average only over spatial 
values of e. Thus 

(jti(o)(oc))A = symm lim (-§e) TtyY*6r*««A<*'.*"> 

X(l/i)G(x",x';A), (B7) 

where the trace is over both the spinor and charge 
indices. On inserting the expression (A 16) for the 
Green's function into this relation we see that the two 
line integrals cancel, and, after performing the trace, 
we secure 

(iM(o) (#))A=symm lim V j J> (*",*') 

Jo 
+d," drF>»(y'+T[y"-y'J)-

(\/i)Ac[x"-xf; m2+Wl(y",y')~]. (B8) 

The derivative d/ ' is effective only when it acts on the 
coordinate difference x"—x' occurring in Ac, for other
wise it gives terms proportional to nv, and Flivnv=0. 
For a space-like separation of points, this derivative 
of the Ac function is odd under the interchange of y' 
and / ' , while the term 

Jo 
drF>»(y'+T[y"-y'J) 

is even under this interchange. Thus the second term 
in the square brackets above does not contribute in the 
symmetrical limit, and we need consider only the first 

19 This definition was proposed by J. Schwinger, Phys. Rev. 
Letters 3, 296 (1959). 

term. On expanding this term about the point x we 
have 

0>(0)W)A=symm lim ^ [ - J e ^ O O 
e-»0 

+ (l/i2)ehvdxF>»(y)+0(e*)-] 

Now for a space-like argument 

(l/i)Ac(x; m2) = lm/4w2(-x2y^K£m(-x2yf22 
= l/4ir2{l/(-x2)+(tn2/4t) 

X[lnm 2(-# 2)+0(l)]}. (B9) 
Thus 

0,/x(0) 0)Xi= - (eP/^dxF^iy) symm lim ex€„/37re2, 
€->0 

and, on averaging over all spatial directions, we find 
the noncovariant and nonvanishing result20 

{jti(o)(x))A=-(e2/4:7r)(l/97r)dkF^(y). (BIO) 

Here and in what follows, latin indices range over 
only the three spatial coordinates. 

This difficulty is removed when it is realized that we 
must consider the variation of the complete Hamil
tonian density in obtaining the vacuum current, for 
it is this function that specifies the time-development 
of the vacuum state. We define21 this function as 

3C(» = symm lim %\l/(x+ie)y°e~ieqHx+u'x) 

X[—iy^k+eqyf'A^+nf] 

Xe-ie^^x-^{x-\e). (Bll) 

Accordingly, the current operator is given by 

b 
r(x)= (dx)3C(x) 

5A»(x), 

= jfi(0)(x)+j\i)(x), (B12) 

where J ^ D arises from the variation of the line integrals. 
Now 

8 r 
A(x+h\x)= I drie^ix+hr-x), 

SA^x) Jo 
and we can therefore use the 8 function to perform the 
integration over x. It is not hard to verify, using the 
symmetry properties of the Majorana-Dirac and charge 
matrices, that the variation of the second line integral 

20 If we transform to a Euclidean space-time world [see J. 
Schwinger, Phys. Rev. 115, 721 (1959) J, perform the averaging 
procedure, and then transform back to Minkowskian space, we rind 
a vanishing result, since dyF^^O. This procedure, however, 
violates the canonical basis of the theory. 

21 The necessity of the introduction of exponential line integral 
terms in the Hamiltonian has been noted before in the study of a 
simple model, L. S. Brown, Nuovo Cimento 29, 617 (1963). 
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yields a contribution which differs from that of the 
first line integral only in the sign of e. In the symmetric 
limit these terms contribute equally, and we obtain 

im / < 
Jo 

iM(D 0*0 = ~ hie symm lim / drehf/(xf)y®q 
•-0 Jo 

Xe-ieqX^'>s)[-iyk(dk+dk")+eqyvAv(x)+nf] 

X€-fgH*9*"ty(g')f (B13) 
where 

I t is convenient to write the vacuum expectation of 
this operator in a form in which only the gauge-
invariant part of the Green's function appears. After 
some manipulation we obtain 

(j* (i) (X))A = \ie symm lim / dre" Trq{ —iykdk" 
*-* Jo 

+eqyktAk(xJx")-Ik(x'\x) 

+Ak(x",x')']+eqy0Ao(x)+fn} 

X<ri'*W'*"Kl/t)G(x",tf;A). (B14) 

We now examine the various terms in the curly brackets. 
The trace over the term involving m vanishes identically 
when the explicit expression (A 16) is substituted for 
the Green's function. The term in A0 does not con
tribute for purely spatial e, since the singular terms in 
the spinor trace of y^G are proportional to eM. Next, 
we consider the expression in square brackets. I t may 
be expanded about the point x, and the leading term is 

However, the leading term in the spinor trace of ykG 
is proportional to ek/(—e2)2, and therefore gives a 
vanishing contribution because of the antisymmetry 
of Fkm. The remaining term involves precisely the trace 
which occurs in the calculation of the usual current 
contribution (B7). Thus, recalling the evaluation of this 
trace (B8), we obtain 

O^ci) (*)>* = - -4e2 symm lim 
e-*0 Jo 

drCdk" 

+ dv"[ < Z f 2 M £ ' + r [ £ ' ' - 0 
Jo 

Ak{x",x') 

d 

dm2 

X (l/i)Aclx''-x';m2+m2(y",yf)']. (BIS) 

As we remarked before, the derivative dv" is effective 
only when it acts on the coordinate difference in the 
Ac function, and thus gives terms proportional to €„. 
On the other hand, the derivative dk is not effective 
when it acts on this coordinate difference, for recalling 
the definition (A15) of Ak(x",5f), we see that the 

resulting contributions from both terms in the curly 
brackets involve the expression ekF

kv€y, which vanishes 
for purely spatial e. Moreover, it is easy to verify that 
when dk" acts on the argument of the function WL2 it 
yields only terms which vanish in the limit e —> 0. Thus 
it is effective only when acting on the terms inside the 
curly brackets. Expanding these terms about the point 
x we obtain 

dk" I dfFk>(y'+?ly"-y'l) = hdkF
k>(y)+0(e). 

Jo 

Hence, inserting the form (B9) for the Ac function of 
small argument, we find 

(iM(D (*)h -Ae2 symm lim e" 

X - id*F*'(y)€, 
4 T T 2 ( - € 2 ) 

+tdtF*'(y} 
€„ 

STI^C—€2)J 

\4ir/ 

€*€„ 
dkF

kp(y) symm lim . 
~ ° 3TT€2 

Thus, on performing the spatial average, and recalling 
that dkF

k0 vanishes, we have 

/e2\ 1 
(i 'd) (*)>*=-( — )dkFk«(y)—, (B16) 

W / 9?r 

which precisely cancels the usual vacuum current con
tribution (BIO). Thus, finally, we have proved that 
the total vacuum current is zero: 

0 # | , (*)>A=0. (B17) 

This is in fact a particular case of a more general 
result, valid for arbitrary external fields. In the general 
case, a similar procedure to that adopted here is 
necessary to obtain a covariant, though in general 
nonvanishing (and indeed logarithmically divergent), 
vacuum current. The details of this discussion will be 
published elsewhere. 

APPENDIX C 

We have noted in connection with Eq. (3.31) that 
the parameter v2 is of a purely classical nature. The 
nonrelativistic cross sections, Eq. (3.42), are obtained 
by neglecting terms of order fico/tn, and, since ft does 
not appear elsewhere, the nonrelativistic limit must 
actually coincide with the classical limit. Vachaspati3a 

has obtained similar, though not identical, results to 
our Eqs. (3.43) and (3.44) on the basis of classical 
electrodynamics. We should like to clarify here the 
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classical nature of the principal results of Sec. 3, and 
the reasons for the discrepancy between Vachaspati's 
results and ours. 

One can solve directly the classical equations of 
motion for a particle in an electromagnetic plane-wave 
field. However, instead of doing this, we shall use a 
covariant generalization of the Hamilton-Jacobi 
method, which is mathematically simpler, and corre
sponds more closely with the quantum-mechanical 
treatment of Sec. 3. 

In the classical limit, we may neglect spin terms, and 
therefore consider only scalar particles. The wave 
function of Eq. (2.6) is of the form 

<Vn 0 ) = exp[—iSp {x)/ff\, 
where 

Sp(x) = p-x+ / dy'Iv(y
f) 

J ~oo 

is independent of ft. This demonstrates that the WKB 
approximation is exact in this situation. 

The function Sp(x) satisfies the equation 

which is easily recognizable as the covariant proper-
time form of the Hamilton-Jacobi equation. Hence 
SP(x) is Hamilton's characteristic function. The four 
quantities p^ here play the role of integration constants 
determined by the initial conditions. According to 
standard Hamilton-Jacobi theory, the classical position 
Xfxir) of the particle is obtained as a function of its 
proper time by differentiating with respect to these 
integration constants. This yields 

(d/dpM)Sp(x(r)) = **(o>+ Wm)r, 

where a^o) is a further constant four-vector. Explicitly, 
we find 

X»(T) / dy'Ip(y')+ / dy'A»(yf) 

p» 
= *M<oH T , 

m 
whence, in particular, 

n-p 

m 

The classical canonical momentum is given by the 
derivative with respect to ff"(r),' 

pll(r) = mxfi(T)+eAfllx(T)'] 

or, in our case, 

pft(r) = p^+nfiIPZy(r)']. 

I t follows that the time average of the momentum over 

D T . W. B . K I B B L E 

many oscillations of the electromagnetic wave is 

(Kr)>av= (mx"(T))„=pi>+ (n»/2n-pX-e2A2[y(T)'])av 
= P»+(m*i?/2n-p)nil, 

where v2 is defined by a generalized form of Eq. (3.27). 
This is precisely the "effective momentum inside the 
beam" p1* of Eq. (3.16). Classically, therefore, the 
increased effective mass of the electron may be inter
preted as arising from its oscillatory motion induced 
by the field. 

The simplest way of obtaining the classical cross 
sections is to use the Fourier transform of the classical 
current 

f{x') = e I drx^r)h[xf~x{r)'}. 

The procedure is closely analogous to the quantum-
mechanical reduction procedure employed in the text. 
The outgoing wave vector potential Af

fl(x) produced 
by the current jn(x) is 

A / {x) = / {dx')DrQ% (x- xOi/x (#'). 

At large times, we may expand A'(x) in terms of a 
complete set of solutions of the free wave equation (say 
plane waves), and each coefficient in this expansion is 
given by the usual three-dimensional surface integral 
over A'(x). By adjoining a surface in the remote past, 
where A* vanishes, we can convert this into a four-
dimensional volume integral. The amplitude for each 
plane wave component is just the appropriate Fourier 
component of the current, 

/ (dx)eik''x6''j(x) = edTeik''x(T)e''x(T). 

For a monochromatic field, the explicit expression 
for a^(r), which is easily obtained from the formulas 
above, contains a term linear in y (or r ) , which gives 
rise to the frequency shift, and also terms in sinw^ and 
sin2ary. On inserting this expression into the Fourier 
transform of the current, we obtain an exponential 
structure similar to that of Eq. (3.5), which may again 
be expanded in terms of the Cr functions, using Eq. 
(3.9). The integration over r (or y) yields a 5 function 
expressing the relation between co and a/, namely the 
nonrelativistic form of Eq. (3.34); and the coefficient 
of the 8 function is (apart from trivial factors) the 
function Ar defined in Eq. (3.24). This procedure 
finally yields precisely the nonrelativistic cross sections 
given in Eq. (3.42). 

Vachaspati3a has evaluated the classical cross sections 
to order v2, corresponding to our Eqs. (3.43) and (3.44). 
Our results differ from his because they are expressed in 
a different Lorentz frame. He considers a monochro
matic beam from the outset, and uses a frame in which 
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the electron is on the average at rest, that is the rest 
frame of p; we regard a monochromatic beam as the 
limit of a wave train of finite duration, and use the 
laboratory frame in which the electron is at rest before 
the arrival of the beam, that is the rest frame of p. 
The wavelength shift arises, in fact, from the Lorentz 

RECENT calorimetric measurements of Morin et ah1 

revealed bulk, reversible, second-order supercon
ducting transitions in V3Ga at magnetic fields much 
larger than the thermodynamic critical fields. The sur
prising bulk nature of the high-field transitions was at
tributed1,2 to a nearly complete occupation of the speci
men volume by dislocation-centered high-field super
conducting filaments of diameter comparable to a pene
tration depth \«5X10~6 cm,3 requiring a high disloca
tion density «4X1010 cm~~2.2 On the other hand, it was 
suggested4,5 that the transitions in VsGa might be the 

*This research was supported in part by the U. S. Atomic 
Energy Commission. 

1 F. J. Morin, J. P. Maita, H. J. Williams, R. C. Sherwood, 
J. H. Wernick, and J. E. Kunzler, Phys. Rev. Letters 8,275 (1962). 

2 J. J. Hauser and E. Helfand, Phys. Rev. 127, 386 (1962). 
3 For a discussion of the thermodynamic arguments for high 

critical fields in specimens of dimension«X see, for example, D. 
Shoenberg, Superconductivity (Cambridge^ University Press, Cam
bridge, England, 1952), p. 171. 

4 B. B. Goodman, Phys. Letters 1, 215 (1962). 
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transformation from the rest frame of p to the labora
tory frame. It is therefore of crucial importance to 
distinguish clearly between these frames. 

We wish to thank Dr. P. Auvil for helpful discussions 
of the material in this Appendix. 

thermodynamic manifestation of a "second kind" of 
superconductivity explicable on the basis of the spatially 
uniform negative-surface-energy theories of Ginzburg, 
Landau, Abrikosov, and Gor'kov (GLAG)6~10 or of 
Goodman.11'12 The present measurements offer strong 
support for the negative-surface-energy interpretation 
since high-field bulk-superconducting calorimetric tran
sitions are observed for a solid-solution bcc supercon
ducting alloy, V-5 at.% Ta, which, after arc melting, 
was annealed for 2 h at 1600°C (0.85 of the melting 

6 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 
20, 1064 (1950); V. L. Ginzburg, Nuovo Cimento 2, 1234 (1955). 

7 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957) 
[translation: Soviet Phys.—JETP 5, 1174 (1957)]. 

8 L. P. Gor'kov, Zh. Eksperim. i. Teor. Fiz. 37, 1407 (1959) 
[translation: Soviet Phys.—JETP 10, 998 (I960)]. 

9 L. P. Gor'kov, Zh. Eksperim i Teor. Fiz. 37, 835 (1950) [trans
lation: Soviet Phys.—JETP 10, 593 (I960)]. 

10 For a recent discussion of experimental evidence bearing on 
the GLAG theory see T. G. Berlincourt and R. R. Hake, Phys. 
Rev. 131, 140 (1963). 

1 1B. B. Goodman, Phys. Rev. Letters 6, 597 (1961). 
12 B. B. Goodman, IBM J. Res. Develop. 6, 63 (1962). 

P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 3A 3 F E B R U A R Y 1964 

High-Magnetic-Field Specific Heat of a Low-Dislocation-Density 
Alloy Superconductor* 

R. R. HAKE 

Atomics International Division of North American Aviation, Inc., Canoga Park, California 

AND 

W. G. BRAMMER 

North American Aviation Science Center, Canoga Park, California 
(Received 5 August 1963; revised manuscript received 21 October 1963) 

The specific heat C of a well-annealed alloy V-5 at .% Ta, measured at 1 . 4 < r < 5 ° K in steady magnetic 
fields, displays sharp, bulk, superconducting transitions at upper critical fields HC2 a factor «10 larger 
than the calorimetrically derived thermodynamic critical fields He. The transitions are similar to those ob
served earlier by Morin et al.1 in V3Ga, but in the present case it is unlikely that the bulk nature of the high-
field transitions can be attributed to a nearly complete occupation of the specimen volume by dislocation-
centered high-field superconducting filaments of diameter comparable to the penetration depth, since elec
tron transmission microscopy studies on an identically prepared specimen indicate that in at least 95% of 
the specimen volume the mean separation between dislocations is greater than 1.4X10-4 cm. However, the 
present data are explicable on the basis of the Ginzburg-Landau-Abrikosov-Gor'kov theory with a param
eter K«fl"c2/v2£Tc«7. The transition specific heat jumps AC(T9)/yT,= lM, 1.15, 1.10, 0.94 occur at 
r*=4.30, 4.09, 3.85, 3.37°K in fields # = 0 , 1, 2, 4 kG, respectively, where 7=normal state electronic 
specific heat coefficient=9.20 mJ/mole(K0)2. The AC(T8) values are in fair agreement with those calculated 
via Ehrenfest's equation for second-order phase transitions using Abrikosov's theoretical value of (dI/dH)T 
at T8 for K = 7, where /=magnetization. For (Ta/T)>l.S, Ces/yT8 = aQxp(-bTs/T) with G = 8.95, 6.24, 
5.01, 4.7; b= 1.48, 1.28, 1.17,1.1; for 27=0, 1, 2, 4 kG, respectively, where Ces is the electronic contribution 
to the specific heat. The exponential temperature dependence of Ce8 down to 1.4°K suggests an essentially 
everywhere finite, field-dependent, high-field energy gap in accord with Abrikosov's vortex model. 


