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Wave functions for a polaron in a uniform external electric field F/e are calculated in the weak coupling 
approximation to first order in the electron-phonon interaction at zero temperature. The electric field is 
treated exactly. It is shown that the wave function is not an analytic function of the applied field in the 
neighborhood of F = 0 , but can be expanded in an asymptotic power series in F valid near F = 0 . The distor
tion, due to F, of the distribution of polarization potential around the electron is calculated in the weak-
field limit. It is shown that this distortion effect in typical crystals is small for reasonable values of the applied 
field. 

INTRODUCTION 

THE problem of the motion of electrons in the 
conduction band of a polar crystal has attracted 

considerable theoretical attention in recent years.1-3 

Generally, the Hamiltonian of Frohlich is used to study 
the wave functions and energy eigenvalues of low-lying 
states of the crystal-electron system.4 One finds for 
the lowest lying states that the effect of the electron-
phonon coupling is to change the moving free electron 
into a more complicated kind of excitation corre
sponding to a moving electron which carries along 
with it a distortion of the crystal lattice induced by 
the Coulomb field of the electron. This excitation is 
called a "polaron." The important point is that the 
excitation moves freely through the crystal without 
change of momentum provided that: (1) The polaron 
momentum is too small for a phonon to be emitted by 
the polaron with conservation of energy and momen
tum, and (2) there do not exist free phonons initially, 
which could be absorbed or scattered. 

It is expected that at low but nonzero temperature 
and low-polaron momentum the polaron wave function 
computed at zero temperature should serve well to 
describe the polaron between scattering events. By 
calculating the probability of the various processes 
leading to momentum change of the polaron, one can 
attempt to calculate, for example, the mobility of 
electrons in a polar crystal5 in an applied electric field. 

In previous calculations, however, the applied 
electric field was assumed only to accelerate the polaron; 
no attempt was made to assess the effects of the electric 
field on the structure of the polaron wave function. 
The purpose of the present paper is to calculate, by 
perturbation theory, the polaron wave function in the 
presence of a uniform external electric field. 

In order to introduce the unperturbed states for our 
problem, we consider the Schrodinger equation de

scribing an electron in a uniform time-independent 
electric field, 

1 Polarons and Excitons, edited by C. G. Kuper and G. D. 
Whitfield (Oliver and Boyd, Ltd., Edinburgh, 1963). 

2 R. P. Feynman, P. W. Hellwarth, C. K. Iddings, and P. G. 
Platzman, Phys. Rev. 127, 1004 (1962). 

3 T . D. Schultz, Phys. Rev. 116, 526 (1959). 
4 T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953). 
* F. E. Low and D. Pines, Phys. Rev. 98, 414 (1955). 

l(p2/2m)-Fz]^=iHd^/dt), (1) 

where m is the electron mass, p is the electron momen
tum operator, —ifiV, F is the force on the electron 
due to the external field, taken to lie in the z direction, 
and % is the % component of the displacement of the 
electron. 

In one dimension, a set of solutions to (1) is given by 

K2(V)==exp[-a(6w9 :)-1{(^o,+ 9:/)3--^o,3}] 
XexpR(*o*+3*)?], (2) 

where $=F/ti. 
The solutions (2) are convenient because of the 

properties 

/ 

We can thus regard the functions t^02 as a natural 
generalization of the plane waves states exp[i(koez 
—^kogH/2m)2} which are the solutions of (1) when 
F=0. It is useful to think of \j?k0B as an eigenfunction 
of the momentum with instantaneous momentum 
eigenvalue p(t) given, in our one-dimensional problem, 
by p(t) = fik0z+Ft. 

When no external electric field is present, the starting 
point for a perturbation calculation of the polaron 
wave function6 is the product wave function 

pi'ko-Tl 0), (3) 

which describes a freely propagating electron and the 
crystal in its ground state. The crystal ground state, 
|0), is defined by X)i Wi |0)=0, where bj creates a 
longitudinal optical phonon of wave vector 1. We 
ignore all other modes of excitation of the crystal. 

Because of the degeneracy of the unperturbed 
states which occurs when ko> 1/Vo, where 

r o = (fi/2mcS)112 

6 H. Frohlich, Adv. Phys. 3, 325 (1954). 
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and fm is the energy of an optical phonon, perturbation 
theory starting with the state (3), breaks down when 
ko> 1/Vo. This corresponds physically to the possibility 
of emission of a phonon by the moving electron, so 
that the state (3) is far different from a stationary 
state of the perturbed system. 

In the presence of an electric field, we may hope to 
proceed by perturbation theory from a wave function 
analogous to (3); specifically, we take as unperturbed 
wave functions 

|k0,0> = exp[i(koiT-*»*oiV2w)]^0i(V) |0>, (4) 

where r and k0 are the electron displacement and initial 
wave vector, respectively, with respective components 
z and k0* in the direction of the force, and k0i=k0—k0z. 
By analogy with the field-free case we might expect 
that the simple perturbation theory will fail for those 
values of t such that 

P(t)>h/u, (5) 
where 

p(t) = fik0+Ftz/z. (6) 

We expect that, if initially the total wave number of 
the system is sufficiently small compared to 1/Vo and 
no free phonons are present, the time-dependent wave 
function obtained by perturbation theory on | k0,0) will 
closely approximate the true wave function of the 
system until such time as (5) begins to hold. 

In the next section we show how perturbation theory 
analogous to the usual Rayleigh-Schrodinger pertur
bation theory for the time-independent Schrodinger 
equation can be applied to the time-dependent 
Schrodinger equation when the unperturbed states are 
not stationary states but are of the form (4). 

FORMULATION OF PERTURBATION THEORY 

Our model of an electron inside a polar crystal and 
acted upon by a uniform external electric field is 
defined by the Schrodinger equation 

(Ho-Fz+XHJv^iHdv^/dt), (7) 

(8) 
2m 

A 
Xffi=*w( ) £ -(e~il-*bj+eil'*bx), (9) 

\ S / i / 

/4ra\1 / 2 1 

where7,8 

V1 
a = I — 

2fl0)\€00 

• ) - • 

l \e 2 

units of 1/f o, x is the electron displacement in units of 
ro, and X is a labeling parameter giving the order of 
smallness of the term in which it appears. We assume 
that the crystal is so large that the electron can assume 
continuous values of momentum. 

We take solutions of (7) with X = 0 as our set of 
unperturbed states, which can therefore be defined as 

|ko+Efe*kj{M)=0I^!]-1/2II(MnHM). (io) 
k k 

$=Vro~*y V=volume of crystal, 1 is a wave vector in 

7 The dielectric constants €» and e are defined in Ref. 6. 
8 It is to be understood that in all summations the term corre

sponding to zero-wave number is omitted. 

The orthonormality relation is 

(k,{»k}|l ,{»i» = 5(k—l)5{„k)f{nij, (ID 
where the quantity SUkUm) equals one or zero de
pending upon whether the set of occupation numbers 
{wk} is or is not identical to the set {n\}. 

We assume that for the time interval of interest we 
can take 

/ G(koi,^J|k0>0>, (12) 

where G(koi,£) is a c-number function and 

J7tZ7=l, \V,d/dQ=0 

so that U is a time-independent unitary operator. 
Inserting (12) into (7) and performing the time differ
entiation we obtain 

{(Ho+XHJU+FZU,zl} |k0,0>= f G(k01^o,+ ^ ) 

Z7|k0,0>. (13) 
2m 

We assume that for «<<Cl and for times in the interval 
of interest we can expand U and G in powers of a1/2, 
or equivalently, in powers of X. Thus we write 

G(kox, h*+ $t)=G«»+\GU+\2GW+ • • •. (14) 

U= l+X5+X2(j52+(r)+ • • •. (15) 

From the fact that U is unitary, the operators S and <r 
must obey 

S t = - S , ai=-a. (16) 

Inserting (14) and (IS) into (13) we obtain to order X2: 

W o * + ^ ) 2 + £ o i 2 ] l 
#o|k0,0> = G ( 0 ) -

2m 
IM), (17) 

(18) {[ffo-F*, Sl+HJ |k„,0)=G(1>|k0)0), 

{HMF+^+HJ+FftSP+a, z~]} |k0,0) 

= {(iS2+<r)ffo+G(l,S+G<2>} |ko,0>. (19) 

To obtain the lowest order perturbation correction 
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to the wave function |ko,0) we must solve (18) for S 
and G(1). 

To solve (18) we try 

S = £ S i , S^e-^ffipW-Mfte^bu (20) 

where f\(p) is to be determined by (18). We anticipate 
that it will be possible to write 

where for /3>0, p(t) <ti/r0, 

hfau) 
/47ra\1/2/31/2r r&u /4wa\112 ply r^cosw' /A 1 / 2 H 

-KT) iif. ^*-Q ]• 
/2(M 

(28a) 

/ i(£)=Ai(« (£ ) )+**i (« (#) , 

where9 

«(£) = ( feo (f> +_— 
Wo 2wo: )•• 

(21) 

(22) 

/4ica\w Pl2\ r rfiusinu' /v\ll2~\ 

Lio «'1/2 " \ 2 / J 

and &i and gi are real valued functions. To show this, 
we insert (20) into (18) and use the general commutator 
identity 

= *«[ — ) 
V S / l I J0 w'1'2 

and for 0<O,/>(<)< V ' o 

/ i ( M 

Lz,A(P)>iHd/dpM(£) 

to obtain 

/ p(/)-l UP \ a / , (p(0) 
( « + ) / i (pW)+»i ? -
\ Wo 2wf0

2/ 

/ 4 ro \ 1 / 2 (-/3)1 

= &co( J 
\ S / / 

/4roY'* (-/3)1/2i 

r r-Pucosu' f / A 1 / 2 1 

(28b) 

:y/2 (-iS)i/2r /•-/*« sinw' / /A1 7 2"] 

/ J Uo **'1/2 * \2/ J 

/47ra\1/2 1 

\ S / I 
(23) 

\ S 

The integrals appearing in (28a,b) are the well-known 
Fresnel integrals. Of particular interest is the asymp
totic expansion for f\(u) when \P\u(p(t))^>l: 

which can be written 
Uuy 

d / 
± u^h (w) - fiF—gx («) = - ( • 

dp, \ 

d 
±u1'2g1(u)+fiF—hi(u) = 0 , 

dpz 

Awa\1/2 fco 

S / / 

/4ira\1 / 2 1 r 
-M — 1 1 

\ s / ftH. 
-+3I 

(24) +5 

2/?w \2 /3M/ 

ll(-^)+---']+t(l)e-it 
\2Bu/ J 

(29) 

where the upper signs are used if 

co- p(0 • l/mr0+M2/2mr0
2>0. 

If we change the independent variable from pz to u, 
define 

p=tnr0/2mzF 

and decouple Eqs. (24), we get 

d2 /47ra\1/2 /32 

of ) , 
du2 ' ' V S / W 2 ' 

(25) 

:M(w)+/32^iW = T^cof j 

dhi(u) 
(26) 

M«)-
du 

- = 0 . 

The expansion (29) can also be derived directly from 
(18), treating the external force in (18) as a pertur
bation. 

In (27) and (29), f(l) defines a set of integration 
constants. To determine f (1) uniquely, we require that 
5 be so chosen that the unperturbed state |k0,0) is 
transformed into the perturbed state ( l+XS) |k0,0) 
when the electron-phonon interaction is slowly (but 
not too slowly) turned on. The reader is referred to 
Appendix A, where it is shown that this requirement 
implies f(l) = 0. 

In order to understand the physical meaning of 
setting f(l) = 0 we observe that if S is a solution of 
(18) obeying (16) and if QS", H*-Fz] = 0 with S't 
= —6", then S+S' is a solution of (16) and (18) and 
the state <p = S'\ ko,0) satisfies 

(H0-Fz)cp=ifi(d<p/dt). (30) 

Solving (26) we obtain 

/ i («)sA l («)+fg 1 («) = [/2( i8,«)+i/1( j8, t t)]^V« 

+ r (1)*-'*S (27) 

9 To simplify the notation we shall often use the symbol u or 
u\_p{t)~] to denote the quantity [ha— (•hp(t)*l/mro)-]-(-h2l2/2mrQ2']i. 

Because the form of S+S' is restricted by the ansatz 
of (20), the most general possible form for \S' is a 
superposition of one phonon unperturbed states of the 
form ^i^(l)e-il-xe^ub^-U.c.) where XS and the 
c-number function £(1) are taken to be of order X. 
Thus the state [1+X(5+S")] |k 0 ,0) where S is evalu-
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ated by setting f(l) = 0 in (27) before inserting (27) 
into (20), is, to order X, the state that arises adiabati-
cally from the initial state [ l+XS' ] |k 0 ,0 ) upon turning 
on the eleetron-phonon interaction. The requirement 
f(l) = 0 is therefore equivalent to requiring that the 
initial state be simply |ko,0) with no admixture of 
one-phonon unperturbed states. 

Setting f(l) = 0 for all 1 completes the specification 
of S. Since S has no diagonal elements in the unper
turbed states, (18) implies G(1) = 0. 

The solution of (19), giving the second-order cor
rection to the wave function in X can be carried out in 
a manner similar to that given above. [An outline of 
this calculation appears in Appendix B.] 

The solution specified by (20), (27), and (28a,b) is 
not satisfactory for p(t)>h/ro because when p(t)>fi/ro 
there exist values of 1 such that u^O, and when u^O 
the solution for / in Appendix A does not approximate 
the solution of (23). 

POLARIZATION POTENTIAL IN 
WEAK-FIELD LIMIT 

We wish to find an expansion of (1+XS) | k0,0) in 
the limit F —» 0 with Ft held constant. By taking the 
limit this way we focus attention on the explicit F 
dependence of the perturbed wave function as opposed 
to its implicit dependence on F due to the change of 
the instantaneous momentum, p(t). 

From the fact that (29) is a divergent asymptotic 
series, it is clear that F=0 is a singular point of f(u), 
hence of the perturbed wave function. 

If we introduce the dimensionless unperturbed 
electron momentum by 

q(*) = (*V*)p(*) (33) 

we can write (29) in the form 

/ * q ( 0 \ /±™\1121 •Grrt 
K 
3!l(-

•1 T [ l - 2 q ( 0 - l + / 2 ] -
S / I 

-2iFr0 I. 

fa* 

2iFr0 

( l - 2 q ( 0 - l + Z 2 ) 2 

fco ( l - 2 q ( 0 - I + / 2 ) 2 )H- (34) 

The dimensionless parameter characterizing the expan
sion of (34) is the ratio of the change of potential 
energy of an electron in the external field over a distance 
of the order of the size of the polaron, to the phonon 
energy. If the external electric field is as strong as 1000 
V/cm and we take r0 and fia> equal to 10~7 cm and 0.025 
eV, respectively, we find that 2Fr0/ftco=8X10-3. This 
means that even in quite strong applied fields the 
distortion of the polaron wave function will be a small 
effect, at least for slow polarons. 

To get some insight into how the electric field 

distorts the polaron wave function, it is useful to 
calculate the average polarization potential at position 
TP when the electron is at the origin, denoted by 
(<£(rp))q. This is given by 

<*(*p)>. 

fc/47ra\1/2 
nu/'hroC 

ko(l-AS)d(r) 
\ s / \ 

1 I \ 
X E -[e- i l -y6i t+H.c . ] ( l+X5) k0, 0 ) , (35) 

I / I / 

where +e is the electronic*charge, y—tp/ro and 5(r) is 
the Dirac delta function of the electron displacement, 
r. Expanding the delta function in plane waves and 
evaluating the matrix element gives 

<*(**)>< 
2^w/47ra\1/2 1 

=—(—) R e £ - - ^ * / i < P ( 0 ) . (36) 
e \ S / i I 

The expansion of / given by (34) gives an expansion of 
(<Kr2>))q fr°m (36). Inserting the lowest order term 
from (34) into (36) yields 

<*(*,)>,<»= 
1kaa f i 

/ dh 
7r2e J z>2(l-

c o s v y 

2 q ( 0 - v + * ) " 
(37) 

which is the familiar result for the weakly coupled 
polaron.6 Considering the term linear in F in (34) as 
generating the first correction in (<£(rp))q due to the 
external electric field we obtain 

ftoa/2Fro\ d 
<<Kr*)>q

(1> = 1 V -

: [d*v-
J v-

cosv-y 

i 2 ( l - 2 q ( 0 - v + ^ ) 3 ' 
(38) 

where z is the component of y in the direction of the 
external force. Both (<#>(r3,))q

(0) and (0(rp))q
(1) are time-

dependent because of the time dependence of q(/). I t 
is most convenient to evaluate (0(rp))q at that time at 
which q(t)~0; we denote this value by (^(rp))o. Then 

<*(fp)>c 
(0) : 

<*(r,)>o« = 

( 1 - * - * ) , 
e y 

2Fr0\2fia)cc /2Fn\, 

r 1 le-y i 
X + (y 3+4y 2+8) cos0, (39) 

L y2 8 y2 J 

where 6 is the angle between y and the direction of the 
force. 
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At large distances from the electron (rp2>r0) we find 

1 IN 
<*('*)>( 

<*(**)>( 

(0), 

(i), 
2Fr0 / 1 l y r 0 

cos#. 

(40) 

(41) 

The expression given in (40) is the potential due to 
the spherically symmetric distribution of polarization 
charge induced by the electron. This term is the 
known result in the absence of an external electric field. 
Thus (41) shows that the effect of a weak field is to 
distort the spherical polarization charge distribution 
so that there is a decrease in positive charge in the 
direction of acceleration of the electron. 

Successively higher order terms in / [in (34)] give 
rise to terms of successively higher multipolarity in the 
mean polarization at great distance from the electron. 

DISCUSSION 

We have based our calculation on perturbation 
theory, considering only the lowest term in an expansion 
of the wave function as a power series in a1/2. In the 
absence of an external electric field there is reason to 
believe that perturbation theory is appropriate even 
for values of a1/2 which are not small.10 In the limit of 
zero field (F —» 0, Ft —» 0) the wave functions obtained 
in this paper approach continuously the weak-coupling 
wave functions in the absence of a field. These facts 
suggest that our procedure of studying the weakly 
coupled polaron in an electric field by expanding in 
powers of a112, is a reasonable one. 

The question remains as to the conditions under 
which wave functions of the form <pk0 can be used to 
describe the state of the electron between scattering 
events in a Boltzmann equation description of mobility 
at nonzero temperature. 

We shall confine ourselves to a few qualitative 
remarks. First, we would expect that a necessary 
condition for being able to speak of isolated scattering 
events is that the mean time, r, between collisions obey 

(Fr)2 /2w«fe, (42) 

T»1/O>. (43) 

If (42) and (43) are not satisfied, then there exists the 
possibility of emission of real phonons between colli
sions. 

In order to satisfy (42) and (43) simultaneously we 
must have 

(Fro/fe)2«l. (44) 

Thus, the usefulness of the functions <p^0 in discussing 
the mobility of electrons in crystals is confined to the 

low-field limit (in which limit, as mentioned earlier, it 
would have been permissible to have treated the 
external electric field as a perturbation, at least for 
low-average electron drift momentum). 

The form of the expansion of / in (34) suggests that 
as the mean drift momentum of the electron approaches 
ft/ro the asymptotic expansion of given in (34) fails and 
the effects of the applied field on the wave function 
may become non-negligible. On the other hand, neg
lecting terms of order X2 and higher is probably a bad 
approximation in this case. 

It is difficult to discuss quantitatively the question 
of the effects of the external field on the electron 
mobility. In general we expect that these effects will 
be very small when Fr^/fua^l and the drift momentum 
is much smaller than.ft/ro. The change in the polaron 
wave function due to the presence of the applied field 
will alter the phonon-polaron scattering cross section 
and also the rate of change of the average electron 
momentum between collisions. 

To estimate the effect of a finite but weak electric 
field on the mobility /x, computed in the limit of zero 
field, we must first identify the quantities which play 
the role of effective masses in our treatment. 

It is easy to show, using (B5), that the mean current 
carried by a slow polaron in the direction i is given by 

ji=ePi(f)/im*(F) (45) 

where pi(t) is the component of the polaron momentum 
p(/) in the i direction and 

1 

2mf(F) 2m *<«>-° 

/ 4 7 T Q : \ 1 / 2 

XReE 
I 

(/i(M0)-/i(o» 
/ 

(46) 

Expanding f\ from (34) we obtain 

1 
+ 

0.73Sa/2Fr0\
2 

Mz*(F) m*(0) m 

1 1 1 0.246a/2Fr<f 

tny*(F) mx*(F) m*(0) m \ fua / 

(47) 

where 

*(0) m\ 6/ w*(0) 

> G. Hohler and A. Mullensiefen, Z. Physik 157, 159 (1959). 

as is well known.6 

If we take the zero-field mobility /* to be proportional 
to (tn/tn*(0)y as in Ref. 3, then it seems natural to 
expect an additive correction to /* of order a(2Fro/fico)2fx 
arising from the field induced shift of the effective 
mass. But since (2Fro/fico)2 will typically not exceed 
6X10~5, this correction is completely negligible com-
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pared to uncertainties in both polaron mobility theories1 

and experiments.11 

SUMMARY 
We have obtained solutions of the time-dependent 

Schrodinger equation for an electron interacting with 
an external electric field and the lattice vibrations of a 
polar crystal. The solutions are valid in the weak 
coupling limit for periods of time during which the 
electron momentum is sufficiently small so that the 
wave function can be described by a perturbation series 
in powers of a112, starting with unperturbed wave 
functions given by (4). An upper bound for the time 
interval during which our treatment holds is implicit 
in condition p(t) <fi/ro. 

We find that the electric field, although acting only 
on the electron, distorts the distribution of positive 
polarization charge surrounding the electron, inducing, 
to lowest order in Fro/fico a dipole moment in the 
direction opposite to the direction of the external force. 
One can visualize this situation by imagining that the 
positively charged polarization cloud has inertia and 
tends to lag the electron, which is pulling it along. 

While no convergent expansion in powers of Fro/fico 
exists for the wave function, treating the external field 
in perturbation theory results in a correct asymptotic 
representation of the wave function when 

Fr o/fax&l, p(t)<gh/r0. 

Under these conditions, corrections to the mobility 
are expected to be very small. 

ACKNOWLEDGMENT 

It is a pleasure to thank David Eagles for numerous 
discussions. 

APPENDIX A 

To determine f (1) we shall solve (7) by assuming 
that at /=0, \Hi=0 and that at /=0, XHi is turned 
on so that it achieves its final value given by (9) after 
a time to which satisfies 

|p(*o)-p(0)|«ft/Vo and co/0»l. (Al) 
For simplicity we take 

A#i=* E 7i(^ i , xW+c'1 , x i i ) (A2) 

where 
yi=—i 

fioo/4wa\1121 

\ S / I 
(A2) 

In addition, if Xko(/) is the solution of (7) with inter
action (A2) we require the initial condition 

Xko(0)Hk0,0> (A3) 
be satisfied. We assume ktfg.fi/ro. 

Since we wish to choose S in (15) in such a way that 
the perturbed state results from adiabatically turning 
on the electron-phonon interaction, we require that S 
(and therefore / ) be so chosen that 

Xko(*o)- (1+XS) |k0,0) = 0(A2,\/co/o). (A4) 
11 D. C. Burnham, F. C. Brown, and R. S. Knox, Phys. Rev. 

119, 1560 (1960). 

We use the same ansatz as before for solving (7) to 
first order in X, except that we replace f\{p) [see (20)] 
and J\(u) by fi(p,t) and Ji(u,t), respectively. The 
equation obtained for /i(p(0 A analogous to (18), is 

/ pO-1 «* \ 

(« +— 
\ mro 2m/ 

Mv(t),t)+iF-
dfi(v(t),t) 

dpz 

=^—frlyit-
dfito(f),t) 

i 
dt 

Transforming from the independent variable pZ) to 
given by (22) we obtain 

P du 
•J\(u,t) = -yitu-W-ifiu-1'2-

dfx(u,t) 

dt 

which, for /3>0, has the solution 

fi(u,t) =ipl*y le-^A t / — i f 
L J 0i*(p<o) £1/2 

+«0W — / d£— (A5a) 

dt 

andfor/3<0 

?i(u,t) = -i(-py^*rwftf 
L J-pu(P(t)) £1/2 

— / ^ — . (ASb) 
-fiuipm V112 J v ?1/2J 

We note that Ji(ufi) = 0, in accordance with (A3). 
From (Al) we have Fttfgfi/ro; hence, (Froa)to)/fioo<gl 
but since co/(CS>l, we conclude Fr$/fiu<0. from which it 
follows that |j8|«(£(*o))»l a n d Ii8|«(#(0))»l for all 1. 
We can therefore replace the integrals in (A5) by their 
asymptotic forms for large \&\u. In this way we find 
that the first term in the bracket is of order (| fi | u)~ll2h 
while the second term is of order (\fi\u2)~ll2fi. But 
since u is of order (fiu)2 the second term is negligible 
(of order l/osto) compared to the first. 

Thus, by comparison of (28a,b) with (A5a,b) we 
conclude that (A4) is satisfied only when for all 1, f (1) = .0 
to the order of our calculation, 

APPENDIX B 

In this section we solve (19) for G(2) and derive the 
differential equation whose solution specifies cr. We 
have from (19) 

{Ho(&S*+<r)+H£+FttS*+<r, 2]} |k0,0> 
= {$S2+<r)HQ+GM} |k0,0>. (Bl) 

Using the relations 

±HoS2-±S2H0+FZiS2,zl = KHo-Fz, S2] 
= l{SZHo-Fz, Sl+£Ho-Fz, 5]5} = J[ffi ,S]-ffiS, 

we obtain from (Bl) 

IH0-Fz, <r] I k0j0) = { - i [Hi ,5 ]+G»} | k0)0>. (B2) 

ktfg.fi/


A866 

If we make the ansatz 

<,=£ ^«<^-*Xi i n*(£)JmtJ1t-H.c. (B3) 
l,m 

then a satisfies (B2) if 

ft«[2-2q(/)- (l+m)+(l+m)2]X1)m(p«) 

+tFfo—Xi,m(p(0) 

= - ( — ) C/»(p(0-*l)-/m(p(0)] 

+—( — ) L/i(p(0-*ni)-/i(p(0)] (B4) 

D A V I D M . L A R S E N 

a n d if 

G« = |<0,ko|[ffi,5]|ko,0> 

(B5) 

This verifies that the ansatz (B3) is correct. 
In solving (B4) we must choose the integration 

constant so that, in analogy to (A4), the adiabatic 
condition 

Xko(^0)-[l+X5+X2(J52+(7)]|ko)0) = o(x 3 ,—) 
\ (AW 

is satisfied. 
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Infrared Transmission and Fluorescence of Doped Gallium Arsenide 
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Experimental measurements of the fundamental optical absorption edge show that with increased doping, 
w-type GaAs exhibits a shift of the optical absorption edge to higher energy at 77°K, while p-type GaAs 
at 300°K shows a shift to lower energy. For n-type GaAs at 300CK and p-type GaAs at 77 °K, a combina
tion of the two effects is observed. Fluorescence emission for the relatively low doped w-type GaAs occurs 
at nearly the energy of the band gap, while the highest doped materials emit at higher energies. The ^-type 
fluorescence occurs through the acceptor state at 77°K, but not at 300°K. A deep level, presumably an 
acceptor level about 0.08 eV above the valence band, was found for Ge-doped GaAs. 

I. INTRODUCTION 

THE discovery of the efficient emission of infrared 
light by forward biased GaAs diodes1 and the 

subsequent construction of GaAs lasers2 has created 
considerable interest in the optical properties of this 
semiconductor. In order to determine some of the pos
sible effects of material parameters on the performance 
of these devices, and because of general interest in the 
properties themselves, the following investigation of 
transmission and fluorescence of doped GaAs has been 
carried out. 

First, the absorption edge of GaAs is measured for 
crystals with various types and levels of doping. The 
shifts in the absorption edge are interpreted as either 
a "Burstein" type shift,3 an effect of the impurities 

1 R. J. Keyes and T. M. Quist, Proc. I.R.E. 50, 1822 (1962). 
2 R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and 

R. O. Carlsen, Phys. Rev. Letters 9, 366 (1962); M. I. Nathan, 
W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, Appl. 
Phys. Letters 1, 62 (1962); T. M. Quist, R. H. Rediker, R. J. 
Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeiger, 
Appl. Phys. Letters 1, 91 (1962). 

3 E. Burstein, Phys. Rev. 93, 632 (1954); see also T. S. Moss, 
Proc. Phys. Soc. (London) B67, 775 (1954). 

themselves,4-5 or a combination of the two. It is at
tempted to fit the first type of shift to the expression 
of Kaiser and Fan6 and some difficulties are noted. 
The fluorescence results are then presented and dis
cussed in relation to absorption data. 

II. EXPERIMENTAL TECHNIQUE 

The first figure shows the experimental arrange
ment for both the transmission and fluorescence ex
periments. A Bausch and Lomb grating monochromator 
with a grating blazed for 2 ju. first order was used in the 
second order in which case it has a dispersion of 66 
A/mm. A type 7102 photomultiplier was used as a 
detector in conjunction with a Perkin-Elmer model 107 
chopper amplifier. 

Filters for the transmission measurements were neces
sary to minimize scattered light. These were either 
the RG-1 or RG-10 filter7 (red and infrared trans-

4 1 . Kudman and T. Seidel, J. Appl. Phys. 33, 771 (1962). 
5 P. Aigrain and J des Cloiseaux, Gompt. Rend. 241, 859 

(1955). 
6 W. Kaiser and H. Y. Fan, Phys. Rev. 98, 966 (1955). 
7 Fish-Schurman Corporation, 70 Portman Road, New Rochelle? 

N. Y. 


