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Thermodynamic properties of a ferromagnet at T>Tc containing a small amount of paramagnetic ions 
(with spin \) are studied theoretically. The exact form of the static susceptibility of this system just above 
the Curie point is given under the following assumptions: (1) The interaction between a paramagnetic im­
purity and the magnetic carriers of the ferromagnet is described by the usual s-d type interaction. (2) Lorent-
zian decay of the fluctuating component of the magnetization of the host ferromagnet is valid at least for 
long time behavior of this component. (3) The interaction between impurities is neglected. (4) kTc^>h/rq, 
where rq is the relaxation time of Lorenzian decay of the magnetization oscillating in space with wave vector 
q (q being limited to the first Brillouin zone). It is concluded that as T —> Tc the impurities always decrease 
the total susceptibility regardless of the sign of the exchange integral between an impurity electron and the 
magnetic carriers. Thus, the naive picture based on the first-order effect of the s-d exchange interaction is 
subject to a crucial modification at the critical spin fluctuation of the host ferromagnet. 

1. INTRODUCTION 

WHEN the paramagnetic state of the magnetic 
carriers of a ferromagnet approaches the tran­

sition to the ferromagnetic state, there are large spin 
fluctuations in the carriers. This fact has been observed 
in several phenomena. Theoretical predictions of these 
fluctuations have been given by Landau1 and Van 
Hove.2 So far as the long-range and long-time behavior 
of the fluctuations is concerned, these theories seem 
to be general and independent of models for describing 
the magnetic carriers (i.e., the Heisenberg model and 
the itinerant electron model, etc.). Accordingly, there 
are several phenomena whose qualitative nature can 
be described exactly, at least in the limit of T —> Tc. 
A typical example of such phenomena is the critical 
magnetic scattering of neutrons. In this paper it is 
pointed out that the qualitative nature of the additional 
susceptibility due to a small number of paramagnetic 
impurities in a ferromagnet at T>TC can also be pre­
dicted rigorously in the limit of T —> Tc, provided that 
kTc^>fi/rq, rq being the relaxation time of the mag­
netization oscillating in space with wave vector q in 
the first Brillouin zone. 

For the sake of mathematical simplicity the inter­
action energy between a paramagnetic impurity (at j) 
and the magnetic carriers (or d electrons) of the host 
ferromagnet (or metal)3 is assumed to be given by 

X/=- i ; /y (q )M(q) .S> , (1) 

where Jj(q) is the Fourier component4 of the exchange 

* This work was supported by the U. S. Office of Naval Research 
and Advanced Research Project Agency. 

f On leave from the Department of Physics, Nagoya Uni­
versity, Nagoya, Japan. 

1 L. D. Landau, Z. Soviet Phys. 12, 123 (1937). 
2 L. Van Hove, Phys. Rev. 95, 1374 (1954). 
3 From now on a ferromagnet and its magnetic carriers are 

called a metal and its d electrons, respectively, although the 
following treatment does not require such a specialization. 

4 J j (q) depends on j only through its phase factor, q is limited 
to the first Brillouin zone. 

interaction between a paramagnetic spin Sy and the 
spins of d electrons, and M (q) is the Fourier transform 
of M(r), the spin density operator of d-electron system. 
When a magnetic field H is applied to this system, it 
produces a magnetization of d electrons of 

where x is the spin susceptibility of the d electrons. 
Then, up to the first-order effect of 3C', the energy of 
the paramagnetic spin is given by 

-tg»B+J(0)x~]HSJ, 

where (JLB is the Bohr magneton. Accordingly, one can 
get the conclusion that, 

(1) if 7(0) >0, the paramagnetic spin shows a giant 
magnetic moment whenever % becomes very large, 
and 

(2) if /(0) <0, it shows a big negative moment, 

provided that the second and higher-order effects of 
3C' are small. An important question arises here about 
the magnitude of these effects: Do these effects destroy 
the giant moment or not? 

The paramagnetic spin polarizes the ^-electron spins 
around itself. The nature of this polarized spin cloud 
can be understood at least qualitatively by the second-
order effect of 3C'. The effect of this spin cloud on the 
additional spin susceptibility due to the paramagnetic 
impurities must be large in the strongly fluctuating 
spin state of the d electrons, for the polarization of the 
d-eleetron spins due to an impurity is necessarily large 
in this case. Moreover, the response of this polarized 
spin cloud to external magnetic field is also enhanced 
by the fluctuation. Thus it is expected that the second-
order effect gives the main feature of the problem in the 
limit of strong fluctuation. Indeed, as will be shown in 
this paper, the second-order effect of 3C' gives a correct 
description for the qualitative nature of the dc suscepti­
bility in the limit of T —> Tc, if the interaction between 
impurities is neglected. Since the second-order effect is 
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always connected with the Lenz's law, in general, it is 
easily expected that the additional susceptibility de­
creases as T —> Tc in the limit of low concentration of 
impurities. This property is indeed satisfied by the 
result of a theoretical calculation presented in the 
following sections. It is shown that the susceptibility 
due to the second-order effect is proportional to x2 at 
temperatures slightly above the Curie point, while the 
first-order one gives the additional susceptibility which 
is proportional to % at such temperatures. 

The calculation is based on the fluctuation-dis­
sipation theorem, by means of which the contribution 
to the free energy due to the fluctuation effect of the 
d electrons is related to their dissipative character. 
This character is described by Van Hove's phenomeno-
logical equation.2 The validity of this equation is much 
more general than that of the random-phase approxi­
mation or other techniques of the many-body problem 
and is independent of the model for the d electrons. 
Since the Lorenzian decay of the deviation of mag­
netization from its equilibrium value, which is the 
essential point of the phenomenological equation, is 
valid for long-time behavior of the deviation and as 
T—>Tc the small frequency part of the fluctuation 
gives the main contribution, the result obtained should 
be exact at least qualitatively. 

2. FREE ENERGY 

The total Hamiltonian 3C of the system under the 
magnetic field H is divided into two parts: 

3C=3Ci+3C2. 

In the above, 3Ci includes the first-order effect of 3C' 

Xi=3Ce-X;&5V', (2) 

where 3Ce is the Hamiltonian of d electrons without 
impurities under the magnetic field, 

^ [gM£+X/(0) ]# , (3) 

and 

xH^{Mz(O))=Ti{exp(-0We)M *(0)}/Tr exp(-j83e,). 

From (1) and (2), we get 

3 

W = - £ JjiqWM.iqW+M-iqW (4) 

+M+(q)SJ) , 

where 

8Mz(q)=Mz(q)-8qMH, S±^SJ±iSy>\ 

and 
Jf±(fl)sJ{Jf,(g)±af,fe)). 

The thermodynamic potential 

A = -kT In Tr exp(-jWe) 

may be expanded as 

A=Ai+AA, 

i4i= -kT In Tr exp(-03Ci), 
1 r (s) 

A4 = — E (- l )M <W ••<*/*« 
0 n>0 ./ /J^i>.. .>/*„>() 

X(5C 2 ( iUl )v^2(Mn))oS 
where 

3e20u)=exp(M3ei)3C2 exp(—JU5CI) , 
and 

<• • •>lsTr{esp(-j80Ci) • • • }/Tr exp(-/33e0. 

In (5) the suffix C indicates that only the connected 
diagrams defined properly should be taken.5 

For the sake of mathematical simplicity, each im­
purity is assumed to have single paramagnetic electron. 
Diamagnetism is neglected throughout this paper. 
Since the first-order term in (5) vanishes, we get up 
to the second-order effect 

AA=-— / dm I dfizlL (n<T\3C2(p>i)3C2(ii,2)\n<r). 
fiJo Jo n,<r Zi /FA 

In the above, n denotes a state of d electrons whose 
energy is En} 0-={<ri,<r2,-' ' ^ J stands for a set of the 
spin states c r i (=+ | or —§; j=l, 2, • - •, Ni) of im­
purities, 

| no)=II; | no-j) with Sz
j \ no-j)=071 na3), 

3Ct\no)=En<T\no), 

Ena=En—E ®<rj j 
i 

and 
Z^Zeie^+e-MY4, 

where Z e=Tr exp(—/33Ce) and N{ is the number of 
impurities. 

The interactions between impurities are neglected 
throughout this paper. Then in the expression (50 we 
may neglect terms of the form (iur\3C23'(ni)3£2k(ji2)\no) 
(jy^k), when (4) is substituted in (5'). Therefore, after 
the integration over m and ju2 we obtain 

AA=Y,(AA+t+AAJ), 
3 

where 

AAJ=- Z 
n,n>,<rj>Ze(eM2+e-M2) 

(», ± i | W | < c r / > « cr/ |3C|ft , ± J ) 
X- : . (6) 

£ n ' - £ n - Q c r / ± Q / 2 

«C. Bloch, Nucl. Phys. 7, 451 (1958). C. Bloch and C. 
DeDominicis, Nucl. Phys. 7, 459 (1958). 
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(n\8Mz(q)\n')(n'\8Mz(-q)\n)) where {A,B}=%(AB+BA). Then, introducing the fol-
"•"^ ~ I ! f > V') lowing function 
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Since the volume of the system is macroscopic, the 3. FLUCTUATION-DISSIPATION THEOREM 
energy of the d electrons must be regarded as being A N D DIFFUSION EQUATION 
continuous. In this case the principal value should be Firs t> let us consider AAX in (11). It is easily shown 
taken in the integral over n and nf on the right-hand that 
side of the expression (6). Keeping this fact in mind 
and substituting (4) in (6), we obtain S+-(q£l) —&-+(— q, —Q) 

e-pjsn±PW 1 r°° 

Ai4±'=-£ £ \J(q)\* = — / dte-^{{M+(qAM-(-q)}) 

q) | n'){n' \ 

En
f—£nifl 

\n'){n'\8h 

En>—En 

where P indicates t he principal value. Th i s expression Q(q)0}) = j dte-iut{{M+{q,t),M-(— q)}), (12) 
can be simplified as J — oo 

we get 
e±fiM 1 r^ do) 

AA±i= E | / (<?) |2 5+-( f f ,0)-5-+(ff,-0) = — P G(g,«). (13) 

X {S±T(q, ±2)+Szz(qfl)} , (8) j t should be noted that G(q,a>) defined by (12) is real. 
where The fluctuation-dissipation theorem tells us6 that, 

„ , N _ . C , .ni . . , , , s , , / w ,„. for a n y pair of opera tors A a n d # , 
S+-(q,Q) = Rei dte-^-^M+iq^M-i-q)) (9) * F F 

. / 0 /•«> 

and / dte-^{{A (t),B)) 
r00 J— 

Szz(qfi)^Rei dUT«**(&M,(q,t)»M,(-q)), (10) °° / M f V . ^ ^ . ^ 
7o = - I cothf — 1 / dte-^dA (*),B]>. 

with \ 2 / y_oo 
If (g,0=exp(flC^)Jf (3) exp(-£Ky), U s i n g t h i s theorem and the susceptibility denned by 

and 

(•••)^Tr{exp(-/35Ce)---}/Trexp(-/3JCe) . X+-(q,u)=i dte-i-t([_M+{qit),M^{~q)~]), 
Jo 

fi has been put to 1. Thus, the correction to the thermo- , . 
dynamic potential A A due to the impurities is given by *' w a i 

AA^AA^AAt+AAs, G(q,») = --coth(-\x,-(q,o,)-X-+(-q, - « ) ] 

Nt /j88\ 2i V 2 

A^1=--tanh(-)E|/(?)l2
 //tov 

2 V 2 / * =-cothf— JlmX+_(9,a)). (14) 
X{5 + _( 9 j f i ) -5_ + ( 9 ) -0 )} , (11) V 2 / 

^y F rom (13) and (14), we get 
^ . - - y L \J(qmS+-m+S-+(q, -0)> , 5 + _ ( 9 i 0 ) - 5 _ + ( - g ; - 0 ) 

A ^ 3 = - ^ E TOI^M). = l p r ^ c o t h « I m X f _ ( , w ) . (15) 
Thi s expression, which is exact u p to t h e second-order w ° ° w 

effect of 3C' so far as t he first power of the concentra t ion ^, , . , ., ... . . , J( .,_ . 
of impuri t ies is concerned, is t he s tar t ing poin t of our T h e d y n a m i c a l susceptibility may be calculated from 
calculation. In the following sections the expression 
(11) is calculated by neglecting W and higher powers J*; f ^ J ^ ^ J T l £ S j ? 8 & See. Japan 18, 
of H. 1025 (1963). 
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the first principle by solving the equation of motion for 

i{lM+(q,t),M-(-q)l)-

In order to obtain a definite result from this calculation 
one has to introduce some approximation7 which is 
standard in many body theories, e.g., ladder approxi­
mation or random-phase approximation. Instead of 
using such an approximation, we will use Van Hove's 
phenomenological equation2 for the fluctuation of mag­
netization. I t tells us that the long-time behavior of 
the deviation of the magnetization from its thermal 
equilibrium value obeys the following equation: 

dm±(r,f) oo 
= - £ Dnv

2nm±(r,t)±iyHni±(r,t), (16) 

where Y=g/X£ and D<r1 = r is the relaxation time of the 
J-electron spins to, say, the lattice. 

In the original theory of Van Hove, only the term 
n=l on the right-hand side of Eq. (16) appears and 
all the other terms are neglected. This is the special 
case where there is no relaxation of ^-electron spins to 
some external systems and the magnetization m(r) is a 
slowly varying function of r. We add the terms n^l 
to the original Van Hove's equation and postulate that 
the phenomenological equation (16) gives a reasonable 
description even for a short-range behavior of m(r) in 
space, more specifically, even for the behavior of m(r) 
with r comparable to the interatomic distances. The 
inclusion of the field-dependent term is clearly 
understood. 

I t has been shown by Mori and Kawasaki8 that 
m+(q,t), the Fourier component of m+(r,t) in Van Hove's 
equation, is just proportional to 

where 
(M+(q,t),M-{-q)), 

(A,B)= f d\{B(-ik)A). 
Jo 

(17) 

Thus, according to Mori and Kawasaki,8 we may 
express (16) as 

(M+(g,/),M^(-5))^^(1/T4)^^f(^+te)^--(-^) • (18) 
Combining this with6 

X+^q7o>)=(M+(q),M-(-q)) 

Jo 
«•>/ dte-^iM+iq^^M-i-q)), 

we obtain 

(l/Tt-iyB)Wu-i(f*-yB)) „ / i n , 
X+_(<7,w) = - — X+_(q , (19) 

(l/rqy+(o>-yHy 

8 H . Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 
27, 529 (1962). 

where X+^(q)^(M+(q)JM-(—q)) is the isothermal sus­
ceptibility of d electrons. For H = 0, X+_(q) = Xzz(q) 
= X(q). 

From (15) and (19), we get 

x 1 X(q) 
5 + - f e ,0 ) -5 -+( - f f , -12) = 

7T Ta 

doi 
X / P coth 

/_- co—12 \ 2 / ( l / r . ( l / r 9 ) 2 + ( W - 7 f f ) 2 
(20) 

where we have set X+_(q) = x(q), because the contri­
bution of (20) to the thermodynamic quantity is of 
the order H2 and, hence, the difference between X+_(g) 
and x(q) i n (20) may be neglected except when the 
external magnetic field is so strong that the nonlinear 
effect of the induced magnetization with respect to H 
is important. Such nonlinear effect is beyond the scope 
of this paper. Hd and higher powers of H in the thermo­
dynamic potential are neglected without any mention 
throughout this paper. Transforming the variable of 
integration in (20) by 

co—12= (x/rq) 

and performing a simple and straightforward calcu­
lation, we find (cf., Appendix A) 

S+Uq$)S-+(-q, -£2) = S H - S 2 + 0 ( # 3 ) , 

J —0 

F(x)dx 

ir@ (1+x2)2 
(21) 

f(x)dx 

.7' 
where 

S,= Px(q) 
4TT J-„ l+x' 

/fte\ 

\2rJ 
fix 

F(x)=— coth| 

f(x) = 
smh(ffx/rq)~ (fix/rq) 

(Px/2rq)sinh2(Px/2Tq) 

In the case of DO=T~1=0, it was concluded by Van 
Hove on the basis of his phenomenological argument 

-OQ 

J 

< 

< 

< 

< 
0 s c*z 

#e 

FIG. 1. Poles of F(x)/{\+x2)\ 



ANOMALOUS S U S C E P T I B I L I T Y A855 

that Di is proportional to x_1. A more general expression 
has been derived by Mori and Kawasaki8 for l/rq. It is 

- = [ (ti[+(q,t)$-(-q))dt/\M+(q),M-(-q)). (22) 
Tq Jo I 

The torque acting on the spin M(q) seems to be 
random. So the numerator in (22) seems to be insen­
sitive on temperatures in the neighborhood of Tc. 
Thus,9 

lim lim (l/rff) —> 0. 
q^O T-*Tc 

Then Si defined by (21) seems to give a much larger 
contribution than that of 52. Actually, the leading term 
proportional to rq

2-x i*1 (21) is cancelled by another 
big term arising from AA2 in (11). Accordingly the 
calculation of Si should include lower order terms with 
respect to p/rq. 

The integral appearing in the definition of Si, (21), 
can be performed by a contour integral as shown in 
Fig. 1. Poles of the integrand in the upper half plane 
are x—i and x—niri/a (w=l, 2, • • •), where a=fi/2rq. 
Then the integral becomes 

7r 2ir2naz 

—a cota— X2 • 
2 n>o (a2—n2w2)2 

For small a it gives 

J7r(l-ia2)+0(a3). 
Thus 

IE H 
Si=—rMq)xJ(0) Mq)'xJ(0). 

P 6 

Similarly, 

Consequently, 

*̂-
AAX= OX / (0)HZ rq

2\ J(q)\2'X(q) 
2 q 

Ni 
+-/3 2O(| x / (0)F+iO) L \J(q)\2'X(q), (23) 

4 q 

for kTcy>l/rq and &r c »0 . 
As can be seen in the derivation of the above result, 

overwhelming contribution to AA i comes from the pole 
x=i in the integrands of (21) if kT^>\/rq. This is 
equivalent to the statement that under the condition 
kTc^>l/rq the overwhelming contribution comes from 
those X+_( ,̂w) for # « 1 or small co. Therefore, it is 
sufficient to consider only the slowly varying part of 

9 This is equivalent to the statement; the long-wavelength 
component of the magnetization fluctuation decays infinitely 
slowly in the limit T —> Tc. One must not assert that this is an 
assumption. If the relaxation time of the g = 0 mode of magneti­
zation were finite at T—Tc, the ferromagnetic long-range order 
could never be established at and slightly below the Curie point. 

the fluctuation of magnetization. This is a crucial point, 
because the basic equation (16) or (18) is valid only for 
large i and, consequently, (19) is legitimate only for 
small &>. 

Next let us consider A 4̂2 in (11). It is easily verified 
that 

S+-(qja)+S-+(-q, - 0 ) = ReX+_(g,Q). (24) 

From (11), (19), and (24), we get 

N4 

A A 2 = Z|/(g)|2-x+-(g) 
2 q 

Ni 
+—Q.xJ(0)H-ZTqV(q)Mq). (25) 

2 q 
Therefore, 

A ^ £ \J(q)\*X+-(q)-NiZ \J(q)\2**M 
2 q q 

Ni 
+~fi2-U-axJ(0)H+lQ)E \J(q)\2x(q)- (26) 

4 q 

For small q, x(q) has the following Ornstein-Zernike's 
form1 

where C <* T— Tc at just above the Curie point. Thus, 
the summation 

A - E |/(?)l2x(<?) 
q 

does not depend sensitively on temperatures in the 
neighborhood of Tc. 

Objections have been raised to the validity of the 
Ornstein-Zernike-Landau theory since Onsager pub­
lished his elegant theory10 of the exact solution of the 
two-dimensional Ising model which shows some ap­
preciable discrepancies from the Ornstein-Zernike-
Landau theory1 of the second-order phase transition. 
Although Landau and Lif shitz11 assert in their textbook 
that these discrepancies are limited to the case of two-
dimensional systems, there are several facts which we 
have to consider seriously; logarithmic divergence12 of 
Cp at the X point of liquid He4, the divergence of Cp 
and other quantities concluded by Tisza in his general 
theory,13 and possible form of the susceptibility of an 
Ising ferromagnet just above Tc shown by Fisher and 

10 Lars Onsager, Phys. Rev. 65, 117 (1944); L. Onsager and B. 
Kaufman, Proceedings of the International Conference on Funda­
mental Particles and Low Temperatures, Cambridge, 1946 (The 
Physical Society, London, 1947), p. 127. 

11 L. D. Landau and E. M. Lifshitz, Statistical Physics (Per-
gamon Press Inc., New York, 1958), p. 438. 

12 M. J. Buckingham and W. M. Fairbank, Progress in Low 
Temperature Physics, edited by C. J. Gorter, (North-Holland 
Publishing Company, Amsterdam, 1961), Vol. 3, p. 80. 

13 Laszlo Tisza, Phase Transformations in Solids (John Wiley & 
Sons, Inc., New York, 1951), p. 1-35. 
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FIG. 2. Diagrams connecting with 
2 a | / ( 5) |*S+_(?,0) . 

T is a connected diagram which does not 
contain any vertex given by 3C'. It may 
contain the interactions that lead to the 
relaxation of ^-electron spins. 

other people14 based on their numerical calculations. 
This problem is too big to be discussed in this paper 
and we adopt the Landau theory throughout this 
paper. It is easily seen, however, that the final con­
clusion is not sensitive on this form of the suscepti­
bility, though the divergence of limr->!rclim<z_*ox(<7) is 
crucial in our theory. 

4. CONTRIBUTION FROM HIGHER ORDER EFFECTS 

So far we have confined ourselves in the second-order 
effect of 3C\ In order to analyze the higher-order effects, 
the d electrons are assumed to be itinerant and the 
quasi-Fermion operator bj associated with the localized 
spin (at j) is introduced as follows 

bj=Sx
:'—iSyi, 

[ W l f = l and [fty,***]-=Ciyli*J-=0 U^k). 

Then the expansion (5) for AA may be calculated by 
the diagram method developed by C. Bloch and 
DeDominicis,5 provided that 3Ce is replaced by 3Ce—fxN, 
N being the number of the itinerant electrons and /x 
being their chemical potential. The difficulties in 
applying the Wick's theorem which come from the 
Bose-like commutation relations between bj and bk 
(jj^k) do not appear now, for the interaction between 
impurities are always neglected here. 

The term connecting with S+-.(q$) in (11) comes 
from the diagrams of the type shown in Fig. 2. S-+(q$) 
in (11) comes from those shown in Fig. 3. Dashed lines 
in these diagrams show the contraction between bj and 
£ / , full lines represent the electron and hole propa­
gators, and Ti and T2 do not contain any dashed line. 

The fourth-order term has either the structure shown 
in Fig. 4 or that shown in Fig. 5. In the case of Fig. 4 
the coherence between the electron with up spin and 
the hole created in the down spin states is completely 
broken down. Then the diagrams of this type do not 

FIG. 3. Diagrams connecting with 
2,|/fe)|»s-+fo--a). 

M M. E. Fisher, Physica28, 172 (1962); M. S. Green, J. Chem. 
Phys. 33, 1403 (1960), and many other works. See also, D. R. 
Fredkin and H. Suhl, J. Phys. Chem. Solids 24, 217 (1963). 

give the spin-spin correlation function S(q, ±12). Thus, 
its contribution can never be important and is always 
smaller than the second order effect by the factor 
(J/kT)2, J being the exchange integral between a 
localized spin and the itinerant electrons. 

In the case of Fig. 5, however, the coherence is 
maintained. The contribution to the thermodynamic 
potential by these diagrams is something like 

0-EEI-/(2)l2-W)l2-%,G)-S(g',±O). 
q q' 

The most general diagrams, in which the coherence of 
the virtually excited spin density waves persists, are 
shown in Fig. 6. By summing up all of these diagrams 
we get 

•ETOI 2 ^(? ,±Q)- r - s 
^ ° + l a 

instead of 
Nt 

eT0O-|_l 
Z|/(?)l2^±T(?,±fi) 

FIG. 4. A 4th order diagram with re­
spect to 3C'. The coherence of virtual ex­
citation of the spin density wave is de­
stroyed. 

in the case of the second-order perturbation, where16 

= H—tanhi 
2 

. mi E | / ( g ) |»$_+(?,-o) 

f - J Z : \J(qmS+-(q,Q)-S-+(q, -0)} 

+ - Z \J(qmS+-(q,ti)+S-+(.q, -0)} 
2 9 

= 1 + - £ \J(q)l2*+-(<?)—iM- (fc/(0)ff+iO) 

X E |/(<?)l2x(<?)-

Thus, the expression for the correction to the thermo­
dynamic potential (26) should be replaced by 

Ni 
AA = E | / ( g ) | 2 X + _ ( ? ) . r - * - ^ £ \J(q)\*X„(q) 

2 Q q 

Ni 
+—PQ(bcJ(f>)H+ifl) E \J(q)\2'x(q)'T-K 

4 a 
15 kTc<Z$l is assumed. The nonlinear effect of the induced 

magnetization with respect to H is again discarded. 
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FIG. 5. A 4th order diagram with re­
spect to 3C'. The coherence of virtual 
excitation of the spin density wave is 
maintained. 

After a simple manipulation we obtain 

AA = -iNi-A+Zil+lp/Lj-NilL, 
+iNi-pa- (bcJ(o)n+aa).A/(i+i/JA)s (27) 

where A + ^ E T O 12'*+-(<?), ^H\J(q)\2X**(q), 
and A=^t\J(q)\2x(q). [It should be noted that 
A= (A+)#=o= (A2)jy«.o.] Thus, it has been shown that 
the higher order corrections do not change the quali­
tative result of the second-order effect. 

5. RESULTS AND DISCUSSIONS 

The total susceptibility XT=—d2F/dH2 is divided 
into two parts Xr=Xi+X2, where Xi is given by neg­
lecting the second and higher order effects of 3C'. For 
canonical ensemble 

F=A=A1+AA. 
Therefore, 

X1=-d*A1/dH*=x+NigfxB(g!XB+xJ(0))/kT (28) 

and 
X2=-d2AA/dH2. 

Using (26) and neglecting the higher-order effect than 
the second-order one, we get 

Ni d2A+ d2Az 
x2= +Nt 

2 6H2 dH2 

Ni / 5 1 \ 
P(xAO)+gvB)(^J(0)+-gvB)lL. (29) 

2 \12 4 / 

In order to see the quantitative nature of the first two 
terms on the right-hand side of (29) we assume at first 
that the system is isotropic in the absence of the external 
field. The dependence of A+ on H comes from the fact 
that the static susceptibility 

X+_(g) = (C+Bq2+ eq2)-1 (for small q) 

contains H, because (c.f., Appendix B) 

C=Co+jC2# 2+--- , 

B=BQ+iB2H
2+.-., 

€=i€2#2+i€4#4+.-- . 

In the vicinity of Tc, C0 « T-Tc, while e, B0, C2, 
and B2 do not depend appreciably on T. Since the 
exchange interaction between an impurity spin and a 

J-electron spin is short ranged, J(q) remains finite for 
small g. Accordingly (cf., Appendix C), 

d2A+ C2 1 

=-E TO I2 « 
dH2 a (Co+Boq2)2 Co112 

in the limit T —> Tc. The same result is obtained for 
d2Az/dH2. 

It can be shown that this result remains true even 
if the system is not isotropic. (In order to avoid tedious 
algebra we will not go into details of this general case.) 
Thus, the contribution of d2A+/dH2 and d2Az/dH2 to 
the susceptibility is negligible as compared with the 
zeroth- and first-order contribution given by (28). It 
should be noted that the latter contribution is pro­
portional to 1/Co instead of 1/CV/2 just above the Curie 
point. 

Consequently, as T-*Tc the total susceptibility 
should have the following form 

XT=x+niax—nibx2 (30) 

where a=J(0)/kTc, m is the concentration of impurities 
(number of impurities per unit volume) and b>0, or, 
more specifically, 

&=— [/(oyarjA. 
48 

(31) 

For a grand canonical ensemble, A — —PV and for a 
large system x~--d2F/dH2

y where F=A+ixN. It is 
evident that ^i+juiV" gives the susceptibility Xi. (The 
chemical potential of d electrons is not altered by the 
impurity spins whose state is paramagnetic.) Thus, 
from (27) we get again the final result (30), where b is 
now given by 

4 8 U 7 V [l+(A/2£rc)2]2 

instead of (31). Therefore, the qualitative nature of 
the DC susceptibility expressed by (30) has been justi­
fied rigorously under the following conditions : 

(1) The interaction between an impurity and d 
electrons is described by (1). 

(2) Lorenzian decay of the deviation of magneti­
zation from its equilibrium value is valid at least for 

FIG. 6. Structure of the 
diagrams in which each of 
the virtually excited spin 
density wave is coherent. 

Vr. -„£?' 
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long-time behavior of the magnetization of d electrons. 
(3) The interaction between impurities is neglected, 

i.e., only the linear term of m is considered. 
(4) kTc»fi/rq. 
Among these conditions (2) is the most essential one. 

The Lorenzian decay has been assumed for the com­
ponents of the fluctuation of magnetization with the 
wavelengths comparable to interatomic distances as 
well as for the components with long wavelengths. 
Discussions on this assumption have been left for future 
investigations. (1) and (4) have been introduced just 
for mathematical simplicity. As for (3), one must not 
be pessimistic about the fact that as T —* Tc Ruderman-
Kittel-Yosida's interaction16 between impurities be­
comes anomalously long ranged.17 The result presented 
here may be regarded as the starting point for further 
investigation of such a problem. In order to check the 
formula (30) it would be desirable to investigate the 
susceptibility of Fe or Ni containing a small amount 
of rare-earth ions at temperatures slightly above Tc. 

I t has been emphasized that the large correlation 
effect in a narrow conduction band, such as the d band 
of transition metals, may lead to ferromagnetism. If the 
kinetic energy is slightly larger than the correlation 
effect and keeps the d electrons in their paramagnetic 
state, there are large spin fluctuations in the conduction 
electron spins even at T=0. The Pauli susceptibility of 
the conduction electrons is given by x=gVBp{EF)/A, 
where 0 <A< 1 and p(EF) is the state density of quasi-
particles at EF, the Fermi level. The enhancement 
factor \/A goes to infinity as the paramagnetic state 
of the system approaches to the transition to ferro­
magnetic state. In this case the second-order effect 
with respect to X ' becomes dominant. I t would be 
interesting to see the second-order effect on the proper­
ties of the localized moment18 in Pd. (From the ob­
served values of the paramagnetic susceptibility and 
electronic specific heat of pure Pd metal we get 1 /4=5. ) 
This problem will be considered subsequently. 
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APPENDIX A 

Calculation of the integral 

r°° do) /|8w\ co 
1= / P • cothl — J 

J^ co-tt \ 2 / ( l / r Q ) 2 + ( c o - -7#)2 

Introducing F(w)=co coth(|/3w) and an abbreviation 

16 K. Yosida, Phys. Rev. 106, 893 (1957). 
17 This interaction is described by x (Q) • 
18 A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams, 

E. Corenzwitt, and R. C. Sherwood, Phys. Rev. 125, 541 (1962). 

l / r f l = a , we get 

do) F(o)+Q) r do) 

J-«> 0) a' 

i 
+ (o)+xJ(0)H¥ 

'°° do) F(o)) 
P 

-so to a2+co2 
(Al) 

-f-
J —00 

do) 2o) 
P—pfa)- XJ(0)H (A2) 

, o) (a2+"2)2 

f°° do) 1 
+ / P—F(co) 

0) (<*2+C02)2 
(A3) 

+0(fl»). 

(Al) vanishes because F(o)) = F(—o)). I t is easy to see 
that (A2) leads to Si in Eq. (21). (A3) is calculated as 
follows 

1 
F > ) = coth(|/3co)-|0a>-

sinh2(^to) 

sinh(/3w)—/3co 

2sinh2(§/fo) 

Thus, after a simple algebra we find that (A3) leads to 
S2 in Eq. (21). 

APPENDIX B 

According to Landau,1 the thermodynamic potential 
density for an isotropic system in the absence of the 
external field is given by 

¥2r-o(r)=¥ 0+eo E \M*)\2+h E I Vm x ( r ) | 2 , 

where terms of the order mA are neglected. As was 
shown by Landau, Co < 0 for T < Tc, co> 0 for T> Tc, and 
consequently, CQ=0 at T=Tc. 

When an external magnetic field is applied along 
the z axis, the symmetry of the system becomes axial. 
Then the thermodynamic potential density is 

^ ( r ) = ^ 0 - ^ ( r ) F + C i ( | ^ ( r ) | 2 + | ^ ( r ) | 2 ) 

+ ^ n | w 2 ( r ) | 2 + ^ ( | V m , ( r ) | 2 + | v m 2 / ( r ) | 2 ) 

+ ^ , | V m , ( r ) | 2 + e ( | a ^ ( r ) | 2 + | ^ m 2 / ( r ) | 2 ) , (Bl) 

where terms of the order mz are neglected, e, cm and 
#M CM= II or JL) in (Bl) are 

€ = i e 2 # 2 + i € 4 # 4 + - - - , 

and 

For the derivation of X+_(q), it is sufficient to consider 
|w + ( r ) | 2 and | v w + ( r ) | 2 in (Bl) and only the single 
Fourier component w+(q) is our concern.1 Thus, using 
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the notation cx^c and bx^b, we get 

^ ^ fdr^(t)^(c+bq2+eq2)\m+(q)\2. 
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the quantum effects would be thrown away by the 
above semiphenomenological treatment, these effects 
are not essential in the final results. 

Then 

X+-(q) = statistical average of |w + (q ) | 

/ • 

<f(K(q)|2)K(q)|^* 

/ 
<f(|w+(q)|2)e-^ 

This is nothing but the procedure adopted by Landau.1 

Repeating his calculation, we get 

*+-(q)=-
dj3(c+bq>+eq*) 

l d 

- / 
In d(\m+(q)\2)e-^ 

c+bq2+eq2d^\ 

kBT 

-lnl3-\n(c+bq2+eq2) 

-In / d&n* 

c+bq2+eqz
2 

In the vicinity of Curie point this is reduced to 

ksTc 
X+_(q)= . 

c+bq2+eq2 

Defining e, C, Co, C2, B, Bo, and B2 as 

e== lj~kBTc, C^c/kBTc, 

CO=CO^BTC, • • • , Bv^bz/kBTc, 

APPENDIX C 

In the vicinity of the Curie point, overwhelming 
contribution to d2A+/dH2 comes from the X+_(q) with 
small g. Then the Ornstein and Zernike form may be 
used for X+_(q). Thus 

d2A+ a2 1 
^ L I J(q) |2 kBTe 

dH2 dH2 q c+bq2+eq2 

C2+b2q
2+e2qz2 

= - £ \Aq) 2~- -~kBTc. 
q fo>+V)2 

Since the main contribution comes from the terms with 
small q, the following approximation may be used 

a2A4 1 

dH2 
| / ( 0 ) | 2 C 2 £-

q (Co+Boq2)2 

47rF|/(0) |2C2 /-0 0 q2dq 

( 2 T ) 3 (C0+B0q
2)2 

where V is the volume of the system. 
The integral above can be evaluated by means of the 

Cauchy contour integral; 

r00 q2dq 1 r°° w 

Jo (Co+JW)2 2J_X W/2< 3/2 C o l /2 

Therefore 

a2A, V\J(0)\2C2\ 1 /F1/(Q)12C2 \ 

\ STB0
ZI2 / 

As T —> TC} Co goes to zero, while BQ and C2 remains 
finite. Thus the result mentioned in the text has been 

we get the result shown in the text. Although some of obtained. 


