
P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 3A 3 F E B R U A R Y 1 9 6 4 

Band Structure and Fermi Surface of Beryllium* 
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Using a self-consistent potential, the energy eigenvalues along the symmetry edges, on the zone faces, and 
at the equivalent of 5184 general points in the first Brillouin zone were calculated for beryllium by expanding 
the conduction electron wave functions in a linear combination of 23 orthogonalized plane waves. From 
this the Fermi energy and density of states were calculated and the Fermi surface constructed. The density 
of states is in agreement with soft x-ray emission and absorption data and with the experimental low-
temperature specific heat coefficient. The Fermi surface consists of three pieces: A region of unoccupied 
states in the first double zone which resembles a coronet, and two identical pockets of electrons in the 
second double zone similar in shape to a cigar with a triangular cross section. The de Haas-van Alphen fre
quencies in 1/H predicted from the Fermi surface are in good agreement with those measured experimentally. 

INTRODUCTION 

THE band structure and other electronic properties 
of beryllium were first calculated by Herring 

and Hill1 (HH) in the initial application of the orthogo
nalized plane wave (OPW) method. Their pioneering 
effort has served as the basis for many more subsequent 
energy band calculations using this method.2-6 Since 
techniques for investigating the Fermi surface directly 
have only been developed within the last decade, a test 
of their work has generally been restricted to the com
parison of the density-of-states curve for the conduction 
electrons with experiments dependent on this quantity. 
For example, the soft x-ray spectroscopy of beryllium 
has been found to be in qualitative agreement with the 
work of HH. Although they predicted a value for the 
density of states at the Fermi energy which was much 
lower than the free-electron value, it agreed quite well 
with the experimental values of the low-temperature 
electronic specific heat coefficient determined by Hill 
and Smith in 1953.7 

A more critical test, however, of their energy bands 
has only recently become available. Watts8 proposed a 
Fermi surface for beryllium based on de Haas-van 
Alphen measurements. The Fermi surface based on 
HH's band structure agrees qualitatively with these 
experiments only if one arbitrarily choses a Fermi 
energy different from the one they propose. The present 
work on beryllium had been started before the experi
ments of Watts pointed out this disagreement between 
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the theoretical calculation and experiment. In the fol
lowing paragraphs we indicate the ways the calculations 
needed to be improved. 

A first step toward improving the calculations was 
in the construction of the crystal potential. Aside from 
the usual Coulombic terms the following have now been 
included: correlation between ion-core electrons, ex
change and correlation between conduction electrons 
and a correction for deviation from spherical symmetry 
around the core. Furthermore, the potential is felt to 
be the most self-consistent yet produced. For the con
duction electrons single OPW wave functions (solved 
using the potential itself) were used in all the appro
priate terms contributing to the potential. The core-
state wave functions occurring in the potential terms 
were taken to be the ground-state solutions of the 
crystal potential itself. The potential was thus con
structed by a series of four iterations until the conduc
tion and core wave functions used to construct the 
potential were in fact solutions to it. 

Furthermore, enough general points (equivalent to 
5184) were computed in the first Brillouin zone (BZ) 
to define more accurately both the density of states and 
the Fermi energy. At all of these points a 23 X 23 secular 
determinant was solved for the lowest lying eigenvalues. 
The energy bands along all the symmetry edges and the 
zone faces were also determined in this manner. This 
information made possible a more exact determination 
of the Fermi energy, density of states, and the Fermi 
surface. 

THEORY 

Hexagonal Close-Packed Lattice 

In dealing with the direct and reciprocal lattices it is 
convenient to use the following representations: 

(a,b,c) = ati+bt2+ctz 

Cfl,J,c]=aKi+6K2+cK8. 

The t basis defines the unit cell in the direct lattice such 
that 

U=ck, t2=at, t8=a(—|l+|VSj) , 
A819 
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where I, % and k are unit orthogonal vectors (see Fig. 
1). c and a are the lattice parameters; the values used 
in this calculation are given by Schwarzenberger9: 

c=6.77152, <z=4.32109. 

The units are defined by &= 1, e2—2 and m=\\ energy 
in rydbergs and length in units of the Bohr radius. The 
unit cell contains two atoms (4 conduction electrons) 
located at (0,0,0) and ( | , | , | ) . The volume of the unit 
cell is 

Oo=trt2Xt3=a2cv5/2= 109.5. 

The atomic radius, rs=2.37, is defined by 

f7rrs
3=jQo. 

The K basis defines the reciprocal space lattice: 

Kr tj— 2w5ij % j= 1, 2, 3. 
Thus, 

Ki=(2ir/<;)J£, 

K2=(2x/av3)a+Vj*), 

K,= (4ir/aV3)J. 

The volume of the BZ is 
16^VS 8<x* 

Oic=Ki*K2XK3= = — . 
3a2c 120 

The radius of the free-electron Fermi sphere is defined 
by 

since with four conduction electrons per unit cell the 

(o,o,o) ?2 

FIG. 1. Unit cell 
in hexagonal close-
packed lattice show
ing locations of the 
two atoms; first 
Brillouin zone with 
l/24th zone out
lined by points of 
h igh s y m m e t r y 
TKMLHA. 

9 D. R. Schwarzenberger, Phil. Mag. 4, 1242 (1959). 

FIG. 2. Subdivision of l/24th zone into 216 microzones 
and location of representative point. 

volume of occupied states is equal to twice that of the 
BZ. This gives h= 1.027. 

Because of symmetry it is necessary to consider only 
l/24th of the BZ. This l/24th zone is outlined in Fig. 1 
by the points of high symmetry TKMAHL. This zone 
was partitioned into 216 microzones by subdividing 
each of the sides into 6 equal parts. A point in the 
"center" of each of these triangular prisms was assigned 
to represent the states contained in the microzone (see 
Fig. 2). The BZ is thus represented by 216X24=5184 
general points. 

OPW Method 

The theory of the OPW method has been reviewed 
frequently, with the most detailed discussion given by 
Woodruff.4 Essentially it amounts to treating the co
efficients of a truncated reciprocal lattice expansion of 
the wave function as variational parameters which are 
chosen such that the energy is minimized. The basis 
for the expansion is taken to be plane waves which have 
been orthogonalized to the core states. Dispensing with 
the details, the matrix elements of the secular deter
minant are given by 

Hij=iAiA£ (Gy<){W*<rf (8TT/O0) 

X[>A(g;*OA(g;fty)-A(A;Gy<)]}, 
A«= l , 

&ij= - (VOoM^if (GyOAfe; h)A(g; k3), 

where 
r00 sin(xr) 

A (*;*)=/ t(r) dr9 

Jo % 

f (%•) = l+expC2xi(iii+*i,+iit)], 

Gji= Gj— Gi= Zjijijz], 

ki=k+Gi, 

Ai^ii-fa/tkWfakdT11*. 
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k is the wave vector of the electron and G, is a reciprocal 
lattice vector [/,w,w], where l9 m, n are integers. g(r) is 
denned by 

f(r)=(4^)-1^(r)A, 

where \p(r) is the normalized core wave function. When 
the total potential is written as the sum of atomic-like 
potentials centered on the lattice sites, 

#(,) = £ F(|r-Ra|), 
lattice 

then h(r) is denned by 

X is the absolute value of the core eigenvalue, i.e., 
solutions of Schrodinger's equation for the potential 
V(r). The conduction state eigenvalues are determined 
by rinding those values of E such that 

|ff*—EAtf|=0. 

Potential 

As mentioned in the Introduction, the potential 
constructed for this band calculation is felt to be 
reasonably self-consistent. Explicitly, to the extent that 
the conduction electrons can be represented by a 
spherically symmetric single OPW and that core 
electrons are represented by the ground-state solution 
of Schrodinger's equation using the atomic-like po
tential V(r), and to this extent only, is the potential 
self-consistent. Limited as this framework might be it 
is a step in the right direction. The remaining step must 
bring in dependence on k and ultimately dependence 
on the band. This, of course, is out of the question 
today. It should be mentioned, however, that an 
attempt was made to make the potential | k | -dependent. 
To do this the momentum range between zero and ko 
was divided into eight equal intervals. In the exchange 
terms (conduction-core and conduction-conduction) the 
k dependence was retained and eight different potentials 
were constructed. As the conduction eigenvalues were 
being determined for an arbitrary point in the BZ, the 
magnitude of k was used to call in the appropriate 
potential curve. The difficulty with this procedure was 
that the energy bands had discontinuities at the points 
where a change between potential curves was made. 
Eight division were not sufficient to smoothly represent 
the k dependence. One could, of course, smooth these 
steps out in an arbitrary fashion or even take more than 
eight divisions, but it was felt that the additional com
plication was not warranted at the present. The change 
to an average value of k produced only small changes in 
the potential. 

To construct a self-consistent potential one would 
probably treat the conduction electrons as plane waves 
and the core electrons as those in the free atom. How
ever for beryllium the first iteration had already been 

performed by Pomerantz and Das.10 In calculating the 
field gradient at the nucleus they constructed a po
tential with the following terms: 

(1) Core Coulombic potential due to the charge Z 
on the nucleus and Is electrons taken to be the same as 
for the neutral Be atom.11 

(2) Core-conduction exchange potential due to a 
weighted mean between a 2s electron in the ls22s2 

configuration and a 2pz electron in the ls22pz
2 con

figuration. 
(3) Conduction Coulombic potential due to two 

electrons in the Wigner-Seitz sphere in single OPW 
states (constructed using Be atom core states and free-
electron conduction states). 

The core-conduction exchange bumps were then 
smoothed out, and the resulting potential was used to 
calculate a new single OPW charge density for the 
conduction states. Using this final potential (see Fig. 3 
in Ref. 10) we repeated the last stage of their calcu
lations as a check and began from this point the 
iterations toward a self-consistent potential. 

The various contributions which were considered in 
the construction of the self-consistent potential were: 

ha(r)—potential due to the ion-core, 
hb(r)—correlation among core electrons, 
he(r)—exchange between conduction and core elec

trons, 
hd(r)—potential due to the conduction electrons, 
he{f)—potential due to deviation from spherical 

symmetry, 
hf(r)—exchange and correlation among conduction 

electrons. 

Each of these will now be discussed in some detail. 
We begin with the ordinary Coulombic potential due 

to the positive charge Z=4 on the nucleus; the other 
contribution to the ion-core potential comes from the 
core electrons. Once the core wave functions are known, 
the potential follows from Poisson's equation. To get 
the wave functions Schrodinger's equation was inte
grated numerically using the computed form of the 
self-consistent potential. These two numerical pro
cedures are by now quite standard and will not be 
discussed here.12 The final core wave function is shown 
in Fig. 3. It is interesting that it is nearly identical to 
the Is wave function for neutral beryllium as deter
mined by Roothan, Sachs, and Weiss13 using a gen
eralized self-consistent field (SCF) formalism. The most 
sensitive parameter in the iteration procedure for the 

10 M. Pomerantz and T. P. Das, Phys. Rev. 119, 70 (1960). 
11 P. M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev. 

48, 948 (1935). 
12 For details in numerical procedures see T. L. Loucks, Ph.D. 

thesis, The Pennsylvania State University, 1963 (unpublished). 
13 C. C. J. Roothan, L. M. Sachs, and A, W, Weiss, Rev, Mod. 

Phys. 32, 186 (1960). 
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FIG. 3. Radial part of core wave function in 
self-consistent potential. 

potential was X. Therefore, it was used to determine the 
extent to which self-consistency had been obtained. 
The values at different stages of the iteration are shown 
in Table I. The starting and final values of this con
tribution to the total potential are shown in Fig. 4. 
The change resulting from the potential iteration is not 
large. The principal effect has been to establish a 
stabilized self-consistent value of X. This is important 
because of the sensitivity of the OPW matrix elements 
to this parameter. The numerical values of the final 
ion-core potential are listed as ha(r) in Table II. 

Correlation energy between core electrons as calcu
lated in the present work is a very small contribution 
to the total potential. Correlation between core elec
trons was assumed to be the same as that between the 
two electrons in doubly ionized beryllium. It was 
decided to use the Be++ wave functions computed by 
Lowdin and Redei14 which include correlationjby as
suming a wave function of the form 

^(rhn) = u(ri)u(r2){l+ar12), 

FIG. 4. Coulombic potential of core electrons: dashed line first 
iteration, solid line self-consistent potential. 

u (r) = (4rr)-1/2 (A xe-w+A 2e~a2r). 

The one-electron charge density was found by inte
grating ^2(ri,r2) over the coordinates of one of the 
electrons. The difference between the resulting charge 
density and that given by the self-consistent field type 
calculation was used in Poisson's equation to determine 
the potential due to correlation. The three parameter 
empirical formula given by Green, Mulder, Lewis, and 
Woll15 was used for the SCF solution. This contribution 
is listed as hb(r) in Table II. It was taken to be the same 
at each stage of the potential iteration. 

Exchange between core and conduction electrons was 
treated by evaluating the exchange integral to second 
order in spherical harmonic expansions. The potential 
is given by 

/ fas 0) r fa* (O^OPW (t,k)d3/\ 
7 « ( * , * ) = - 2 ( — / ; • V 

\Ww(x .kW Ix- t l / ^OPW (x,k) 

where the angular brackets indicate an average over 
the angle between x and k. ypu is the numerically tabu
lated core wave function from the most recent stage 
in the potential iteration, T/'OPW takes the usual form 

*opw(t,k)= (2/a0)
1/2 exp(ik-t)-Bkfas(t), 

where the Bk are the orthogonalization coefficients 

5*=(8ir/Oo)1/2Afe;*). 

In the evaluation of the exchange integral the spherical 
harmonic expansion for (|x—1| )~1 and Bauer's formula 
for the exponential term were used. Only the first two 
terms in the resulting expansion were retained since a 
calculation showed that in the range of interest the 
second-order contribution was always less than Jth the 
first-order term. The OPW wave function in the de
nominator was then expressed as a sum of real and 
imaginary parts; the final result can be summarized as 
follows: 

VRyf,R+Vifa 
Vex(x,k,f3)=-2fas(x) , 

W+fa2 

VR=(2/Q0)
ll2So-Bkf(x), 

Vi=(2/Qo)Su 

$R = (2/120)
1/2 cos (a* cosp)-Bkfas(x), 

^r=(2/120)1/2sin(^coSiS), 

o=— / *i.(0(-
X Jo \ 

smkt\ 
— )tdt 
k J 

r°° /sinkt\ 
+4TT/ fas(t)[ J* , 

14 P. 0 . Lowdin and L. Redei, Phys. Rev. 114, 752 (1959). 

15 L. Green, M. Mulder, M. Lewis, and J. Woll, Phys. Rev. 93, 
757 (1954). 
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47r cos/3 
Si— 

/sinkt—ktcoskt\ 
— )tdt 

k2 / 

TABLE I. Core-state eigenvalues in the crystal potential at 
different stages of the iteration. 

/(*) -J 
+4irx cos/3 

fn2(t)<Pt 

Ix-tl 

r~ /sinkt— ktcoskt 
• > M 0 ( )dt, 

kH* 

Stage of iteration 
Core-electron eigenvalue 
(arbitrary zero of energy) 

First 
Second 
Third 
Fourth 

-5.4387 
-7.0497 
-6.7648 
-6.7653 

f(x) was found by solving Poisson's equation 

W = - 4 W i s
2 . 

Vex(x,k) was evaluated using k=%ko as an average 
value. The results for hc(r)= — rV^ir) are shown in 
Fig. 5 and the final self-consistent results are tabulated 
in Table II. 

The Coulombic potential due to the conduction 
electrons was calculated using the charge density 

>(0=-
Go 

|iKk,r)|2<PA 

in Poisson's equation. Here the integration was taken 

TABLE II . The self-consistent crystal potential. 

Y 

0.00 
0.04 
0.08 
0.12 
0.16 
0.20 
0.24 
0.28 
0.32 
0.36 
0.40 
0.44 
0.48 
0.52 
0.56 
0.60 
0.64 
0.68 
0.72 
0.76 
0.80 
0.84 
0.88 
0.92 
0.96 
1.00 
1.08 
1.16 
1.24 
1.32 
1.40 
1.48 
1.56 
1.64 
1.72 
1.80 
1.88 
1.96 
2.04 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 
3.02 

ha(r) 

8.000 
7.422 
6.883 
6.399 
5.978 
5.618 
5.315 
5.063 
4.855 
4.685 
4.548 
4.437 
4.347 
4.276 
4.220 
4.175 
4.139 
4.110 
4.088 
4.069 
4.055 
4.044 
4.035 
4.027 
4.022 
4.017 
4.011 
4.006 
4.004 
4.002 
4.001 
4.001 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 

hb(r) 

0.000 
-0.054 
-0.081 
-0.091 
-0.092 
-0.087 
-0.080 
-0.072 
-0.063 
-0.055 
-0.047 
-0.040 
-0.034 
-0.028 
-0.024 
-0.020 
-0.016 
-0.013 
-0.011 
-0.009 
-0.007 
-0.006 
-0.005 
-0.004 
-0.003 
-0.002 
-0.001 
-0.001 
-0.001 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

he(r) 

0.000 
0.168 
0.326 
0.467 
0.589 
0.694 
0.786 
0.871 
0.955 
1.048 
1,163 
1.318 
1.533 
1.821 
0.620 

-0.658 
-0.443 
-0.301 
-0.208 
-0.145 
-0.102 
-0.072 
-0.050 
-0.035 
-0.024 
-0.016 
-0.006 
-0.001 

0.001 
0.002 
0.002 
0.002 
0.002 
0.002 
0.001 
0.001 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

hd(r) 

0.000 
-0.109 
-0.216 
-0.320 
-0.421 
-0.520 
-0.615 
-0.710 
-0.802 
-0.894 
-0.985 
-1.075 
-1.165 
-1.256 
-1.346 
-1.435 
-1.525 
-1.615 
-1.705 
-1.794 
-1.883 
-1.971 
-2.059 
-2.146 
-2.232 
-2.317 
-2.485 
-2.647 
-2.803 
-2.953 
-3.095 
-3.230 
-3.355 
-3.472 
-3.578 
-3.674 
-3.758 
-3.830 
-3.892 
-3.929 
-3.974 
-3.997 
-4.000 
-4.000 
-4.000 
-4.000 
-4.000 
-4.000 
-4.000 

he{r) 

0.000 
0.006 
0.012 
0.018 
0.024 
0.030 
0.036 
0.042 
0.048 
0.053 
0.059 
0.065 
0.071 
0.077 
0.083 
0.089 
0.095 
0.101 
0.107 
0.113 
0.119 
0.125 
0.131 
0.137 
0.143 
0.149 
0.160 
0.172 
0.184 
0.196 
0.208 
0.220 
0.232 
0.244 
0.255 
0.267 
0.279 
0.291 
0.303 
0.312 
0.304 
0.256 
0.203 
0.148 
0.150 
0.127 
0.090 
0.050 
0.000 

*/(') 
0.000 
0.043 
0.071 
0.087 
0.093 
0.090 
0.080 
0.062 
0.039 
0.011 

-0.022 
-0.059 
-0.098 
-0.135 
-0.159 
-0.160 
-0.150 
-0.137 
-0.125 
-0.113 
-0.102 
-0.092 
-0.083 
-0.075 
-0.068 
-0.061 
-0.049 
-0.040 
-0.032 
-0.026 
-0.020 
-0.016 
-0.013 
-0.010 
-0.008 
-0.006 
-0.005 
-0.004 
-0.003 
-0.002 
-0.001 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Total h(r) 

8.000 
7.476 
6.995 
6.560 
6.170 
5.824 
5.520 
5.256 
5.031 
4.849 
4.717 
4.646 
4.654 
4.755 
3.395 
1.991 
2.100 
2.144 
2.146 
2.122 
2.080 
2.028 
1.969 
1.905 
1.838 
1.769 
1.629 
1.490 
1.354 
1.222 
1.096 
0.977 
0.866 
0.764 
0.671 
0.589 
0.517 
0.457 
0.409 
0.382 
0.329 
0.258 
0.203 
0.148 
0.150 
0.127 
0.090 
0.050 
0.000 



A824 T . L . L O U C K S A N D P . H . C U T L E R 

h(r ) 

FIG. 5. Exchange potential between core and conduction electrons: 
dashed line first iteration, solid line self-consistent potential. 

over the spherical Fermi surface of radius ko, the wave 
function being a single OPW 

P(r) 
Oo fk° 

~27r2Jo o l^o 
2\ 1 / 2 sinkr 

kr -20 
At each stage of the iteration this integration was per
formed numerically using the current values of A *, Bu 
and xf/u. The resulting potential differed only slightly 
with each stage of the iteration, and the final result was 
essentially the same given by assuming an uniform 
distribution of electrons. Hence using OPW's did not 
effect this contribution to the crystal potential. The 
final charge density for the conduction electrons is 
shown in Fig. 6. The dip due to orthogonalization with 
the core state does not greatly affect the potential 
because it occurs near the origin and occupies such a 
small fraction of the total charge distribution. The final 

P(r) .l-fc FIG. 6. Conduc
tion electron charge 
density: dashed line 
first iteration, solid 
line self-consistent 
charge density. 

contribution of the conduction electrons to the total 
potential is listed as hair) in Table II. 

The potential due to deviation from spherical sym
metry has been treated in detail by both Heine and 
Falicov. Briefly, it is the potential due to the difference 
between two charge densities: (i) the charge density 
due to a lattice of protons and a uniform background of 
electrons; (ii) the charge density due to Wigner-Seitz 
spheres of electrons centered on the positive lattice sites. 
The uniform spheres of charge overlap in some regions 
while failing to cover others at all. By performing an 
Ewald-type sum at various points between the lattice 
sites one can develop a potential which takes account 
of the actual crystal lattice. The resulting correction 
term is listed as he(r) in Table II. It is a small correction 
except in the region between the lattice sites where it 
has the effect of making the potential more binding. 
This contribution was kept constant during the po
tential iteration. 

The final contribution to the crystal potential is that 
due to exchange and correlation among the conduction 
electrons. These two effects were included together by 
using a screened p1/3 exchange. The justification of this 
follows from treating the electron density as a variable 
in the Pines expression for the average exchange energy 
per electron.16 The result takes the form 

7(f) = • 0 ( — - » • 48/ '' 

where p(r) is the conduction charge density discussed 
above. When /3 is determined by minimizing the long-
range correlation energy it is given by 

P=art 
1/2 

where a=0.35 and the electronic radius, re ,is defined by 

firrfl
8=Oo/4-

If the electron-plasmon interaction is taken into 
account, then the value of a is 0.40. One can show by 
quantum-mechanical considerations that the upper 
bound to the value of a is 0.47. Thus, there seems to be 
some arbitrariness in the selection of /3, but for this part 
of the calculation it was decided to use a=0.35 which 
gives j8= 0.482. This choice of 0 agrees with the value 
obtained from characteristic energy loss measurements 
on thin films of beryllium. Since energy is measured 
from an arbitrary origin, the screened exchange po
tential was shifted so that it was zero in the region 
between the lattice sites where the charge density is 
uniform. The contribution to the total potential is 
listed as hf(r) in Table II. 

There was a certain reluctance to use the screened 
p1/3 exchange potential because of its known approxi
mate form. An attempt was made to calculate the 
exchange between single OPW wave functions using 

,0 1.5 2.0 2.5 
16 D. Pines, Phys. Rev. 92, 626 (1953). 



BAND STRUCTURE AND FERMI SURFACE OF Be A825 

an exponential screening factor in the exchange integral. 
An expansion to second order in spherical harmonics 
was again used, as in the exchange integral between 
core and conduction electrons. However, the expressions 
were much more complicated, and the running time on 
the computer for a single value of the radius vector was 
far out of proportion to the improvement this approach 
could be expected to make. However, the values for 
small r were found using &=po, and they were about 
half as large near the origin as those given by the 
screened p1/3. These results differed further in that 
instead of a single dip, as appears in p(r), there was a 
dip and a bump, much as in the case of core-conduction 
exchange. 

A ^-dependent exchange and correlation between 
conduction electrons was tried initially using the 
B ohm-Pines (BP) one-electron correlation formula for 
the free-electron gas. This procedure was used by 
Heine on aluminum and Falicov on magnesium, so the 
equations will not be repeated here [see Eq. (2.14), 
Falicov6]. In the computation, (I was the same as in 
the screened p1/3 expression. The use of the BP k-
dependent exchange-correlation energy in this manner 
did not, however, give a correct Fermi surface for 
beryllium. The surface that resulted using the in
dependent BP term and 0= 0.482 consisted of: (i) a 
hole region in the first double zone which resembled a 
3-toothed gear mounted in the center of an axle which 
is larger in the middle and tapers to rounded ends, 
(ii) a pocket of electrons similar to two milk saucers, 
one inverted on the other, and (hi) six identical little 
pockets of electrons with the shape and relative size of 
a cashew nut. At first it was thought that this surface, 
although quite different from the free-electron model, 
might yield the experimental de Haas-van Alphen 
frequencies. This was not found to be the case. By 
neglecting the Pines ^-dependent screened exchange 
the resulting Fermi surface was found to be in very good 
agreement with all known experiments. This is really 
the only defense offered for this procedure. 

The last column of Table II is the total crystal 
potential which was used to determine the OPW ex
pansion matrix elements. These results are shown in 
Fig. 7 along with the potential used by other investi
gators. The potential used by Jacques17 is not shown 
since it is essentially the same as that of HH. 

Calculation of Energy Eigenvalues 

The computer program for generating the energy 
eigenvalues begins by reading the coordinates of a 
point in k space. It then constructs four 23rd-order 
matrices: the real and imaginary parts of both the 
Hamiltonian and overlap matrices as described in the 
section on the OPW method. The same 23 reciprocal 
lattice vectors (those closest to the origin) were used 
for all points in the l/24th zone. This process took 

17 R. Jacques, Cahiers Phys. 70, 71, 72 (1956). 
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FIG. 7. Crystal potential: small dashed curve is the present 
work, dot-dash curve that of Pomerantz and Das before smooth
ing, large dashes Pomerantz and Das after smoothing and solid 
line the results of Herring and Hill. 

about SO sec on the IBM 7074. The next step is finding 
the lowest roots of the secular determinant. The 
method employed for this was simply to examine the 
determinant as a function of E and find the places at 
which it crossed the axis. This was a very efficient 
procedure when the roots were nondegenerate and well 
separated since one could then take fairly large steps 
throughout the region of interest and, once a change in 
sign was detected, zero in on the root by the method of 
false position. This approach became impractical, how
ever, when the roots were close together or degenerate. 
For steps small enough to detect the roots there was a 
great deal of wasted computation in the regions away 
from the roots. Hence for those points which yielded no 
roots using a reasonable step size, it was necessary to 
resort to plotting the determinant and finding the 
approximate location of the roots graphically. It was 
then practical to scan through this limited region with 
a small enough scanning step to be able to locate the 
crossing of the axis. If two roots are truly doubly 
degenerate the determinant would be tangent to the 
axis and would not change sign. It turned out, however, 
that either due to numerical approximations or because 
not enough OPW's were taken in the expansion, all of 
the roots which are known to be degenerate from group 
theory were actually two roots very close together. 
Hence in practice it was possible to detect them by 
testing for a change in sign. 

The above procedure requires an enormous amount 
of computation because of the numerous times that the 
determinant of a 23rd-order complex (Hermitian) 
matrix must be evaluated. These determinants were 
solved in the usual way of getting all zeros under the 
diagonal elements by adding and subtracting multiples 
of the rows to one another. The determinant of the 
resulting triangular matrix is simply the product of 
the diagonal elements. If the original matrix elements 
are d^ then the matrix elements of the desired tri
angular matrix can be written 

r - i DuiDi 
UHP—d ftp 2L* 
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where / is the smaller of \x and v. For starting values 
one takes Div=div and ~Dvv=dv\ for v—1, 2, • • •, 23. 
Then the determinant is simply JJ; Da. This procedure 
was programmed for complex matrix elements and 
required 3 or 4 sec execute time for the evaluation of 
one 23rd-order determinant. 

RESULTS 

Fermi Energy 

Since the l/24th zone was divided into 216 micro-
zones and since the volume of occupied states is equal 
to twice that of the BZ, then if all the energy eigenvalues 
computed at the general points are placed in ascending 
order the Fermi energy must be the 432nd eigenvalue. 
All the energies less than (and equal) to this value are 
occupied and all those above are empty at the zero of 
absolute temperature. This value was found to be 

Ef= 0.901 Ry 

as measured from the bottom of the band. In this, and 
in all other results unless specified differently, a refer
ence to energy will mean the values obtained from the 
potential given in Fig. 7 without any correction for 
^-dependent exchange. This was discussed in the section 
on Potential. 

Density of States 

Having ordered the eigenvalues to obtain the Fermi 
energy it is a straight forward calculation to get the 
density of states g(E). This function was normalized 
so that the area representing occupied states would be 
equal to the number of electrons per unit volume. 
Since there are two electrons per atom and two atoms 

/ 
g{E)dE=~ 

0 ^ 0 

The energy range was divided into increments AE and 
the number of energy levels in each increment, M(E), 
determined. The density of states was then calculated 
using 

g(£) = 4M(£)/O0(2X216)A£. 

The values of g(E) were plotted in the center of the 
energy increment which they represented. A smooth 
curve was then drawn through these points. This was 
done for A£=0.03, 0.04, •••, 0.10. The curves are 
slightly different in each case because we are approxi
mating a very dense distribution with only 216 points. 
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FIG. 9. Conduction electron energy eigenvalues: the dashed 
and solid lines denote nondegenerate and doubly degenerate 
bands, respectively. 
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FIG. 10. The Fermi surface: cigar and coronet. 

If AE is taken to be too small there are so few energy-
levels in each increment that the procedure is statisti
cally unsound. On the other hand, if AE is taken to be too 
large there are only a few points to define the density-
of-states curve and all the detail is lost. By examining 
all of the curves it was decided that &E=0.07 was the 
best for this case. The resulting density-of-states curve 
is shown in Fig. 8 with the Fermi energy as determined 
above. 

Energy Bands and Fermi Surface 

The energy bands along the symmetry edges are 
shown in Fig. 9. Similar plots of the bands along the 
edges of the microzones were also made. By deter-

CioTo] , [ N 2 0 ] [1120] 

[1010] 

FIG. 11. Cross sections of the Fermi surface along planes 
numbered according to Fig. 2. 

H Y " ~ " H 

FIG. 12. Intersections of Fermi surface with l/24th zone faces. 

mining the intersections of the bands with the Fermi 
energy along all of these traverses of the l/24th zone 
it was possible to define quite accurately the Fermi 
surface. There are three pieces of the Fermi surface: 
a region of holes or unoccupied states in the first double 
zone and two identical pockets of electrons in the second 
double zone. These pieces of the surface are shown 
pictorially in Fig. 10. Cross sections of the Fermi 
surface are shown in Fig. 11. The numbers on the 
contours correspond to the planes through the l/24th 
zone as indicated in Fig. 2. The intersection of the 
Fermi surface with the zone faces is shown in Fig. 12. 

DISCUSSION OF RESULTS AND COMPARISON 
WITH EXPERIMENTS 

Convergence 

It is difficult to determine the extent to which the 
OPW expansion has converged. In Fig. 13 the lowest 
eigenvalues for T, iT, and H, as measured from the 
bottom of the band, are shown for various expansions 
ranging from 3 to 23 OPW's. The r3+, Ku and H2 

levels are changed very little by increasing the number 
of OPW's. The Tf level decreases between 5 and 9 
OPW's but then remains the same. H± does not decrease 
until 19 OPW's are used but is constant, thereafter, 
to 23. The greatest change comes in the upper K2 level. 
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FIG. 13. Energy eigenvalues at three points of high symmetry 
as a function of the number of OPW's used in the conduction 
electron wave function expansion. 
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TABLE III. Summary of theoretical bandwidth determinations. 

Free electron 
Herring and Hill* 
Jacques :b 

Single OPW 
OPW with variational parameter 
APW method 

Cornwell0 

Present work 
Skinnerd (experimental) 

Bandwidths (Ry) 

1.055 
0.865 

0.956 
0.919 
0.840 
0.780 
0.901 
1.01=1=0.07 

« See Ref. 1. 
*> See Ref. 17. 
« See Ref. 23. 
dSee Ref. 18. 

K2 is known to be a doubly degenerate level and the 
secular determinant should be tangent to the axis at 
the eigenvalue. This condition is very nearly satisfied 
only with the maximum number of 23 OPW's. The 
fact that the level does become degenerate as expected 
is felt to be a good indication that the levels have 
essentially converged with 23 OPW's. 

Fermi Energy and Density of States 

Various calculations of the bandwidth or Fermi 
energy have been listed in Table III. The experimental 
result given by Skinner18 in 1946 is included for com
parison. We have not attributed much importance to 
this comparison of our bandwidth with the experi
mental result because of the difficulties inherent in the 
extrapolation of the low-energy tail of the x-ray spectra. 

The density-of-states curve of HH is shown in Fig. 8 
along with our result. The experimental emission 
spectra as determined by Fisher, Crisp, and Williams19 

using a photon-counting, grazing incidence spectrometer 
is shown in Fig. 14. Their results are in most respects 
similar to those reported by other experimenters (see 
Yakowitz and Cuthill20 for a bibliography on soft x-ray 
spectroscopy). The high-energy side of the spectrum 

TABLE IV. Comparison of representative dimensions from the 
theoretical and experimental (Watts) Fermi surfaces. 

Designation 

ml 
Ik 
ka 
ab 
be 
no 
gh 
mn 

Theory 

0.57 
0.26 
0.01 
0.13 
0.44 
0.04 
0.13 
0.57 

Distance 
Experiment 

0.57 
0.23 
0.08 
0.09 
0.48 
0.02 
0.12 
0.57 

18 H. W. B. Skinner, Phil. Trans. Roy. Soc. (London) A239, 95 
(1946). 

19 P. Fisher, R. S. Crisp, and S. E. Williams, Opt. Acta 5, 31 
(1958). 

20 H. Yakowitz and J. R. Cuthill, Nat. Bur. Std. (U.S.) Mono
graph 52, (1962). 
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FIG. 14. Soft x-ray-
emission spectra of 
Fisher, Crisp, and 
Williams. Ordinate 
scale arbitrarily se
lected so that maxi
mum coincides with 
theoretical results. 

A (A) 

usually has a slope less abrupt than that caused by the 
sudden onset of vacant states above the Fermi energy. 
This is felt to confirm the dip in our theoretical density 
of states. There is, in fact, a kink in the experimental 
spectrum around 111.4 A which could very well be due 
to the Fermi energy occurring at the dip in the density 
of states. This is certainly consistent with our results. 
The results of HH predict a sharp increase in the spec
trum just below the Fermi energy. This is not observed 
in any of the spectra listed in Yakowitz and Cuthill. 
On the low-energy side of the peak there are two dips 
in our density of states. These seem to be reflected also 
in the emission spectra (Fig. 14). A more recent meas
urement of the valence band emission spectra by 
Sagawa21 also displays dips similar to these, but they 
are attributed to Si Zn,m absorption because of the 
glass grating used. Hence there is some question as to 
whether these dips would appear in the experimental 
results after corrections were made for this anomaly. 

An additional feature of the density-of-states curve 
is felt to be confirmed by the experimental results of 
Johnston and Tomboulian.22 They have shown that 
the absorption edge coincides with the high-energy 
limit of the emission line. This confirms that there is no 
forbidden zone in the density of states (i.e., beryllium 
is an electrical conductor). Further, the absorption 
data exhibits a sharp peak at the low-energy end which 
is consistent with the peak in the density of states just 
above the Fermi energy. 

As a final comparison, the density of states at the 
Fermi energy was used to calculate the low-temperature 
specific heat coefficient. The result (for both our data 
and HH) was 0.54X1O"4 cal/mole/deg2 which is 
identical to the experimental result given by Hill and 
Smith. Cornwell23 calculated 0.91 X10"4 cal/mole/deg.2 

2 1T. Sagawa, Sci. Rept. Tohoku Univ., First Ser. 45, 232 
(1961). 

22 R. W. Johnston and D. H. Tomboulian, Phys. Rev. 94, 1585 
(1954). 

23 J. F. Cornwell, Proc. Roy. Soc. (London) A261 551 (1961). 
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TABLE V. Comparison of frequency in 1/H from de Haas-van Alphen measurements (Watts) 
and from the theoretical Fermi surface. 

Orbit designation 

Cigars: 

Coronet: 
Inner circle 
Outer path 
Neck 
Neck 
Neck 
Belly 
Belly 

Direction 

[1120] 
10° from [1120] to 
20° from [1120] to 

[1010] 
[0001] 

[0001] 
[0001] 
[1120] 
[1120] 
[1010] 
[1120] 
[1120] 

[1010] 
[1010] 

Area 

0.141 
0.146 
0.147 
0.149 
0.0245 

1.04 
1.47 
0.0014 
0.0006 
0.0008 
0.038 
0.055 

Frequency (106 G) 
Theory 

52.9 
54.6 
55.0 
55.7 
9.2 

389. 
550. 

0.53 
0.23 
0.30 

14.2 
20.7 

Experiment 

53, 
53. 
53. 
53. 
9.8 

396, 
not given 

0.23 
0.11 
0.12 

12.5 
15.0 

Fermi Surface 

The Fermi surface consists of three pieces; we will 
use the monarchial terminology of Watts8 and describe 
the hole region in the first double zone as a coronet and 
the electron pockets in the second double zone as cigars 
(see Fig. 10). Watts deduced the Fermi surface from 
de Haas-van Alphen measurements. It differs from ours 
only in the following ways: 

(1) Our cigars are not as long as Watts' and are 
triangular in cross section, becoming round only near 
the ends. 

(2) Our coronet is slightly larger than Watts'. 

The general agreement, however, is felt to be very good. 
Some extremal cross-sectional areas (̂ 4) were measured 
from our Fermi surface and the frequency in 1/H was 
calculated using the Onsager relation 

f=hcA/27re. 

These values are compared in Table V with the experi
mental frequencies given by Watts. 

The two main differences listed above between our 
surface and that of Watts can be improved by raising 
the Fermi energy. However, this will still not make the 
cigars circular in cross section and will make them 
slightly too big around the waist. One could justly 
question our right to move the Fermi energy at all 
since it certainly is not arbitrary. However, it is possible 
that our method of determining the Fermi energy 
could be improved by selecting a more sufficiently 
representative set of points throughout the zone. This 

is supported by the fact that the volume of the hole 
region is somewhat bigger than that of the electron 
pockets. By raising the Fermi energy these volumes 
become equal. Further work in determining the Fermi 
energy such that the volume of the hole region is 
exactly equal to that of the electron pockets would be 
warranted. This work would involve more cross sections 
of the coronet than were done in this work. (Note 
added: Additional calculations have in fact already 
been carried out. The equivalent of 60 000 points in 
the BZ have been computed. It is found that electron 
and hole volumes are equal when 

EF= 0.909, 

thus raising the Fermi energy slightly.) 
Changes in the potential as well as improvements in 

convergence of the OPW expansions could also con
tribute to the differences discussed above. 

It should be mentioned that the energy bands of 
HH do not produce a coronet. The intersection of the 
bands between M and T occurs beneath their Fermi 
energy, and hence the necks of the coronet are severed 
leaving the bellies isolated. This model is anatomically 
inhumane as well as incorrect since it can not account 
for the observed X oscillations in the £0001] direction. 
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