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To aid the analysis of nucleon-y angular correlation results for target nuclei having zero and nonzero
ground-state spins, the double-differential cross section has been evaluated in explicit form for compound
inelastic scattering of spin-} particles to first or to second excited states of nuclei having g.s. spin 04-,
1+, 14, 4, §—, §+, $—. In several instances, provision has been made for the coincident v radiation
to be of mixed multipolarity or for cascades to include an unobserved intermediate y-decay step preceding
the y transition under observation. Theoretical results are illustrated quantitatively by correlation curves
for inelastic neutron scattering at suitable energies around 3 MeV upon appropriate representative target
nuclei (Ge®, Zn®, Ni®, Feds; Si%, P3t; P#; §83; Cu®; Zr#; Co¥, respectively).

1. INTRODUCTION

LTHOUGH the formal theory of angular correla-
tion for compound inelastic scattering of spin-§
nuclear particles is now well established,’?* the nu-
merical evaluation of the requisite Racah arithmetic has
been carried through®!!:? only for one particular nuclear
spin transition sequence, namely for the sequence
04+ — Jw1— 2+ — 04, such as one obtains for scat-
tering to the first level of e-e nuclei via compound nu-
cleus (CN) states of spin J; and parity 7. Though this
admittedly embraces an extensive class of investiga-
tions, the need to extend evaluations to cover other spin
sequences is evident. The results presented in the sec-
tions which follow aim to satisfy this need, at least in
part, and to provide a basis of hand-calculated formulas
which may later be used to advantage in checking more
general angular correlation and distribution computer
programs founded upon the statistical model.
The numerical expressions derived from the basic
correlation theory are applicable not only to inelastic
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nucleon scattering, but also to nuclear reactions of the
type (p,my), (m,pv), (my), (4pv), (Hemy)(Hed,py),
etc.,, of which, the latter feature the advantage of
leading to fairly high excitation of the CN even when
the incident energy is low and thus offer conditions
conducive to the validity of the continuum assumption.
The last-named reaction has, indeed, been subjected to
(unpublished) correlation investigations by the Mary-
land group,’® whereas proton inelastic scattering to the
second level of the e-e nucleus Ar® at E,= 5.6 MeV has
been utilized in $’-y and y-y correlation studies by the
Osaka group.* The latter group observed isotropy (to
within the statistical error of about 49) in the p'-y
correlation with the p’ counter perpendicular to the
incident beam and with five settings (between 0° and
120° in the scattering plane) of the ¥ counter used to
register v rays making the transition from the second to
the first level of Ar%. This, together with evidence of
pure E2 v multipolarity and the absence of direct v
transition to the O+ ground state enabled spin 0+ to
be assigned to the second level at 2.13 MeV of Ar¥, a
conclusion supported by y-y coincidence studies of the
cascade radiation. It is symptomatic of the scope of
such correlation studies that nucleon-gamma investiga-
tions are in general aimed toward elucidation of reaction
mechanism,!® whereas v~y (and 8-v) studies aim in the
main toward establishing spin-parity assignments and
elucidating nuclear structure. The potentialities of the
latter field of investigation have been exploited by vari-
ous groups, and notably by Gove ¢ al. at Chalk River,
whose most recent results have been presented in the

18 Private communication by W. F. Hornyak and C. A.
Ludemann, to whom the author desires to express his appreciation
of the opportunity to peruse and discuss correlation and distribu-
tion results for the reaction C2(He3pwmyy)N" at Epe=2.25 and
2.45 MeV prior to publication. A preliminary report by C. A.
Ludemann, H. D. Holmgren, and W. F. Hornyak had been sub-
mitted as a short contribution to the Topical Conference on Com-
pound Nuclear States, Gatlinburg, 1963.
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1962).

15 The above Ar® p’—+ measurements constitute an exception
in that isotropy of the correlation with respect to the y-emission
angle is a model-independent consequence for y decay proceeding
from a 04 state, as is well known.
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paper of Broude and Gove.!® These authors, making use
of the extensive correlation parameter tabulation of
Ferguson and Rutledge,!” evaluated y-y correlation
functions (for which the tabulation is especially suited)
for several spin sequences'® of the type O+ — Jimy >
Jowrs—> 2+ — 0+ which represent an advance upon the
single transition sequence mentioned earlier, but which
cannot directly be taken over for nucleon-gamma
correlations. Although calculation of the latter is some-
what facilitated by employing these and other parame-
ters,1:1719.20 it is nevertheless appreciably more compli-
cated in that the procedure involves additional nuclear
barrier penetrabilities and ‘‘particle parameters,”:%9 for
which reason it was deemed commensurately straight-
forward to use the more basic Racah functions, as
tabulated numerically in various reports,?~% and to
employ the modified Ferguson-Rutledge parametrization
in occasional spot checks only. The final expressions
have in each instance been checked by comparison with
identical calculations carried out independently,® also
to some extent by checks of internal consistency, and in
part by integration and comparison with appropriate
distribution expressions cited by Van Patter in a
privately circulated manuscript.

Apart from underlying assumptions and simplifica-
tions in the basic correlation theory and the basic reac-
tion theory discussed in Refs. 1, 3,12 and by Feshbach,®
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respectively, the hand calculations have been reduced to
manageable complexity by arbitrarily assuming further
that spin-orbit interaction need not be considered and
that the influence of higher partial waves than those
with /=2 is negligible. Though detailed investigations'
have shown these simplifying assumptions to be justified
at relatively low energies in the case of the familiar
04 — Jr1— 24 — 04 sequence, they may in some
other instances be too restrictive, but it is precisely in
such cases that hand calculation would become un-
feasibly complicated if they were to be relaxed. Provi-
sion has, however, been made for intermediate unob-
served cascade transitions and for mixed y multipolarity.
After a summary of the basic theory in Sec. 2, explicit
correlation functions are presented in absolute form for
target nuclei having 0+ ground states in Sec. 3 and for
those with nonzero ground-state spin in Sec. 4. Of the
innumerable combinations of spin sequences which
could have been taken, only those were selected from a
comprehensive compilation’ of nuclear energy levels
and spin assignments which would be suitable for ex-
perimental analysis involving stable and fairly abundant
target nuclei in the range 29< 4 £100. In each instance
the theoretical results are presented both in an inter-
mediate form in terms of Legendre polynomials and
hyperpolynomials valid forallazimuthsand immediately
reducible to angular distributions of particles or v radia-
tion, and in a final form valid when the radiations are
coplanar (azimuth ¢=0°) in function of the particle-
emission angle 6, and the y-emission angle 6, referred to
the incident direction in the center-of-mass system. This
final form is easy to code for computation over the
entire angular range, with numerical coefficients and
transmission coefficients constituting the entire input.
To illustrate the expressions quantitatively, such a pro-
gram has been compiled for the Ziirich ERMETH
computer, and correlation curves evaluated for inelastic
neutron scattering at suitable energies around 3 MeV
upon appropriate representative target nuclei. These
are shown for scattering to either the first (Sec. 3A) or
the second (Sec. 3B) level of the target nuclei Ge™, Zn®s,
Ni®, and Fe®® having a ground-state spin 0+, and for
scattering to the corresponding levels of the nuclei Si®
or P%, having ground state spin 3+ or P®, S8 Cu®,
Zr*, Co®, respectively having ground state spins 1+,
34, 8—, 5+, 2— (Secs. 4A, 4B, 4C).

2. UNDERLYING THEORY

A. Basic Expressions for the Double-Differential
Cross Section in the Absence of Unobserved
Intermediate Radiations

The derivation of the correlation function for inelastic
nucleon scattering to the first excited state of target
nuclei on the basis of a pure CN mechanism has been

# K. Way, N. B. Gove, C. L. McGinnis, and R. Nakasima, in
Energy Levels of Nuclei (Springer-Verlag, Berlin, 1961), Group I,

gol_. 1 of Landolt-Bornstein, Nuclear Physics and Technology, New
eries.
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presented in detail by Satchler,® whose approach is
followed in the treatment below. Apart from correction
of several errors,11:12:# the theory has been modified only
to embrace spin-orbit coupling,? but for simplicity this
latter development has not been incorporated into the
present paper. In the following, transition sequences of
the form

Jomo(fr=bt 5T imi(fa=lat )T awa(Lo,Ly)
— Jgr 3[(L3,La')-7 47!'4]

are considered, and the usual statistical assumption as
to the absence of interference between the various pos-
sible levels Jyry of the CN is made. The transition
designated by square brackets enters in the case of
nucleon scattering to the second level of a target
nucleus, which decays by an (unobserved) ¥ transition
followed by an (observed) ¥ transition in cascade to the
ground state. This will be treated as a special case later;
it is more straightforward first to consider the sequence
Jo— J1— J3— J; which applies to the case of inelastic
scattering either to the first excited state followed by v
decay or to the second level followed by v decay to the
first level or direct to the ground state. The v radiation
may be of mixed multipolarity Ly, Ly, where Lg'= Ly+-1
and the mixing ratio is given by

A= (J3|| Lo || T2/ (Jol| Laf| T2)*. 1

The double-differential cross section can then be written
absolutely as

d2a A /Tn\?2
=._(_> S NCWMXtSun, @
d0.dQ. 32x\Js

using the notation

b= (2r41)2, 3)

and summing over the momenta Jy, 71, j: and the
(positive even) transition parameters g, », ), restricted
in the range of possible values by triangle relations
which must be obeyed by the following triads,

(JofJ1), (ijeda), (JelaJs), (JaLd'Js),
(.7.1.71”) ’ (JIJII‘) ’ (j2j2”) ’ (]2]2)‘) ’
(Lsz)\) ) [(Lng’)\)] ) (L21L2,)\) ’ (.u”)\) ’

wherein the triad in square brackets refers to nonzero A
The separate terms in Eq. (2) are, respectively,

N= (=)l nIatTeta(J)4(§1)2(J2), Y]
C=(u0| j1j 1} —3$X0| jojot —3), ®
W=W (I J1j1j1; ul0), (6
M=M\@=[14+A2T[(L2)*N0| LsLs1—1)

XW (JeJ2LsLa; N 3)

4285 L0 L (N0 | LoLg 1— 1)W (J 9T sLoLy’ ; N 5)
+A22(L2,)2<)\0 l L/L 1~ I)W(szsz'Lz'; VS)] » (1)

X=X(J1]1u;j2jzv;]2.rz7\), (8)
3 F, D, Seward, Phys. Rev, 114, 514 (1959).
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for the spin-dependent “geometrical” factors, wherein C
represents a product of Clebsch-Gordan coefficients, W
a Racah coefficient, and X a Fano X-coefficient (Wigner
9-7 symbol). In practice, it is convenient to express re-
sults in function of terms M@, M,®, M- .- corre-
sponding to increasing values of M up to the highest
value permitted by the above triangle relations. For
A=0, Eq. (7) yields

M@= (=)IrI/ Ty, ®

a value independent of the multipolarity mixing ratio
A, as one would expect physically. The M@ for
A=2, 4, - -, as given by Eq. (7) take on the form of
simple numerical functions of A, only for any given spin
sequence, whence expressing the correlation function in
terms of these M,® permits it to be evaluated readily
for any scattering sequence in which the mixing ratio
As is known. It is obvious that for pure multipolarity,
with Ay=0, very considerable simplification becomes
possible. Equation (7) then reduces to

Mwure D= (LNUN0| LoLol — )W (JoJoLoLs; N5),  (10)

which can be evaluated explicitly (in practice, the three
constituent terms are respectively incorporated within
N, C, and W) rather than subjected to the above
subdivision into M@, M@, M®, ...,

The energy dependence of the correlation is contained
within the term

r=Ty(E1) - Ty,(Ee)/2 j1s T(E), (11)

where the T'; are transmission coefficients for incident
energy E; and outgoing energy FE; of the particle in the
center-of-mass (c.m.) system, and the summation in the
denominator extends over all permissible channels by
which the compound system can decay (a summation
hitherto confined to the elastic scattering channel to a
0+ ground state and the inelastic scattering channel to
a 2+ first excited state: the “two-channel” approxima-
tion, for which the restricted sum is characterized by
>.7). The T, thus vary for different nuclei and different
optical potentials chosen to describe the scattering
process.

The angular dependence upon 8y, the scattering angle,
and 6y, the y-emission angle in the c.m. system, referred
to the incident direction taken as the 2 axis (the y axis
being along ko X ky, where ko and k; denote the propa-
gation vectors of incident and emergent particle waves),
as also upon the azimuth ¢, is contained within the
Legendre “hyperpolynomial”
Sn»x=41r(ﬂ/5~)zm(-—)”‘O\mluv()m}

X Yv_m(ol)o) Y)‘m(02’ ?) ’ (12)
where # is a summation index running over negative
and positive integer values up to the lesser of », N. This

hyperpolynomial, as introduced and developed by
Rose,”* is identical with Seward’s @3, (Ref. 35) and is

% M. E. Rose, J. Math. Phys. 37, 215 (1958-1959).
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closely related to the A function of Biedenharn and
Rose! or the X g function of Ferguson and Rutledge.!”
Properties of this or analogous functions have also been
discussed in a number of publications®?47-# and ex-
plicit values with p, », A < 4 have been cited by Sheldon
together with a tabulation of numerical parameters
which enable S,,» to be evaluated for u, v< 18, A< 4.

The correlation expression (2) for the special case of
e-e target nuclei can be reduced somewhat, in that J,=0,
whence j1=Jy and

d%
< )(J‘z)2 S NCMXrS;m  (13)
d0dQy, \327
with
N'= (-—-)h—hf—.la—l—iz(jl):}(ﬁ)z (14)
C'=u0|J1J 5 —5Xo0| fofosd —3), (15)

and the remaining terms as defined in Eqgs. (7)-(12), the
summation being extended over Jy, fe, p, », A, If addi-
tionally J3=0, as is the case for scattering to the first
level of e-¢ nuclei, then Ly=Ls'=J; and A;=0, whence

Po (ﬁ) TS N'C"X1Sun (16)

dﬂ1dﬂg 327l'
with
N"= (= )7rtIetin(J1)4(a)2, (17)
C"={u0|J1J 15 —3)(+0| jojed —3XNO| T2l — 1), (18)

and X, 7, and S,,» unchanged.

B. Basic Expressions in Presence of an
Unobserved Intermediate y Transition

If unobserved radiations (irrespective of their nature)
feature in intermediate transitions, the correlation be-
comes modified?® by one or more (normalized) Racah
factors of the form

UK(LTJJH_I)___(_)Jr+Jr+1—Lro.jr+1
XWTJ T rp1Srp1; KLY, (19)

where the index 7 labels the unobserved transition and
an incoherent weighted sum over L, and L,” has to be
taken in the case of mixed multipoles. Each of the cases
considered in Secs. 3B (%), (iv), (¥), (4x) and 4B in-
volves an unobserved v transition from J, to J; of pure
multipolarity Lj, so that A;=0. The succeeding v
transition from J; to J4 is observed in coincidence with
the emergent particles, and may be of mixed multi-
polarity Lj, Ly, with mixing ratio defined by

A2= (Jo|| L/ || T8/ (T ol| Ll T 5)2. (20)
In this case, the multiplicative Racah factor (19) takes
9 A. J. MacFarlane, Nucl. Phys. 38, 504 (1962)
38 E. Sheldon, Phys. Letters 2, 178 (

®D. Brink and G. R. Satchler, Angular Momentum (Oxford
University Press, Oxford, 1962).
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on the form

Ug—> Ur(LoJ T s)
= (=)IIIaf,. Joo W (T T o553 ALy),  (21)

and the correlation expression (2) has to be modified
somewhat to take account of the change in the y-decay
sequence from Jy— J3 to Jo» J3— J4 The step
J2 J;is accounted for by introduction of the U term
(21) and the step J3 — J4 by redefinition of the M term
to

M=M®=[1+A2]"
X (La)2NO| LeLs1 — 1YW (J 3T sLsL3; N 4)
42485005 L] LoL' 1 — 1)W (J 3T sLsLs' ;N 5)
+As2(Ls)¥NO| Ly Ls/1—1)
XW(JsJsLs'Ls ;0 )], (22)

The latter is again, for convenience, expanded in in-
creasing permitted values of A in a manner analogous to
that of the previous section, M¢® again being a pure
number, and M,®, M,®, - .- being As-dependent. This
expansion is again redundant when A;=0, for then Eq.
(22) reduces to

Mwure = (L)YNO| LoLsl— )W (JsTsLsLs; M s), (23)

a product of terms which can be absorbed within the
resulting ¥, C, and W in the requisite modified Eq. (2).
The remaining modification consists in ‘“eradicating”
from (2) those terms which came from the original
(observed) transition J2 — J3. The final result is similar
in form to (2),

d*c Ty
10,9 32m (7) > N"'C W' M\®rSunn, (24)
1 2 7 0

but with M replaced by either (22) or (23) and

N'"= (=)o IrtTetTetirLa(J)4(T)2(5)2(F2)2 (25)
= (=) TstieIa( )2 N (26)
=W (I Jijrjr;uJ )W (JoJoJ 355 NLs) . @7

As before, the summation extends over momenta Jy, 71,
je2and (positive even) parameters u, v, A, where now the
range of permitted A values may differ from that for a
J2— J3 transition in consequence of the triangle rela-
tions for the additional triads (J3J3s)\), (LsLs\), etc. The
range of u and » is, of course, unchanged. The terms C,
7, and S, have been defined in Egs. (5), (11), and (12).
Throughout this paper, the range of summation has
been curbed by restricting the orbital angular momenta
of incident and emergent particles to /;, /< 2. In decid-
ing whether to treat any given v transition as having
pure or mixed multipolarity, it has been assumed that
an Ep, My mixture is essentially improbable when
compared with the likelihood of an My, Ey,; mixture,
and that the multipolarity is dictated by the rule L=AJ,
1+AJ, except in the case of 24 — 24 vy transitions
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which involve an M1+ E2 mixture for which A, can as-
sume large values (2%w — 1% transitions in vibrational
nuclei).

At this stage, attention may be drawn to a resulting
by-product of the above calculations taking a correla-
tion which involves a J,— J; step over into one which
involves a Jyo J;— J4 cascade. It follows from the
requisite Racah algebra that 7o modification of the final
correlation expression is necessary when J¢=0 and
Ly=Ly=L3=Ly(=L); the range of summation is also
unaltered in this special case.*? The y-transition parame-
ter in Satchler’s notation3 for the step J,-—> J;3 with
A2= 0 iS

Ar(LoT oJ 3)=[ (=) 72751]5(L2)*JL(NO| LoLa1 — 1]
X[W{JoJLaLo; N 5) 1, (28)

whereas that for the cascade Jo & J3— J4 with Ap=A;
=0 is

Ua(LoJ 2T 5) A\(L3J 5] )
=[(=)7#tI L1 7,y (J3)2 (Lg) V][N0 | LsLs1— 1)]

X[W (T oT o T 8T 33 NLo)W (JsJsLsLa; N o) 15 (29)

both these expressions reduce to the same value,
namely

(=) BTy (LYXNO| LL1— 1)W (JoJ sLL; \L)

under the above conditions. Another, rather trivially
obvious instance of equality occurs when X is restricted
to the value A=0, for then Uy=A4,=1 by definition
(irrespective of multipole mixing). Such a situation
occurs when Jy and/or J; have the value 0 or %. The
emission of v radiation is then isotropic, so that the
correlation loses its 8; and ¢ dependence and reduces
essentially to an inelastic scattering distribution [in
which case d%0/d:dQe= (47)~'do/dQ].

C. Reduction of a Double-Differential to a
Differential Cross Section

As justification for expressing correlation results in an
intermediate form involving Legendre polynomials and
hyperpolynomials, it was stated earlier that not only do
such expressions have the merit of being applicable to
any value of ¢, but that they are amenable to straight-
forward reduction to the angular distribution of emitted
particles and of v radiation. It follows from the re-
lations'?

do d’s | de d’r
—=d— and —= , (30)
a9 4231405 0 aQs Q14! o

40 Considerations of the angular correlation of radiations with
parallel angular momenta by U. Fano, Nuovo Cimento 5, 1358
(1957) and earlier references therein have some bearing upon the
result discussed here and also cited by A. E. Litherland and A.
J. Ferguson (Ref. 10). This condition is also implicit in the remark
which D. M. Van Patter attributes (Ref. 32) to M. E. Rose con-
cerning identity of the distributions of cascade v radiations when
J!=0 and ]3=L2=L2'=L3=La’.
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that (i) the scattering distribution do/d<, is obtained by
multiplying correlations of the above form by 4r after
setting P,(¥)=P,(w)=Sun=0 for u=»70 and A=0;
(ii) the v distribution do/d<, is obtained by multiplying
correlations of the above form by 4r after setting
Pyr(x2)=Pr(w)=Sun=0 for u=A540 and »=0. Herein
for convenience the abbreviated notation

x=cosfy, y=cosls,

w=cosf; cosfy+sind; sinfs cose  (31)

has been employed, where w stands for the cosine of the
angle between the emitted particles and the v radiation
measured in coincidence. Another abbreviation to be
used later may be introduced at this stage, namely

z=cosf cosf; sinf; sinfy=ay[ (1—x2) (1—y2) ]2, (32)
From (31) and (32),
w=xy+ (z/xy) cose. (33)

The total compound inelastic cross section is, of course,

0’=%1rx2 Z]l(jl/jo)zT. (34)

D. Numerical Computation of Double-Differential
and Differential CN Cross Sections

Although it is quite feasible to evaluate correlations
numerically when expressed in Legendre polynomial and
hyperpolynomial form, the computation is very much
simpler and faster when the correlation is first reduced
further by hand calculation to a form such as used in the
present paper for the ¢=0° plane in terms of the
entities #, ¥, z defined in Egs. (31) and (32), e.g.,

Pa/dNdDs
= (E1) [y (a110) + 5% (@420)+ 22y (@240) +* (@100)
-I—y“ (a040) +a?y? (0220) +a? ((lzoo) +42 (dozo) + (dooo)
+ x2y22 ((1221) +a%z (0201) + y2z (0021) +3z (11001)] y (35)

where the @,4 are an abbreviation for respective
weighted sums of 7 terms,

Upgr=2_i0per V7P, (36)

with §, ¢, 7 denoting the powers in the corresponding
term x?y %" of the series. With E; in MeV, the expres-
sion (35)—which acquires additional terms when p, »,
A>4—can readily be coded to yield the double-differ-
ential cross section in mb sr2 at predetermined intervals
of emission angles 64, §,. The same program can also be
employed for numerical calculation of the differential
cross sections in mb sr!; in the expression for do/dQ; all
coefficients except @400, @200, and @ooo vanish, whereas in
that for do/dQs,, all except @oso, G20 and @og vanish. The
program can also evaluate the total cross section ¢ as
given from Eq. (34); in the form corresponding to Eq.
(35), only the a@gq are nonzero. Clearly the respective
nonvanishing coefficients take on unique values in each
instance different from their correlation counterparts.
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The label (z) has been introduced in (36) to take account
of the diversity of = terms [+(?7] each weighted by a
coefficient @,,.? which differs for different pgr. This is
brought out more clearly in the next section. The 7¢(¥
have, throughout, been evaluated from transmission
coefficients for a Perey-Buck nonlocal optical potential
as taken from a private tabulation kindly made avail-
able by the above authors and “meaned” to obtain T'/’s
which correspond with neglect of spin-orbit interaction.

3. CORRELATION FORMULAS FOR TARGET NUCLEI
HAVING A 04+ GROUND-STATE SPIN

Nuclei having a ground-state spin Jero=0- repre-
sent the largest class among those target nuclei suitable
for experimental correlation studies. Reference 12 deals
with investigations in the range 24 < 4 < 68 carried out
to date, for which analysis reveals CN correlation theory
to be in good agreement with experiment at energies
similar to those selected here and for target nuclei
beyond A4 =40.

A. Scattering to the First Level
0+ — Jimwy — 2+ — 04
Sequence)

The experiments analyzed in Ref. 12 all involved
inelastic nucleon scattering to the first level (Jory=2+)
of e-e target nuclei, followed by deexcitation v radiation
to the ground state (Jamry=0- =Jgro). Substitution of
these values and L,=L,'=2 causes the correlation to
assume the form (16) with Jo= L,=2. Parity considera-~
tions require that (/;+1I») be even, and the further
arbitrary momentum cutoff ly, /> < 2 restricts the num-
ber of pairs of values Jy, j» permitted by momentum
selection rules to 11, each of which is linked with an
associated (9. In the present case, ¢ runs from 1 to 5
[Eq. (43) of the present paper and Eq. (63) of Ref. 12]
and g, », A are each confined to the values 0, 2, or 4
within the restrictions of triangle relations (essentially,
w<2J1, v<25z2and |u—»| SAKu+v), which causes the
summation to extend over 59 sets of Ji, 72, u, v, A
combinations. The intermediate correlation formula so
obtained is cited as Eq. (66) in Ref. 12, and the final
formula in the desired form (35) as Eq. (67) of Ref. 12
for ¢=0° and Eq. (68) of Ref. 12 for ¢=90°.

It may also be mentioned that calculations have been
undertaken for the 0+ — Jymy — 2+ — 0+ correlation
which go beyond the ‘“two-channel approximation,”
though still restricted to orbital momenta I, l.<2.
Numerical results have been evaluated in particular for
Fe®® as target nucleus. In the case of inelastic proion
scattering at a lab energy of 5.8 MeV, which exceeds the
(p,m) threshold, the CN may decay by several channels,
e.g., by proton emission to the ground state, first level,
or higher levels of Fe®®, or by neutron emission to the
4+ ground state in Co%® (or to higher levels of unknown
spin). It has been experimentally found that at 5.8

4 F, Perey and B. Buck, Nucl. Phys. 32, 353 (1962).
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MeV, inelastic proton scattering occurs almost ex-
clusively to the first level only, but that neutron emis-
sion to the 44 state of Co®® could be appreciable; the
correlation has accordingly been evaluated for this
“three-channel approximation” and is cited in the
Appendix to the paper of Gobbi ef al.#? Quantitatively,
it was found that the correlation in the “three-channel
approximation” was practically identical with that in
the “two-channel approximation” in structure, but re-
duced in absolute magnitude by about 209, when trans-
mission coefficients for a Perey proton potential®® and a
Perey-Buck neutron potential®* were used. This finding
was also observed in a series of unpublished calculations
for #/-y correlations when 3.2-MeV neutrons are inci-
dent on Fe’® whose levels have a spin sequence 0+, 2+,
4+, 2+, - - -. The influence upon the double-differential
cross section for scattering to the first level (2-)
followed by v decay to the ground state when neutron
decay of the CN can also occur to the second (4-) and
third (24 ) levels of Fe’¢ has been found to be similar. In
presence of the one additional open channel to the 44
level, the cross section is reduced by 109, as against a
239, reduction in presence of an extra decay channel to
the upper 2+ state, and a 289, reduction for botk these
additional channels. In all instances, the structure of the
correlation function in the ¢ =0° plane plotted against
6. remains practically unaltered (e.g., the peak-to-
valley ratio of the curves for 8;=0°, 45°, 90° throughout
remains at 2.0, 1.4, and 1.1, respectively).

B. Scattering to the Second Level

The spin of the second excited state of e-e nuclei has in
practice been found to be 04, 24, 3— or 44-. Each of
these possibilities is considered in the present section,
which first treats v decay involving an observed transi-
tion from the second to the first level and then goes on
to consider v cascades in which the transition from the
second to the first level is unobserved but that from the
first level to the ground state is observed. For clarity, the
section is subdivided into separate portions for each
spin sequence, arranged in increasing order of spins J .

(3). 0+ — Jyw1— 0+ — 2+ Sequence

The isotropy of v decay from a 04 state renders this
correlation essentially a particle distribution, with
A< 2J,=0. Summing Eq. (16) over 9 terms after setting
l1=l2<2, ]1=j2, J2=O, and r=V ylelds

d*o 1 de R
= — = 27 W - 7O 64 P,y () |+ 7®
dﬂldﬂz 47!' dﬂl 327!'

X[10+10.85714P,(x)+5.14286P4(x) ]}, (37)

42 B. Gobbi, R. E. Pixley and E. Sheldon, Nucl. Phys. (to be
published).

#F. G. Perey, in Direct Interactions and Nuclear Reaction
Mechanisms, edited by E. Clementel and C. Villi (Gordon and
Breach Publishers, Inc., New York, 1963), p. 125.
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Fic. 1. Correlation function (isotropic in the y-emission angle 62)
for inelastic neutron scattering (described throughout by a Perey-
Buck nonlocal optical potential, Ref. 41) at 2.20 MeV (c.m.) to the
second excited state of Ge™, illustrating the 6; dependence of the
CN double-differential cross section for a 04 — Jyry — 0+ — 24
and a 0+ — Jim — 04> 24 — 04 transition sequence; es-
sentially a particle scattering distribution (divided by 4x).

with
To(Ex)+To(E») ’ T1(Ey)+T1(Ee) ’
To(E)T2(E,
7-(3)=___(__)_(_)__ (38)

 Ty(E)+Ta(E)
In final form, employing the relation

A2 2.063009
—=—, (39)
327l' E 1

for Xin cm and E; in MeV, Eq. (37) may be rewritten as

dza'/dﬂj_dﬂz
= (Ey)Y«*[46.417707®]
+42[12.378057® —6.189037®74-[4.126027®

+8.252047®+13.409567® ]} mb sr2.  (40)

ERIC SHELDON

Apart from Ar®, the nuclei S or Ge™ would appear
to be suitable as targets, the last named having the
advantage of being a heavy nucleus which, even for low
incident energies, would form a compound system of
high level density. Its isotopic abundance is reasonable
(20.5%) and a suitable neutron energy for population of
second (but not higher) levels would be 2.2 MeV (c.m.),
which would readily be obtainable from the d-d reaction.
The correlation has accordingly been evaluated for
Ge™®(n,n'y) at E,=2.2 MeV (c.m.) and is shown in
function of ¢, in Fig. 1. This shows a pronounced dip at
6,=90°, the peak-to-valley ratio being large (2.6), and
the cross section being reasonable in magnitude. By
contrast, it may be mentioned that the corresponding
correlation for neutrons going to the first level of Ge™
under the above conditions peaks toward 6;=90°; the
maximum peak-to-valley ratio, occurring for 8,=90°, is
1.8 and the double-differential cross section rises from
2.85 mb sr? at §;=0° to 5.13 mb sr~2 at 0;=90°.

(#). 0+ — Jumw1— 0+ &> 24 — 0+ Sequence

Since this case fulfils the condition J4=0, Ly=Ly'= L,
=Ly, it follows from the discussion of Sec. 2B that the
double-differential cross section is again independent of
g, and ¢, and is identical with that of (3) above, for
which reason, Fig. 1 illustrates the correlation (es-
sentially the distribution) for this case also.

Since 0+ — 0 v transitions are strictly forbidden,
no direct ¥ decay can occur from a level Jars=04 to
the 0+ ground state, and accordingly no correlation
expression exists for deexcitation of a 04 level by ¥
decay to the ground state.

(#4). 04 — Jymy— 2+ — 2+ Sequence

Unlike the two previous cases, the second level can
here decay by v emission either to the first excited state
or direct to the ground state; in the latter instance the
correlation expression is identical with that for a normal
04 — Jim — 2+ — 04 sequence except insofar as the
79 are changed numerically through new values of
T1(Es) for the different energy E.. In the former in-
stance, the ¥ radiation from the second to the first level
can be of mixed multipolarity (M1-+E2) and the
correlation has to be evaluated afresh from Eq. (13).
The result may conveniently be expressed in terms of
M@, M@, and M,® since A can assume the values
0, 2, 4, with 141 even,and Iy, [ < 2. From the definition
(7), it follows here that

M@= —1/r/5=—0.447214;

M, ®=(1+A)~1(0.187083+0.547723A,— 0.057270A2%) ;
M ®=0.136598A%/ (1+A2).

(41)
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Summation over 57 terms yields on substituting for M¢® from (41),

P0/d0dDa= (552/32){r®[0.841.603569M 3 Py (1) —0.4780921 (@ P (w) J+ 7[0.4-+0.748333 M @ Py (w) ]
+7O[1.6—0.48P3(x)+ 1.496664 3 5 Py (y) — 0.319992M 3@ S 325
+7®[2.0+4.062374M @ Py(y) — 1.434275M (O P ()]
+ 70[4.0~0.571428 P (%) — 0.514284.P, (x)— 1.069043 1 ,® Py (y)4-0.71 T140M 1@ P4 (y) — 1.909014 5 Py (1)
+0.170748M (@ P, () — 1.613992 M 5® S 305-+0.500666M 5 S 34— 0.0531 T5 M 4 S32,+0.008153 1 s S 34
+0.610190M 50,8435+ 0.122309M DS 15— 0.164093 M 1S 142—0.280649M (@ S1ss]},  (42)

with
o= To(E))T2(Es) . T\(E)T(Es) (3)EM)_
To(Ex)+2T5(Es)’ THE)+Ti(Es) T1(E)+2T:(Es) ”
e To(E)To(Er) o To(E)T2(Es)
Tu(E)+To(EB)+273(Es) Ta(En)+To(B)+2To(Ey)

a set of 79 identical with that for a 04- — Jyr1— 2 — 04~ spin sequence. For the ¢=0° plane, Eq. (42) can be
transformed into

o /d0dQ= (E1)~{a'y' [ —172.60374M P+ — 52.39648M (D 7]
+-a%4?[172.60374M (D704 7® (177.22194M ;P +13.42852M ;@) ]+ 22y [ 172.60374M P 7@ — 15.10272M ;@ 73]
+ o[ —21.5754TM D704 7® (—23.20885— 70.88893 M »® — 0.44020M , @) ]
F [ —21.5754TM D70 —64.72640M (D70 +32.97941 M ;@ 73]
+ a2y [ T® (49.62266M ;P —178.76816M 4®)4-23.15726 M ;D7
+13.23237TM @ 7@+ 7 (—95.69976 M s -+42.09425M ()]
42?270 (—24.81133M ;@4 24.65768M ;@) — 11.57863M ;@ 7P
- 7.426837®4-7®(11.051774-75.61514M ,» —2.63308 M ;)]
+ 90 (—24.81133M @+ 24.65768M ;@) — 11.57863 M ;@ 1D+ 2315723 M ;@ +®
+7®(62.85535M y@+ 5547977 ;D) 4+ 7® (9.45196 M ,® — 25.93438M ) ]
+[+®(8.25204+416.54089M ;@ — 4,931 54M @)+ 73 (4.12602- 7.71909M ;@)
-+7®(18.97968 - 12.12987M @)+ 7* (20.63009— 20.951 79M 3@ — 5.54798 M ,@)
—+7®(42.21801 —- 35.05091M ;@ +4-0.11444M (@) -+ 529%[ — 172.60374M (@70 — 52.39648M ,@ 7]
4 4%[ 86.30187M ;@ 7MW 7® (177.22194M 2@ — 12.76997M @)+ 86.30187M ;@71 —41.30121 M (P 7®) ]
+2[7® (49.62266 M 59— 49.31535M ;2)+23.15726 M ;@1
+13.23237TM ;@ 7®4- 73 (—113.42246M ;- 5292601 ;@) ]} mb sr2. (44)

To illustrate the angular dependence of this correlation, the nucleus Zn® has been chosen as a representative
example: since its energy states lie* at 0 MeV (0--), 1.04 MeV (2+), 1.87 MeV (2+), 2.37 MeV (0+7?), etc.,
results have been evaluated for neutron scattering at 2.37 MeV, as this cannot lead to population of levels higher
than the second excited state. The double-differential cross section has been computed numerically from Eq. (44)
for 6;=0°, 45°, and 90° with ¢=0° and 6; ranging from 0° to 180° in steps of 5°, for coincidences between neutrons
scattered to the second level and v radiation going thence to the first level. The latter has been shown# to be of
mixed multipolarity with mixing ratio around A= +3. Figure 2 depicts correlation results computed for the above
conditions in the “‘two-channel approximation” neglecting the influence upon the 749 of neutrons going to the first
level of Zn®, The numerical value and sign of the mixing ratio can exercise a decisive influence upon the form of the
correlation ; subsidiary investigations which have been undertaken to examine the ‘‘sensitiveness” of the correlation
yielded the following results. The expression for the double-differential cross section assuming M1 y-multipolarity
was derived from (41), (43), (44) by setting A,=0 and, as a check, from first principles [summing Eq. (2) over 43
terms with A=0, 2 only]. The resultant correlation curves for #,=0°, 45°, 90° in function of §; were practically
identical with those in Fig. 2, though of slightly larger amplitude, the biggest discrepancy occurring for 8;=0°,
where the peak-to-valley ratio is 1.7 for Ay=0 as against 1.4 for A;=-43; the absolute magnitudes were closely
comparable. Similarly evaluated curves for S* [ E,=3.80 MeV (c.m.)]and Se’8 [E,=1.79 MeV (c.m.)] with A;=0
were also the same in appearance. However, those ensuing for Zn® at £,=2.37 MeV (c.m.) when one artificially
sets Ag=—3 for comparison are radically different in character in that they climb to a maximum around 8,==90°
and have peak-to-valley ratios of 3.1, 1.9, and 1.5, respectively, for 8;=0°, 45°, 90°.

#“ A K. Sen Gupta and D. M. Van Patter, Phys, Letters 3, 355 (1963).



B740 ERIC SHELDON

(2). 04 — Jiry— 2+ > 2+ — 0+ Seguence

A change in the appearance of correlation curves compared with those of Fig. 2 can also arise on considering the
second excited state to decay by a y cascade in which the first transition is unobserved and the second (pure E2
multipolarity to the ground state) is observed. A special case yielding identity in the correlation results when the
+ radiation from the second to the first level has pure E2 character, for then the condition J4=0, Ly=Ly'=L;= L,
discussed toward the end of Sec. 2B is fulfilled and the 0+ — Jyr; — 24 > 24 — 0+ correlation is identical with
that for a 04 ~— Jyry — 2+ — 2+ transition sequence. If, however, the ¥ multipolarity in the 24 — 2 step is
predominantly M1, marked differences are to be expected. Consequently, the calculations presented in this subsec-
tion have assumed that A;=0 (pure M1), which also greatly simplified their complexity. Assuming further that
I1, 125 2, one finds on summing Eq. (24) over 59 terms with A=0, 2 that

& /A= (2582/322){ 7©[0.16-4-0.042857 Py () +0.030476 Py () T+ +®[0.08-0.02P5 ()]
+ 7®[0.32—0.096P3 () +0.04P5(y) —0.0085525 325-+0.020399S 594 ]+ 7@[0.4-+0.108571 Py (3)+0.091429 P ()]
+70[0.8~0.114287 Py (x)—0.102857P4 (%) —0.028571 Pa(y) — 0.045714P4 () —0.051020Ps (w) — 0.010885 P, ()
—0.043136S 225-+0.023780S 524+ 0.013381.5 45— 0.000520S 244
+0.0163085192—0.007797S 424—0.0043865442+0.017890S s},  (45)

with (9 as given by Eq. (43). For the ¢=0° plane, Eq. (45) can be transformed into

@0/d0d= (E){x44[55.013670+16.70037® J+-x4y2[ — 55.013670419.40277® ]
+a29A[ — 55.013670+33.00897® - 37.82337® [+ 44[6.8767 1 — 32.54157)]
+94[6.876770 — 16.50417®+20.63017® — 27.016170 J+42y2[63.6091 70+ 3.09457® — 28.88287® — 56.857076) ]
a2 —11.174670 — 1.54737® — 4.12607® +25.29637®
92— 11.174670 — 1.54737®+19.59867® — 0,28357®426.03377® ]
+[12.0342r0+5.15757®+37.7531 7@+ 19.59867®435.61157® ]
+a9%2[ 55.013670416.700370 |- a2 — 27.5068 70427752976
+422[ —27.506870+33.00897®+46.17357® ]
+2[22.34937 0 3.09457® — 12.37817®—46.1728:© 7} mb sr2.  (46)

The 8, dependence of this expression for 8;=0°, 45°, and 90° in the ¢=0° plane is illustrated in Fig. 3 for the
Zn®(n,n'y) reaction at E,=2.37 MeV (c.m.) (i.e., with the same #(? as were used in the calculations upon which

T T T | I
8 ys) 8 = s =00
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Fic. 2. 8, dependence of the CN double-differential cross section F16, 3. Effect upon the correlation function depicted in Fig. 2 of
for a 04 — Jym; — 24 — 2+ transition sequence and for ;=0°,  observing the second rather than the first v transition of the
45°, 90° (p=0°), illustrated by the Zn%(n,n'y) reaction at 2.37 cascade from the second level of Zn®. For simplicit‘y, the unob-
MeV (c.m.) with a v multipole mixing ratio Ag=-+3. served y radiation has been treated as if pure M1 (with A,=0).
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Fig. 2 is based, but with A,;=0). Comparison of Fig. 3 with Fig. 2 not only shows the cross section now to be ap-
preciably larger (it will be recalled that setting A, to zero had practically no influence upon the magnitude or shape
of the curves depicted in Fig. 2 for A;=3), but in addition to have altogether different structure around 6:=90°,
whose form is rather striking.

A (partial) test of the correctness of Egs. (45) and (42) lies in integrating these to obtain either particle scattering
distributions which should be identical with each other and with the expression deduced from first principles, or v
distributions which in each case could be compared with the formulas quoted by Van Patter.? These tests, together
with an independent check® of the full calculations, consistently substantiated the reliability of the present results
and indicated the difference in correlation behavior (when the v radiation is predominantly or purely M1) to be a
genuine effect in the present instance.

In the case of v decay occurring from the second (24) level direct to the ground state, the correlation is the
same analytically as for the 0-+ — Jyry— 24 — 04 sequence evaluated!? for scattering to the first (2-) level
followed by v decay to the ground state; it is necessary only to insert new values of the transmission coefficients
T(E,) into the requisite 7 terms. As an example of the respective magnitudes of the double-differential cross section
when scattering occurs to the second (2+) level rather than to the first (2+), one finds for the reaction Zn%(n,n"y)
at E,=2.37 MeV (c.m.) for ;=0,=90°, ¢=0° that d%/d2:dQs is 3.271 mb sr~2 for neutrons going to the second
level (at 1.87 MeV) as against 5.233 mb sr—2 for neutrons going to the first level (at 1.04 MeV), the amplitude and
structure being identical in both cases.

(@). 04 — Jyury— 3— — 24 Sequence

The feature just noted renders it interesting to compare correlation behavior without and with an unobserved
intermediate v decay step when nucleon scattering takes place to a 3— second excited level. In the absence of unob-
served radiation and taking the multipolarity of the v transition to the first level to be pure E1, the summation of
Eq. (13) involves 26 terms (for 3, /2 <2 and /1475 odd, since the parities of ground and second excited states differ)
with A=0, 2 and yields
d%a/dndQe= (213%/327){+P[4-0.095238—0.032653 P5(w) ]

—+7®[4-0.380952—0.081633Py(x) —0.034286 P (y) —0.081632 P5(w)+0.005236.5 220+ 0.006635S5 242 ]

+7®[40.190476+0.038095 P2 (x) — 0.045714 P, (y) —0.045714 Py () —0.004887.S 222 |

+7®[+0.571428—0.179592 P, (x) — 0.151836 P3 (¥)+0.017143 Py (1) +0.0151855 520-+0.0099525 150 ], (47

with

e DEDE) o, TEDLE) o BETE) o TELE)
T1(E1) 4T (Ey) Ty (E)+2T5(E,) T2 (E)+T1(E2) To(E)+2T1(E,)

Equation (47) can, in the ¢=0° plane, be written as

Po/d0dR= (E1) {2 [+9.01867® 24 — 4.50937®]
+ a2y —4.24397D — 19.89357®) — 5.00267@+3.26257® |42+ 2.122070+4.50937® + 5.4463 7 — 14.13757® ]
+ [ +2.122070 4 3.97867® — 12.33387® ]+ [+ 2.711470415.26637®+6.1536 70+ 34.136970 ]
+ a2 +9.01867® 43 —4.243970 — 15.38427® — 5.09267® — 3.5012:® ]} mb sr—2, (49)

a correlation which has been illustrated for the Ni%(n,ny) reaction at E,=4.40 MeV (c.m.) in Fig. 4. This is
noteworthy in that all three correlation curves rise to a maximum around 6,=90° (that for 6,=45° peaks at
0,=118°), a hitherto unobserved feature in CN correlation behavior. The 6;=45° curve in particular highlights
the absence of symmetry about 8= 90°.

In connection with the cutoff /1, Z3<2 employed in deriving Eqs. (47) and (49) it may be pointed out that a
subsidiary calculation has been performed in which not only S, P, and D waves were considered, but also the
additional incident and outgoing pair of waves with /,=3, ;=0 to ascertain whether the presence of an F wave in
the incident channel radically influences the correlation. Inclusion of this extra pair of waves simply involved an
additional 4 terms in the summation, with A=0, 2 and 7®=T3(E;)- T'o(E2)/[ T3(E1)+To(E2)]. This led to a term
+7®[+0.666667—0.234014P,(y) | as an appendage to Eq. (47) and consequently a term (—15.207332y?
-+33.951240)7® as an appendage to Eq. (49).

The influence upon the Ni%(n,n'y), E,=4.40 MeV (c.m.) correlation of these additional terms is to effect an
appreciable increase in the cross section (which now ranges from around 2 to about 4 mb sr2 as 6, goes from 0° to
90°) and a slight increase in the amplitude (the peak-to-valley ratio for the ;=0° curve remains unchanged at 1.8
but that for the #;=90° curve becomes 1.5, as against 1.2 when /3, 1< 2). This influence should therefore become
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Fic. 4. Peaking of the correlation in function of the y-emission

angle 8; around 0;=90°, illustrated for a 04 — Jyr; — 3— — 24
transition sequence in the case of inelastic scattering of 4.4-MeV 0
neutrons to the second level of Ni® followed by an observed pure 30 60 9 120 50

E1 « transition to the first level. 6,(em), deg

Fic. 5. As Fig. 4, but for an unobserved E1 v transition followed by
observed E2 v decay from the first level to the ground state.

perceptible when absolute measurements are carried out, but represents too slight a change in structure to become
perceptible for relative coincidence measurements (in arbitrary units).

(). O+ — Jri— 3— > 24 — 04 Sequence

The fact that in this case Ly and L; are both pure but not the same, suggests that the correlation will differ from
that evaluated in the previous subsection. The summation here is also slightly more extensive in that 36 terms are
involved since A may now assume the values 0, 2, and 4. The 7(? are of course unchanged from those defined in Eq.
(48), but the correlation becomes

P /A0 = (3582/321r){rO[0.05714340.027988 Py () — 0.017104.P, ()]
+ 7®[0.228572—0.048980P5 (x)+0.029388 P3 () +0.069971 P (1)
+0.017104 P () — 0.0044885 395 — 0.016354S 324 —0.0056 87 242+0.006497S 044 ]
+7®[0.114286+0.022857.P3(x)+0.039184P3(y)-+0.039184 P5 (1) +0.0041895 295 — 0.011448 5204 ]
+7®[0.342858—0.107755 Py (x)-+0.130146 Py (y) — 0.025656 P4 (3)
—0.014694P5(1) —0.013015.5 320—0.008531S 195— 0.007359S 224+0.009746S42. ]}, (50)

and in the ¢=0° plane reduces to

B /0= (B~ H{xy[ — 43.225070 + 3.93127® J+a42[43.22507® — 21.0247r® ]
+a2y4[43.22507® — 45,1900+ — 25.9346 7@ — 22.98667® JH14[ — 5.4031r+9.03827® ]
+ 440~ 5.4031r®+21.12087®+12.96737® — 3.97947® ]
+-a29 — 38.70617®477.1176r® +31.35757® +13.52587® 4-42[3.143770 — 27.80167® — 4.36187 — 9.74167® ]
+97[3.143770 — 28.97997® — 12.96737® - 22.54667@ T4 [4.91197®+26.72097®+10.72767®+20.15867%]
+ oy —43.22507043.93127® [ %[ 21.61257 0 — 19,0591 7® ]
+ %[ 21.61257® — 43,2244+ — 25.93467® — 22.98667® ]
+2[ —6.28737 0+ 44.99307®+ 18.3901r®14,85337® ]} mb sr2.  (51)

Again, the scattering cross section do/d; is the same when derived from Eq. (50) or from (47) by integrating over
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the y-emission angle. The respective v distributions do/dQ; obtained by integrating over 2, agree with those cited
by Van Patter.®

The drastic alteration in the 8, dependence of the correlation as compared with Fig. 4 is shown by Fig. 5, which
was derived using the same 7(? for the Ni%(n,n'y) reaction at E,=4.40 MeV (c.m.) with J;, ;< 2 as were employed
for Fig. 4, but now illustrates the correlation when an unobserved v transition intervenes. The absolute magnitude
of the cross section remains rather small; inclusion of higher partial waves appears slightly to augment the magni-
tude without appreciably altering the structure.

(vii)., O+ — Jimwy— 3— — 0+ Sequence

When the observed v transition is that from a level Jors=3— direct to the 04 ground state, the correlation is
derived theoretically by summing Eq. (13) over 38 terms with A=0, 2, 4, 6 and 1, 12X 2 (such that /;-+1; is odd) to
obtain

o /dd Q= (TX/321){ 7 O[ +0.285714+0.244898 Py (1) 0.040816 P4 (w) ]
+ 7O +1.142858—0.244900 Py(x) -+0.257143 Py (v)+0.612245 Py () ~ 0.040816 P4 (w)
—0.039271S 32500390275 324— 0.049761S 245— 0.015505. 34— 0.092299S 245 ]
+7®O[+0.571428-+0.114285 Py () +0.342857 Py (v)+0.342857 Py () +0.036653S 222-+0.027319S 324 ]
+7®[+1.714286— 0.538777 Py () +1.138775 Pa(v)+0.061224 P4 () —0.128570 Ps ()
~0.113887S 329+ 0.017563S 224 —0.0746415 93— 0.0232575 42— 013844981561}, (52)

with the 7¢? as defined in Eq. (48).
The two hyperpolynomials Sz and Sy in the above expression have not hitherto been published; in the ¢=0°
plane, their respective values are

Sae= 1 522.368275xy5— 522.368275x2y5+465.296032y5— 759.808401 x4y 271.07747 5x*y*+- 771.6804044%y*
~13.850674x*— 100.912047y*— 280.9708124%2-- 14.6986 7442 39.573351y%— 2.261334--522.36827 542y
—261.184095y% — 498.624172x%y%:+ 87.061365x%2+-261.184100y% — 47.488019z, (53)

Sa26= +130.59206922y5— 65.296036y°— 184.016097 224 94.9760515*+-63.3173662%*
— 3.109335x2— 33.63735152+1.696001+130.592073y*s — 118.720067y%+4-19.7866782.  (54)

Equations (53) and (54) can be substituted in Eq. (52) and the latter reduced to a polynomial for the ¢=0° plane:

@0 /ddQe= (E1){x*y*[ ~696.26247® ]+ a2y +696.26247® — 261.09907® T+ y°[ — 87.03287®+4130.5495+@ ]
+adyA[+20.629970+1010.87027® J-hy2[ — 20.62997® — 379.97947 ]
+x2y{[ —20.62997® — 1007.00247® 4 12.37787® 4 378.8838+® |+ x4 +2.5787+14-28.49547P]
+ 4 [+2.578770+124.42487® —6.188973 — 187.991474]
+ 2292 +31.9765704-400.99657?@ -+ 1.23807® — 143.43057@ ]
+x?2[—8.25207" —45.38637® — 3.71347®4-1,50857@ ]y —8.2520710 — 51.57527@+6.18897@ 4 95.73657¢]
4-[+8.25207W +4-26.81927®+9.9024+® 4 11.844379 ] 424 — 696.26247? ]
+ 92+ 348.13127® — 261.099079 ]+ 22y%2[ + 20.6299710 4 662.738 97 ]+ %[ — 10.315070 — 135.6427+@ ]
+ %[ —10.315070 — 327.50167®+12.37787 - 248.3343+®]
+3[+16.504070+90.77247 4 7.42697® — 35.509479 ]} mb sr2. (55)
The correlation curves in function of 6, as given by Eq. (55) for inelastic scattering of 4.40-MeV neutrons to the

second level (3—) of Ni* in coincidence with 1.34-MeV de-excitation y radiation are depicted in Fig. 6, which may
be compared with Figs. 4 and 5.

(vitg). 0+ — Jiwy— 4+ — 2+ Sequence

An otherwise lengthy summation in Eq. (13) can be confined to but 33 terms on restricting the orbital momenta
to Iy, 12X 2 with l1-+12 even, and A=0, 2, 4. In the present case, the additional operation of momentum selection
rules curbs the incident and outgoing radiation to D waves only, associated with §-4 and 4 levels in the CN (it is
thus possible that incorporation of higher orbital momenta than =2 might appreciably affect the correlation).
Thence, with

- Tz (El) Tz (Ez) @ T2 (E 1> T2 (EZ)

= DR e (56)
T2(Ey))+ T (Es) To(Ey)+2T5(Es)
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the correlation ensues as

@0 /d0dQy= (45K/327) {70 4-0.0894-0.025397 Py(x)4-0.024943 Py (3)-+0.035633 P (w) — 0.012353 P ()
+0.003809S 53— 0.005906.S 33:+0.0008525 35— 0.000939S 345 ]
+ 7®[40.266667—0.038095 P3(x)— 0.019047 P4 (x)-0.074830 P3 (y)-0.058795 Py (1) -0.018520 P, ()
—0.000816S330—0.0164525 334~ 0.006571 34-+0.0044245 544
—0.005293S 123+ 0.003016S 454— 0.001856 S 14+0.001 775544 ]}, (57)

which, for the ¢=0° plane can be expressed as

%o /ddQe= (E1)~{aty'[—32.8362704-31.89467® |4-x%2[ 4-36.100170V —50.99837® ]

+ a2y [+16.416270 —83.83767® JH-a4 — 5.73657 0+ 8.36 797 ]+ y4 -+ 4.10467 O 27.78817®7]

+ %[ —13.73317® 411296717 J+42[ +3.5684 7D — 29.0348 73 ]+ 42 — 4.36857® — 27.39357@ ]

+[49.25157®+33.42407® 4-a?y%[ — 32.8362r D+ 31.89467® J+2[ +19.682071+4-35.05107® ]

+5%[ —67.89037@ J4-2[+4.31597D+60.62687® ]} mb sr—2. (58)

In Fig. 7, this is illustrated in function of 8; for 8,=0°, 45°, and 90° using 7? for the Fe5¢(n,n'y) reaction at E,=2.60
MeV (c.m.). The 6; dependence is again rather novel, particularly when 8;=90°, but the somewhat low double-
differential cross section may make this transition sequence difficult to study experimentally. Calculations for an
alternative possible target nucleus, Ti*® at E,=2.80 MeV (c.m.), yielded similar structure and magnitude for the
correlation curves.

Integration of Eq. (57) over Q, yields a y distribution do/dQ; which agrees perfectly with Van Patter’s expression3
and thereby confirms his emendation of an incorrect value in the formula published by Hosoe and Suzuki.®

(ix). O4 — Jor1—> 44 > 2+ — 0+ Sequence

This correlation tallies identically with that above, since Ly=Ly'=L;=Ly’, and J,=0. Figure 7 accordingly
depicts results for the spin sequences of both subsections (viit) and (ix).

N"(n,n'y): E,= 4.40 MeV,_ : p=0°f= 2

I Jim
25 e/
2+
- A
\\ O+ - , . __ .
20 N i Fo  (nn'y): E,x 260 MV, q ' $=0%: £ 2
\ 20 [l
T s N_| /
"% -
2 \/ W s
E 6,=90°
d | ) g
1S §,=45° 5
% 10 \ / Ni} %_‘}{"‘\ §,230° , /“‘\/{"‘«,
§,=0° 10 Y 4
A A 4
05 N\ N //
. ‘ 9.-0"\-/ — 8’.450
05 30 — 90 20 - B0
) 6, (c.m),deg.
0 30 60 90 120 150 , - ,
8,(cm), deg Frc. 7. Identity of the double-differential cross sections for

0+ — Jim — 4+ — 2+ and 04 — Jimp — 4+ 24+ — 04+
F16. 6. As Figs. 4 and 5, but for direct crossover E3 v radiation  transition sequences, illustrated by the Fe®(n,n"y) reaction at
from the second level to the ground state. E,=2,60 MeV (c.m.).

4 M. Hosoe and S. Suzuki, J. Phys. Soc. Japan 14, 699 (1959).
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As for scattering to a state Jore=4+ followed by direct v decay to the 0+ ground state, the high multipole order
(E4) indicates the v transition probability to be so low as to preclude its application for correlation studies. The
results of unpublished calculations [which, when applied to the Fe®(x,n'y) reaction at E,=2.60 MeV (c.m.) yield
correlation curves rather similar to those shown in Fig. 6] are therefore omitted from the present account.

4. CORRELATION FORMULAS FOR TARGET NUCLEI HAVING NONZERO GROUND-STATE SPIN

The present section collates theoretical correlation expressions for some transition sequences which are most
likely to be conducive to experimental investigation with target nuclei in the range 29< 4 £ 100. The evaluations

accordingly cover nuclei with Jgro=14, 14, 24, 4, 2—, and are illustrated graphically for neutron scattering
(assuming I, /< 2) upon representative targets.

A. Scattering to the First Level
@). 3+ — Jury— 3+ — 3+ Sequence

Provision for mixed multipolarity (M 14 E2) in the deexcitation vy radiation was made by expressing the correla-
tion in terms of the quantities, M)\® defined in Eq. (7). Since the ground-state spin is nonzero, the general correla-
tion formula (2) has to be employed instead of (13) as heretofore. The summation in the present instance extends
over 84 terms with A=0, 2, and I;, <2 (such that /;4/; is even) to yield the result

&/ ddQa= (2R2/32r) {7O[+0.5M @ —0.5M 1 Py(w) T+ 7@ [+ 1.5M,®]
7O 3.0M®—1.5M 5 Py(w) 4 7O +0.5M® —~0.51 2 Py (w) ]
7O +6.0M @ —0.6Mo® Py () —0.15 5@ Py (y) — 0.6M 5@ Py (w)+0.2245M 3@ S35
A 7O 4 5.0M P — 1.75M s Py (y)+ 1.5 Mo Py () +0.3741TM 5 Sa9 ]+ 70 [+ 1.5M4@ —0.75M ;@ Py (y) ]
+ 7O+ 3.0M @ +0.45M o Py(y)— 1.5M o Py (w)+0.16036 M 2@ S93—0.21514M ,®S545 ]
7O+ 5.0M @ —3.75M @ Py(y)]
+ 700 10.0M @ +1.5306214® Py (1) — 0.81633M ¢® Py (1) -+ 2.6 785 TM 5 Py (y)+3.57143 M 5@ Py (w)
+1.55448M 5. S39,—0.54883 M 5 S'p45—0.12193 M 5®.S 435-+-0.17055 M 5®S 4]
+ [ 7.0M 4@ +4.285T1M @ Py () — 0.785T1M o Py () — 1.8 1@ Pa(y) + 1.5M 5 P3(w)
+0.27490M y®S 325+0.34832 M 5 S 343— 0.75120M 58 435+0.2984TM ;@ S1s ]} . (59)

The M terms here assume the values
M®=0.5, M= 1+A2)"1(0.25—0.866034;—0.25A42), (60)

and the r terms are defined as

. To(Ey)T2(Es) o To(E)To(Es) 0 To(E)T2(Es)
 To(E)+Ta(Ey)’  To(E) 4 Ta(E)+To(En)+2Ts(Es) CTo(EDA+To(ED)+To(Eo)+2To(Ey)
_ Ty(E)T(Ey) . T1(E)T1(Ey) _ T1(E)T(Es)
T T(E)+T1(Ee) ’ —2T1 (Ev)+2T1(Ey) ’ ——Tl (E)+2T1(E,) ’
(61)
M= T2(Ey)To(£s) ®— T2(Ey)T2(Es)
To(Ex)+To(Ex)+To(Ex)+2Ta(Es) To(Ex)+Ta(Ex)+To(Ex)+2Ts(Es)
7O = To(E)To(Es) = To(E)T:(Ey) v To(E)T2(Es)

2T3(E)+To(Ep)+-2T2(Ey) 7 2T (E)+To(Eo)+2T(Ey) , _Tz(E1)+2T2(E2) '
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For the ¢=0° plane, Eq. (59) can be transformed into the following expression :

da/d1dQs= (E1)~{xty*[—27.8506M ;@ 7® —77.3628M ;@ 7104340306 ;@ 710 ]

+ 244 13.9253M ;@ 7® - (— 14,7358 M (D4 31.3136M 3@ ) 7104 (— 14.1832M 4@ — 29,9136 M ;@) 71V ]

+ 2292 —6.1890M s@+® — 18.56 71 M ;@ 7@ — 6.1890M ;@ +® — 11,1402M ;@ 7

+12.3781M ;D74 4,6417M ;P +(® - 82,8806 p @710 — 49,5122 M ;7]

+43[4-3.0945M ;P 70 4-9.2835M ;B 7@+ 3.0945M 2B 7O +3,7134 (— M @+ M ;@) 7® — 9,2835 M ;@ 7(®

—4.6418 M D 7® - (4-22.1035M ¢® —49.7338M {®) 710 (4-38.6814M (P +34.0396 M @) 71D ]

+ ¥+ 3.0045M ;@70 0.2835M ;P +®+-3.0045 M ;D7D +-2.7851 M ;@ 7® — 20,1143 M ;@7 — 4 6418 M ;@ 7D

+9.2835M ;@ 7® —23.2089M s @7 —11.0524M ;@ 700 — 6.1890M ,@ 711

+[4-2.0630 (M 4® — M ;@) 70+ 6.1890M (@ 7@+ (4 12.3781M o — 6.1890M ;)79 2.0630 (M @ — M) 7®

+ (+25.9939M ¢® —0.9284 M »®) &+ (4 20.6301 M (P4 11.8623 M ;@) 1O - (4 6.1890M (@ 1.5473M 5@ ) 7D

4 (+12.3781M \® — 4.6418 M 2® ) 7® - (4-20.6301 M (@ 28,3664 5@) 7®

~+ (4-36.8395M®4-20.2619M 2@ ) 700 (4-18.8250M ¢+ 3.0925 M 5®) 711

-2 —27.8506 M ;@78 — 77.3628 M ;P 7004 34.0396 M ,@ r (1]

+2[— 6.1890M @70 — 18,56 71 M ,@ +® — 6.1890M ;@ 7@ — 11,1402 ;@ 7®

+12.3781M ;@ +(® —9.2835M ;A 7(®4-52.4235M ;@ 7004 21.6616M ;@7 ]} mb sr-2.  (62)

A suitable reaction to illustrate the correlation expression (62) for the i+ — Jyry— 3+ — 34 sequence is
Si#*(n,n"y) at E,=2.0 MeV (c.m.). The mixing ratio of the deexcitation v radiation has been determined by groups
at Chalk River®’ to be either Ay=-3.4 or —0.23. Both of these possibilities, as also the special case A;=0 (pure
M1), have been subjected to numerical computation, the resultant correlation curves for 6,=0°, 45°, 90° in function
of 6, being depicted in Fig. 8, which furnishes another instance of the radical change in correlation structure on
changing the mixing ratio.

(#). =+ — Jim1— 3£ — 3+ Sequence

S (Y E,» 2.0MeV, s pe 0°: €5 2 B
—:\\9‘0' 9w //,/
4.4 45(.\1\ + 7 —
Y, ¥ A . : — :
4.0 P90 NI\ }- ,,'/’ 4 S*3(n,n'y) : € £ 2 Exerey Derenpence
X 77
\Y 5
36 \'\ } /// - I,
“\ Avs 34 /',/ 1 —
3.2 A 4Z o
SN > e
- s
ol 1.8 L | .
¥ /,//’:-_:t\\ o~ 2.0 MeV |8 Mev
x 36 3 7 A . o T — =F —
£ 3.2 3%1/0/45- "° - 2 L [ amev |
® * Pl < T w16
© —~B=01 -~
el £
4.4 B s ST
. | 1.2MeV V\\
40 ZN 1.4
77 3
3.6 it \x
: ///;/ As-023 | \\ isotropic in§,
3.2 W -7 > N ] 12
&45"/ 4 \ \'\
28f—_ 7 P ,
[rXxd N - 1.OMeV
= A e S
2.4 10— I —
30 60 90 120 150 30 60 90 120 150
8,(c.m.), deg flem.), deg
Fie. 8. Influence of the multipole mixing ratio A; upon the Fie. 9. Influence of the incident neutron enmergy upon the
correlation for a 3+ — Jim — $+ — 3+ sequence in the case of -4 — Jim — 3+ — §+ correlation (scattering distribution +4ur)
inelastic scattering of 2.0-MeV neutrons to the first level of Si®. for S%,

4D, A. Bromley, H. E. Gove, E. B. Paul, A. E. Litherland, and E. Almgvist, Can. J. Phys. 35, 1042 (1957).
47 G. J. McCallum and A. E. Litherland, Bull. Am. Phys. Soc. 5, 56 (1960).
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The transition sequences with either positive or negative parity throughout for o, s, 73 have been considered
by Sheldon.*® They represent a rather special case in that v emission from a state of spin Jp=$ is isotropic and in
consequence the correlation reduces essentially to a scattering distribution. It is independent not only of ; and ¢
but also of the mixing ratio A,, being given by

P /dNdy= (1/47) (do/ds) = (1/4) (3%/325) {3+ +37®+107®+4 r®[12— 1.2 Py (x) ]+ 10O+ 7O 7D 678
+ 670+ rUO[20+3.06122 Py (x) — 1.63265 Pa(x) 4 rO[1448.57143 P () — 1.57143P,(x) ]} . (63)

The 7(? are defined in Eq. (2) of Ref. 48 and the final expression is cited as Eq. (1) in that publication. The
noteworthy feature of this result is that in addition to the above-mentioned 6, isotropy, the 6; dependence is
strikingly weak at the fairly low incident energies considered [ E,=1.90 MeV (c.m.) for the (#,7'y) reaction on S%
and 0.90 MeV (c.m.) on Cu®; see Fig. 1 of Ref. 48]; there would thus seem to be virtual isotropy over all emission
directions in space. To ascertain whether this quasi-isotropy (associated with a peak-to-valley ratio of 1.01) was a
consequence simply of choice of rather low incident and emergent energy, the energy dependence of the $® (r=+)
correlation was elucidated for E, ranging from 1 to 2 MeV. This is shown in Fig. 9, which indicates the optimal
energy for quasi-isotropy to lie around 1.7 MeV, the curves for energies above and below this value having more
appreciable an undulation. It may perhaps also be mentioned that the correlation for the Fes%(n,n'y) reaction with
E,=1.1 MeV (cm.), E,220.3 MeV (c.m.) (a 04 — Jyry— 24 — 04 transition sequence) displays a much
larger amplitude; in function of 6y, the peak-to-valley ratio is 1.20 and in function of 6 it is as much as 2.22 when
9 1= 00.

Though small, the cross sections in Fig. 9 should lie within the bounds of feasible measurement ; it will be shown
later that for scattering to second levels with Jars=%— of nuclei having ground-state spin Joro=3%—, a similar
situation of quasi-isotropy exists, but that cross sections are roughly only one-quarter of those in Fig. 9 and
thereby rather too small for straightforward measurement.

This phenomenon of quasi-isotropy commends itself for investigations which seek to elucidate the admixture of
direct interaction (DI) to the scattering mechanism at low incident energies, for the CN component would consti-
tute a constant “background” in the measured correlation (or scattering distribution) of known magnitude. An
approach from this direction might well experimentally shed light upon CN/DI mixing and interference, a problem
which has recently formed the subject of considerable discussion.*-5

(444). §— — Jywr1— §— — I— Sequence

Even though here A=0, 2, the v transition being of pure multipolarity (£2) and the orbital momenta being re-
stricted to Iy, 2, < 2 (with /;+1, even), the summation in Eq. (2) is quite lengthy, involving asit does 104 terms. The
ensuing correlation formula is

&) ddQ= (R/321) (5/2){+®[0.7—0.021429 P, () ]+ r®[0.45+0.018367 Py ()]
+7®[0.7—0.14 Py (%) — 0.02P3(v)+0.02.P3 (1) — 0.002139S 525 ]
+7®[0.5-0.007143 P3 (y) — 0.021429 P, (1) — 0.001527 S s25 T+ 7®[0.540.010204 P (y) ]
+ 7 ®O[1.0—0.029155 Py (x)+0.015540 P4 (%) +0.007289 P5 ()
—0.051020P5 () -+0.004230S 320 0.001493 S 245 — 0.000332.5 g2+ 0.000464.5 445 ]
+7M[1.4—0.464286 P2 () — 0.052381 P4(x) — 0.027857 Py ()
—0.042857 Py () +0.004254.5 225+ 0.005391S 240+ 0.0071555 25— 0.002843 S 142 ]
+7®[0.9—0.177114 P, (%) —0.034111 P4 (x) — 0.017711 Py (y)
+0.036735 P2 (w) — 0.002705.5 22— 0.000605.5 24— 0.0023305 195— 0.0003705 415
+70[0.15+0.003061P; (y) ]+ r4[0.3—0.001837 Py (y)+0.021429 P, (w) — 0.000655S 250+ 0.0008785 2451} ,  (64)

48 F. Sheldon, Phys. Letters 5, 157 (1963).

4 M. Sano, S. Yoshida, and T. Terasawa, Nucl. Phys. 6, 20 (1958).

% S, Yoshida, in Proceedings of the Kingsion International Conference on Nuclear Structure, edited by D. A. Bromley and E. W. Vogt
(University of Toronto Press, Toronto, and North-Holland Publishing Company, Amsterdam, 1960), p. 336.

8t L. S. Rodberg, Phys. Rev. 124, 210 (1961).

® N. Austern, in Selected Topics in Nuclear Theory, edited by F. Janouch (International Atomic Energy Agency, Vienna, 1963).

% N, Austern, in Proceedings of the Topical Conference on Compound Nuclear States, Gatlinburg, 1963 (unpublished).

8 K. K. Seth, in Direct Interactions and Nuclear Reaction Mechanisms, edited by E. Clementel and C. Villi (Gordon and Breach
Publishers, Inc., New York, 1963), p. 267.
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with

o To(E)T2(E) e To(EQ)T2(Ey) s THE)T(E) |
To(ED)+2T2(E))+2T2(E,) To(ED)+2T5(E)+Ta(Es) AT (ED+Ta(Ey)

, )EM , (s)EM o= To(E)T(Ey) ,

Ty(E)+2T1(E,) 2T (Ey)+-To(Ee) 2T (E)+2T2(Ey) .

e To(E))T:(Es) o To(E)T o (Ey) e To(E)To(Ey) |
To(Er)+2T5(E)+2T5(Es) To(ED)+2T5(E)+ Ta(Es) To(ED+To(E)
To(E)+2T:(E,)

For the ¢=0° plane, Eq. (64) can be expressed as

P /A0 dQa= (Ey) oy —0.2631397®+1,0038717M —0.0807477®4-0.142095710]
+#4[0.4573587(9 —1.5303697( —0.7093167® — 0.071048700 ]
a2y —0.3315557040,2841907®+0.3536687® — 0.299978® — 0.6578487(® — 1.3031767 ™
+0.6055287®+0.213146700]
+42[0.165777r 0 —0.1420957 —1.2378057®40.1657777® — 0.225546 79 — 2.0584067 M
—1.0230427( —0.094730700]
+92[0.165777r® —0.1420957® —0.3094517®-+0.22103779+0.0789417® +0.4322997 040,08 74947 D
—0.3933007©+0.023682r —0.165781 717
1-[3.499747 04 2.41561579+4.1112797® +2.4392087® +-2.5524487 )+ 501843575+ 8.215191 7
+5.2400077+0.7657347® 1.649881 70 ]
+a22[ —0.2631397(® ++1.003871 7D — 0.080747r®40.1420957 0]
+2[ —0.3315547®+0.2841907® +0.3536687 — 0.2999787® —0.7518267® — 1.4459307®
+0.7450817® +0.2841947097) mb sr2.  (66)

The 6, dependence of this correlation is illustrated for the Co®"(n,n'y) reaction at E,=1.60 MeV (c.m.) in
Fig. 10 on a rather exaggerated vertical scale. With a peak-to-valley ratio of ounly 1.02, these curves also display
near-isotropy in terms of 6; or .

(). 3— — Jymi— §— — Z— Sequence

Tor this case, the summation of Eq. (2) with A=0, 2 and /;4/; even (1, [:< 2) extends over 145 terms on making
provision for the v decay to be of mixed (M 14 E2) multipolarity, and yields the result
20 /A= (3/4) (A2/327){2.85713TM @1+ +O[5.715474M (P +2.945941 M ;@ P4 (w) ]

+7®[7.348471M (@ +-0.981982 M ;. Py (w) ]

+7®[11.430948 M y®+4-0.285774M ¢® Py () +2.36 7664 M 3@ Py () +3.360554M y® P (w) — 0.236 784 M 5.5 ]

+7O[7.3484T1M (@ —0.577382M ¢@ P1(2)+0.771556 M 2@ Py () — 1.963961 3 »® Py (w)--0.082483 M ;2.5 95, ]

+-7O[4,0825M 4@ — 0.291606M @ P (x)+0.280566 M @ Py (y)+0.218218M ;@ Py (w) 4 0.076651 M .S 595 ]
+7M[4.0825M ¢®40.623479M s Py (y) ]

++®[8.165M (D +0.654625M @ Py (x) — 0.071414M 6@ Py () — 0.241446 M 3.5 200+ 0.068437 M s 524

—+-0.015208 M 5.5 420+0.015951 M 5.5 440 ]

+7O[5.715474 M (@ 2.836832M 2@ Po(y) ]

+709[11.430948 M (@ +-0.631813M (@ P3(x) —0.427689 M @ Py {x) 4 1.465697 M 2@ P4 (y)+5.891882 2@ Py (w)

—1.000072M 3®.S205-+0.268024 M 2.5 54— 0.300565M 2 @S 490+0.043421 1 ;.S 445 ]

+70[14,696941 M (@ — 1590744 M ¢@ Py(2)+0.278514M o P4 () +1.893823 M ,® Py () +1.963961 M ,® Py (w)

—0.020663M 2@ S595—0.166301 M 2@ S45+0.231317M ;@S 400 — 0.062207M 2@ S 445 ]

+7UD[8,981462M @ +3.177117M ¢® Py (%) —0.794283M (@ P4 (2) — 2.971921 M ;@ P (y) — 3.429138 M @ P (w)

—0.453874M @ S22 —0.101492 M 3@ S949+0.507446 M 5.5 420--0.080638 M oS 445 |

+709[2,449491 M (@ — 0.124974 M @ P (x)+0.018704 M 2@ P (v} — 1.776916 M o P2 (w)

+0.032847 M @ S300-+0.022995M sS04 1},  (67)
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with
= To(E)To(Es) o= To(E)T(Ey) |
To(E)+2T 2 (E)+To(Eo)+2T:(Es) To(Ex)+2T2(E))+To(Es) 42T 5 (E,)
O = To(EyTa(Ey) SO T1(E)T1(E») e T1(E)T1(Es)
To(Ey) 2T o(E)+2T5(Es) 2T (E)+2T1(Ey) 2TUE)+TIEy)
T(s);M . = To(En)To(E) o= To(E1)Ts(Ey) 6
T1(E)+2T1(Ey) To(E1)+2T 2 (Er)+2T2(E,) To(Ey) 42T (Ey)-+2T9(Es)
0= To(E)To(Es) = To(Ey)T2(Ey) |
To(E)+2T2(E))+To(Ee)+2T2(Ey) To(E)+2T2(E)+To(Es)+2T(E)
e TEITH(ED o DEITE) L TUEITE)
To(Bx)+2To(En)+2To(B) 2Ty(En)+Ta(Ey) Ty(Eq)+2Ta(Ey)
and the M,®, defined by Eq. (7) here taking on the values
Mo®=0408366, My®=(1+A2)(0.054555+0.566947A;40.13248947). (69)

For the ¢=0° plane, Eq. (67) becomes

% /dQ1dQs= (E1)~ {24y 3.100764M ;@ 7® 412408262 M ;® 710
—7.209282M ;@ 71D — 6046526 M 3@ 700 +1,116288 M ,® 0]
+ a4 (—0.197412—1.808791 M ;@) 7®+ (—1.182273—6.907557 M ;@) 749+ (0,769905+4.612392 M @) 711>
+ (—2.195668-+1.716926 M ,®) 705 —0,558143 ) ;@7 ()]
+ 2292 13.674381 M @ 70 4-4,558125 M ;D7 ®+4-17.067652M o2 +® — 9,627884 M ;D 140,53 7463 M ;@ +©®
—1.291990M ;@ 7®4-17.768250 M ;@ 709 4-19.418590M ;@ 70D — 1,360854 M ;@712 —9,488335 1 ;@ 719
a2 ~6.837191 M ;7™ —2,279063M ;. +® -+ (0.270848 — 7.799458 M ;@) 7+ (—0.547224+4.558127 M 5@ )7
+ (—0.276376—0.506459M ,®) 7 - (0.789644-+ 1.808794M ;@) r® 4 (1,612189— 5.106 7691 ,®) 710>
+ (—2.167576—10.5813T4M,®) 74D+ (4.893172+4.151542M,®) 1D+ (—0.1184474-4.682161 M) 719
+ 52~ 6.837191 M ;@ 7@ —2.279063 M ;@ 7® — 2.304376 M 3@ 7@ +6.348820 M s @ 7+ 0,144 704 M ;0 7®
+1.447025 M ;O 7™ +0.258398 M ;@ 7O+ 6.583064 M 3@ 7® — 7.512457 M, 710 — 2 093022 1 ,@ 7D
—1.894925M,® 70044279056 y® 7 13]
+11.805652704 (3.611305-+4.558127 M ;@) @ - (4.6431084-1.519377 M ;@) 7® -+ (7.132326+2.878365M ;@) @
+ (4.825516—3.465109M ;@) 7+ (2.671640-+0.279071 M y®) 7O+ (2.579515 — 0.482342 M ,®) 7
+ (4.935299—0.689061 M ;@) 7® 4 (3.611305 — 2.194654 M @) 7@ - (6.921667+4.459635 M ,®) 710
+ (9.854758-2.596885 M ,®) 7104 (4.482983 — 2.76 7717 M ;) rUD - (1.587185— 2.759693 M ,®) (9]
+222[3.100764M,® 79 +12.408261 M, 710 — 7.209282 M ;@74 — 6.046526 M ;@795 1, 116288 M, 7(19)]
+2[13.674381 M ;D7 @4, 558125 M ;@ +®4-17.067652M s D 7@ —9,627884 M ;@ 7 +-0.53 7463 M ,@ +®

+31.569266M 5710 4-9.76 7431 M ;70D — 16.141189 M, 719 — 8.930193 M ;@7 ]} mb sr2.  (70)

This correlation is illustrated in Fig. 11 for scattering of 1.3-MeV neutrons on Co% when the deexcitation v
radiation is taken to be pure M1, as suggested by the investigations of Metzger.’ Setting A;=0 in (69) yields
M@ =0.408366, M 2@ =0.054555 for substitution in Eq. (70); the resultant correlation shows but little structure
(the vertical scale in Fig. 11 is rather extended) and conventional shape.

B. Scattering to the Second Level, Followed by Cascade v Radiation

It is convenient to separate those cases in which the second level de-excites by v emission direct to the ground
state (Sec. 4C) and those in which the decay occurs by stopover v radiation in two steps, either of which may be
observed in coincidence with particles going to the second level. The two latter possibilities are considered in the
calculations comprising this section.

% F. R. Metzger, Phys. Rev. 88, 1360 (1952).
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the deexcitation v radiation from decay of the first level to be
Fic. 10. Correlation for a — — Jim — §— — — sequence, pure M1,
illustrated by the Co’7(n,n’y) reaction at 1.6 MeV (c.m.) assuming
the deexcitation vy radiation from decay of the first level to be
pure E2,

(@). 34+ — T — §+ — 3+ and §+ — T — §+ > 3+ — 3+ Sequences

These transitions have been evaluated, but are omitted for reasons akin to those prompting the omission of the
3 e s Jyry— 34 — 1 — sequence from Sec. 4A (in the latter, the M4 transition probability is too low to permit
coincidence measurements of sufficient accuracy). In the present instance, the only suitable nuclei with 4 <100
would apparently be Si?® or P# for which, however, experimental evidence!®*® respectively indicates the §+ — 3+
~ transition to be so inhibited as compared with the direct -+ — 3 v transition to the ground state (branching
ratio <3%) as to preclude its use for correlation studies. It might perhaps be mentioned that both for the
I+ —=Jm— 3+ — 3+ and i+ — Jurp— §+ > 4+ — 3+ transition schemes, the correlation curves as
evaluated for the P® (n,n'y) reaction at E,=3.0 MeV in function of 85, peak around 6= 90° and display considerable
amplitudes.

(#). T— = Jimi—3— — %~ and I— — Jymy— F— > §— — §— Sequences
These two transition schemes can be treated jointly by virtue of the restriction A=0 which ensues from the tri-
angle relation for the triad (J2J:\). This essentially reduces the problem to that of a particle distribution and
renders it independent of the multipole mixing ratios As and As, as also of course isotropic in 8;.
Summation of Eq. (2) is confined to 20 terms when y, ;<2 (and /1417, is even), and yields the result
B2 /d0:dQs= (1/47) (do/d) = (1/8) (82/32m){ T W+ O[5+ Pa(2) ]+ 1 20— 3.061226 P (x) — 0.272109P4 (%) ]
+r®[14—7.428571 Py(x)+2.095238 Py (2) -4+-37® 4 7®O[34-0.428571 P (x) ]}, (71)

with
e To(ED)T(Es) . _ Ty(E\)T(E,) ©— To(Ey)To(Es)
 To(E)A42To(E)+Ta(Es) T1(E)+Ti(Es) 2Ty(Ex)+2Ta(Es) |
(72)
o T2(E1)T2(Es) & To(E)NTo(Es) o To(E))T(Es)
To(Ey)+2T3(Ex)+Ta(Es) T3(Ey)+To(E)+Ta(Es) | Ta(Ex)+To(Ee)+Ta(Es)

Equation (71) can be transformed to

& /d01dQe= (E1)~{#*[—0.3069967®4-2.3638647? ]
+42[0.3868147® —0.9209867® — 4.899646+@-+0.165777r¢®]
+[1.8051337W1,1604427®+5.5259177® +4.770708794-0.7736287®-+0.7183697 ]} mb sr=2,  (73)

8 A, E. Litherland, E. B. Paul, G. A. Bartholomew, and H. E. Gove, Can. J. Phys. 37, 53 (1959).
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an expression whose rather slight 8; dependence is depicted in Fig. 12 for 1.9-MeV neutrons incident on Co®”. Since
this would seem to offer another example of over-all “quasi-isotropy,” it is interesting to investigate its energy de-
pendence in this region. The results shown in Fig. 13 indicate the isotropy to be most pronounced around an incident
energy of 1.65 MeV (c.m.).

C. Scattering to the Second Level, Followed by v Decay Direct to the Ground State
(i). }— — Jim— 3— — §— Sequence
Since Jo=1%, it follows that A=0 and the correlation accordingly reduces essentially to a particle distribution
which is independent of 6, or ¢. The present instance is noteworthy in that it serves to dispel the impression (which
might otherwise have arisen from similar special =0 cases treated earlier) of “quasi-isotropy’ being a general
feature of such correlations at the rather low energies considered. In the present case, the correlation (i.e., the

distribution) depends strongly on the particle scattering angle 6;.
The result of summing Eq. (2) over 26 terms with A=0 and /;+/; even (where I, 1:<2) is

%5/ d0dQe= (1/47) (do/dQs) = (1/2) (R2/32m) {7V 437D+ 37®4-7D[64-3.5P,(x) ]

7 O[1241.5Py (2) 37O+ 7O[3+1.5Py(a) ]+ r®[204-16.071428 P, (x)+ 1.428571 Pa(x) ]
+7O[746.857143 Py (x)+3.142859P4(x) ]}, (74)

with
To(E1)To(Ey) ® To(E\)To(E,) ® © To(E)To(Es)
= H = ’ TY= ’
To(E)+To(Es) To(Er)+To(Er)+To(Eg)+ T2 (Es) To(ED)+To(E))+To(Eg)+T2(Es)
T1 (El) T1 (Ez) T](El) T1(E2) T2 (E]_) To (Ez)
= 0= , 7®= , (75)
T1(E)+T1(Ey) 2T (E1)+2T1(E») To(Ex)+To(Ex)+To(En)+T2(Ey)
o To(E1)To(Ey) ® To(E)T2(Ey) © To(E1)T2(Es)
= = , TW=——-u——
To(ED)+To{Er)+To(Es)+To(Es2) ’ 2T (E)-+2T2(Es) To(Er)+To(E,)
c;"(n, n’y;=l= 2: E;ncv Ds;:ncuc:
I, 7Ty
os f;II/_T *‘/*:
e 4 INE
048~ | ;'i K ;
0.40! e , \\
"] Isotropic in 8, e ————
T ons /N :
= / \ 5 035 1.8 MeV
] £
| T e
=] 043} | g'_' ~—__
Comelation isofropic in 8  \ b
042 _// \\ 039 ’__LT_ Mev
041 0.25
30 86 90 120 50 I 1.6 MeV
6,(c.m.),deg I
Fic. 12. The correlation (essentially a distribution) for 0:20 ke rev_
I~ = Jm 24— 4~ f~ = Jyr — §—>§— — I— and ’ 30 60 _ 50 120 150
§— — Jyr — $— — §— transition sequences, illustrated by the Gje.m.), deg

Co¥ (n,n"y) reaction at 1.9 MeV (c.n.), the v emission being
isotropic irrespective of multipolarity. F16. 13. Energy dependence of the correlation depicted in Fig. 12.
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MeV (c.m.).

The reduction to a polynomial in % yields

P /AR = (Er)~{+*[6.4469037+14.1831877®7]
+a2[5.4153997® 4-2.320885 7 4-2,320885r M 4-19.3407097® — 1.547257 7]
4+[1.0315057®43,0045147® 4 3.09045147® 4.383894 7@+ 11604426+ +3.0045147(® 4 2,320885
+12.8938067®+4.8996467@ ]} mb sr2, (76)

which is illustrated in Fig. 14 for inelastic scattering of 1.73-MeV neutrons on Y¥. The curve’s high peak-to-valley
ratio of 1.5 recalls that of Fig. 1 for the 04 — Jyry — 0 — 24 sequence, when compared with the ratios for the
other \=0 cases (Figs. 9, 12, and 13). The curve amplitude is obviously large for low ground-state spins, a situation
which prevails in general for angular distributions.

(#3). 3+ — Juri— §+ — 34 Sequence

As stated in Sec. 4B(3), the §- second level of nuclei such as P, which has been chosen to illustrate the
present case, decays practically exclusively to the -+ ground state by direct v transition rather than by cascade
radiation.’® With pure E2 v multipolarity, the summation of Eq. (2) is 51mphﬁed for 1,1, <2 (with [+, even) and
A=0, 2, 4 it nevertheless has to be carried over 110 terms to yield

@20 /dQdQs= (15X/32x){+©[0.0333334-0.019048 P, (1) — 0.019048 P4 ()]
+7®[0.2+0.077551 Py (w)-+0.008163 P4 (w) ]
+7®[0.240.01.P,(%)+0.02P5(y)+0.08 P2 () 4-0.002138S 305— 0.00956 2.5 304 ]
+7®[0.333333—0.083333 P3(x) +0.090410 P, () — 0.009524 Py (1) — 0.01 17095 05— 0.0113835 524 ]
+7®[0.2—0.035714P5(x) —0.002857 P2 (y)+0.077551 Py (w)+0.008163 P4 (w) — 0.005018S 205
—0.0048785 94— 0.003513.5 245+0.006822.5 544
+7®[0.333333+4-0.142790.P5(y) —0.031 746 P4(y) ]
+7[0.666667— 0.280612.P;(x)+0.030613 P4 () +0.015873 P4 (y) +0.095238 P () — 0.0553228 595 — 0.045301.5 04
+0.015681.524540.012182.5 244+ 0.003484.5 435+ 0.002707.5 454+ 0.0036 545 145~ 0.006 2125 444 |
+7®[0.2333334-0.114286 P, () — 0.069841 P4 (y) ]
+79[0.466667— 0.047619 P, () —0.052381 P4 (x)+0.059048 P5 () 4-0.069841 P4 (y) — 0.128568 P, (w)

—0.060317 P4() —0.040280S 522+ 0.001084.5 555-4-0.10797 7S 242— 0.0121285 5444 0.019677.5 425+ 0.01 70555 04
—0.002843544—0.008697S 4441}, (77)
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with

o To(E)T2(Es) o To(E)Te(Es) o= T(E)NT(E»)
To(Ex)+Ta(Es)  To(Ex)+To(B)+2To(Er) | ATW(E)+TA(EY)

o T1(E)T1(Ey) . T(E1)T2(Es) o= Ty(Ex)To(Es) , (78)
T1(E)+2T(Ey) To(E))+To(E)+2T2(E») 2Ty (E)+To(E2)+2T2(Es)

o Ta(Ey) Ta(Es) e THEDTo(E) o T3(Ey) Ts(Es)
2Ty (Ey)+To(Ea)+2T2(Es)  To(E)+To(Ex)+2Ta(Es)  To(Ex)+To(Bo)+2Ta(Es)

and this reduces for the ¢=0° plane to

d?o/ddQs= (E1)~{x*y*[ —20.6300917® - 8.841458 @ — 8.8414587(9)4-64.469031 7 —43,839046 7]
+49°[20.630091 7 — 8.8414587®4-3.5365967®) — 56.1801667 " 4-149.278921 7]
+22y4[20.6300917® — 8.8414587® —9.2835417® — 11.051823+®4-2.2103837® — 115.123291 74 39.970903 ]
+ 24 —2.578761704-1.1051837®+-1.5472577) -+ 5.986456 7" — 65.6137527% ]
434 —2.5787617M+1.1051837@+4.6417707®+ 5.5259197W 4 2,2103687® — 4.2979367®
+-33.7695047( —9,4554587® —0.8596107 ]
+ a2y’ —19.5985857V416.3566967-15.782019-®4-10.2624187“+10.830797
+115.1233187 — 148.16284277]
+22[2.0630097 V) —4.8628047® — 4.1775937® — 4.5312527® — 8.0678457® — 25.7876127 M-+ 68.5791757®) ]
+ %[ 2.0630097® — 4,862804 @ — 7.4268327® —0.8872437® —7.0731797®4-10.3119497(®
—34.9974937013.4095587®+-22.886649+ )]
+[1.03150474-8.8414667®-8.8193637®+10.0581987¥+4-10.0571697®+ 7.7373157®
+28.0900807 " 4-4.6417707®+0.1529387®]
+ 2242 —20.630091 70 +-8.8414587® — 8.8414587 )+ 64.469031 7" — 43.8390467® ]
+422[ 10.3150457©0 —4.4207267® — 0.8841527) — 23.945651 74 127.3594037¢7]
+322{10.3150457® — 4.4207267® —~9.2835417® — 11.0518327® — 2.2103657® — 82.8887777M4-18.0513857®) ]

+2[—4.1260187 0 +9.7256087®+11.1402497® + 5.304884 7D+ 11.49391 27 ®
+46.0493547 —70.2999087® 7} mb sr-2.  (79)

Its 9, dependence for 8;=0°, 45°, 90° is shown in Fig. 15 for the P%(,n'y) reaction at E,=3.0 MeV (c.m.).

(#4). 14 — Jimy— 0+ — 1+ Sequence

As would be expected, this sequence is very simple in that the limitation to A=0 restricts the summation in
Eq. (2) to but 17 terms for Iy, Iy, <2 (with I;+I, even) and yields a 8y-independent correlation (e.g., essentially a
particle distribution) of the form

@0/ d0dQ= (1/4r) (do/d) = (1/3) - (A2/320){ 27D+ 47O 7O 124 0.8 Py () ]+ 27®
+ 7O[844Py (%) T+ r®[12+9.306122 P2 (x) — 0.734693P4(x) T},  (80)

with
o To(E1)To(Ey) . To(Er)T2(Es) o= T1(E)T1(E>) ’
To(E))+T2(E))+To(Es) To(Er)+2T5(Er)+Ta(Ey) 2T1(E)+T1(Es) &1)
o To(E)To(Es) ' Ty(E1)T2(Eq) o To(E))T2(E) .
To(Ex)+To(Ex)+To(Es) To(E)+2To(E)+To(E)~ 2Ta(Ex)+Ta(Ey)

In terms of %, Eq. (80) becomes

d*a/d0dQy= (Er)~{a'[ —2.2103647® ]+ 22[0.8252037® +4.1260177® -+ 11.4939027©® ]
+[1.375339794-2.7506787+7.9769667® +1.3753397W-+4.12601 77 4 4.8628067 ]} mbsr—2, (82)

which is illustrated for the P#(n,n’y) reaction at E,=1.1 MeV in Fig. 16.
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(iv). §+ — Juri— 3+ — §-+ Sequence
The condition A =0 renders this correlation essentially a distribution independent of 65, ¢ and the y multipolarity.
The summation of Eq. (2) over 30 terms yields
d*a/dQ1dQe= (1/47) (do/d) = (1/6) (82/32x){10r O+ T+ B+ 7@ 10~ 2.5P,(x) ]

+r@[6+0.3P3(x) ]+ 67O+ rO[6— 1.071428 Py () T+ 7V 20— 8.418367 Py () +0.918368 P4 (x) ]
+ 7O 14—1.428571 Po(x)— 1.571428 P4 () ]+ @), (83)

with
= To(E))To(Er) o= To(E)Ty(Ey) o= T(E)T1(Ey) ,
To(E)+2T5(E)+2To(Ey) To(E)+-2T o Er)+Ta(Ey) 2T (E))+T1(Ey)
o T:\(E)T1(Ey) o= Ty(E))To(E») o= To(E))T2(E») , (8)
Ty(E)+2T:(E,) 279 (E)+To(Es)+To(Es) 2Ty (E)+To(Ey)+To(Ey)
D= T2 (E)T3(E,) o To(E)T2(Es) o To E)To(Ey)
To(Ex)+2To(E)+2T5(Es) To(E)+2To(E)+Ts(Es)  To(B)+To(Ey)

This is equivalent to
o /dDdQ= (E1){ %4 1.381479+(D —2.3638647 @]
+a2[ —1.2893817®40.1547267®+40.5525927®4-5.525916 7N 1.2803817® ]

+[3.438348714-2.4068447®+3.8681427®42.011434794-2.0630007 )+ 2.247206 7
+8.4423737™M 448566677 +0.343835r J} mb sr2, (85)

and is plotted in Fig. 17 in function of 8, for the inelastic (). 3— — Jiri— 3— — §— Sequence
scattering of 1.4-MeV neutrons to the second level of The conditions A=0 and mers=+, render this correla-

Z™, Th_e pea,k.ing. of 'fhe curve at f1=90° is akin to the  tjon essentially a particle distribution which is identical
correlation (distribution) behavior for a §— — Jimi —  with that evaluated in Sec. 4B(ii) and illustrated in
$— — Jurs sequence (cf. Fig. 12) but the amplitude is  Fig, 12,

slightly larger in the present instance.
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F16. 17. The correlation (again essentially a distribution) for the

Fic. 16. Double-differential cross section (here equal to  §+- — Jym — §-- ~ £ sequence, illustrated by the Zr*(n,n'y)
Lr—ide/dMy) for a 1+ — Jyrp — 04 — 1 transition sequence, reaction at 1.4 MeV (c.m.), the v emission being isotropic irre-
illustrated by the P®(n,n’y) reaction at 1.1 MeV (c.m.). spective of multipolarity.



COMPOUND INELASTIC NUCLEON SCATTERING

S. CONCLUDING REMARKS

Clearly, the results presented in this paper can be
applied (as they stand) not only to many other target
nuclei than those explicitly cited in the text, but to
other levels than have been designated, providing the
spin sequence under consideration tallies with one of the
cases evaluated. For instance, the formulas derived for
a 14 — Jyr;— 0+ — 1+ transition sequence could
hold not only for scattering to the second level of P (or,
e.g., F18), but in principle also for scattering to the first
level of P® or N*. In practice, however, the above
alternatives would be ruled out experimentally by the
short half-lives of F8 and P, or theoretically by the
breakdown of the statistical assumption for a nucleus as
light as N* bombarded by particles of fairly low energy.
The latter preclusion is especially regrettable in view of
the rather tantalizingly interesting level scheme of N*
(whose levels carry the spin assignments 14-, 0+, 14,
0—,2—,1—, -+). Infact, in order to obtain a broader
spectrum of information on correlation behavior, the
requisite calculations kave been carried through as if the
statistical continuum approach were valid, but details
of such “Spielrechnungen” would be out of place here.
As mentioned earlier, other calculations, though per-
formed, have been omitted from the present description
since the spin sequences would entail conditions physi-
cally unconducive to investigation. Such omissions in-
clude the 04 — Jym — 4+ — 04+ and 3— —> Jm—
24+ — 31— sequences, respectively involving £4 and M4
v multipoles, or -+ — Jyr1— §+ — %4+ and i+ —
Jiry— 54+ > §+ — 34 sequences involving the van-
ishingly weak 54 — %+ v transition in Si® or P¥, even
though from a theoretical standpoint they offer several
features of interest. For example, the last of the above
four sequences involves an unobserved and an observed
v transition, both of which may be of mixed multi-
polarity ; on making provision for this, the correlation
formula has to be expressed in terms of quantities
MOM\®, which provides an opportunity to examine
the effect of varying A; and A; independently.

The ensemble of data so amassed sheds further light
on the manner in which the double-differential cross
section for compound inelastic nucleon scattering de-
pends upon diverse physical factors which can vary
according to the circumstances of any particular in-
vestigation. The basic correlation expression (2) indi-
cates that among other possible parameters, the follow-
ing can affect the correlation:

(a) inclusion or exclusion of spin-orbit interaction;

(b) the value of the orbital momentum limit lmax,
which restricts the number of partial waves taken
into consideration;

(c) the energies of incident and emergent particles;

(d) the choice of (optical) model;

(e) the azimuth ¢ under reference;

(f) the existence of additional open exit channels;
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(g) the presence of intermediate unobserved transi-
tions (irrespective of their “particle” nature);

(h) the nuclear spins and transition sequence under
consideration;

(i) the presence of mixed v multipoles and the magni-
tude and sign of the mixing ratio.

Of the above, points (a)-(e) have been clarified by
the analysis in Ref. 12, albeit exclusively for the
04 — Jiry— 24 — 0+~ transition sequence. The com-
plementary investigation of the remaining points (f)—()
constituted the aim of the present work, even though it
was clear from the outset that the complexity of the
correlation problem would vitiate any attempt to
establish an over-all systematic scheme for predicting
CN correlation behavior for a given spin sequence and
v multipole mixing ratio. The influence of a given
nuclear spin or a certain particle partial wave is too
tortuously intertwined within the other variables enter-
ing into the correlation calculation for it to retain
distinct identity apparent in the final result: “correla-
tions resist correlation.”

To summarize some basic results, the detailed com-
parison of experiment with CN correlation theory in
Ref. 12 has not only indicated that the statistical as-
sumption may be made at incident nucleon energies
around 5 MeV, providing the target nucleus is not too
light (4 240), and that CN theory provides remarkably
good fits even up to 7 MeV, but that (a) spin-orbit
coupling hardly plays any role in the 04 — Jym —
24 — 04 correlation at these energies, (b) the orbital-
momentum cutoff can effectively be taken as Imax=2
(or at most 3) under the above conditions, (c) the
energy dependence may be appreciable with regard to
the magnitude (but not the structure) of the double-
differential cross section (Fig. 68 of Ref. 12 and Figs. 9,
13 of the present paper), as may also (d) the dependence
upon the optical model parameters (Fig. 69 of Ref. 12).
In Ref. 12 was also shown (e) the manner in which the
CN correlation varies with azimuth and the similarity
(but nonidentity!) was stressed of “perpendicular corre-
lations” (in which either the particle counter or the y
detector is fixed perpendicular to the incident beam, so
that ¢=90°) with angular distributions. With regard to
the remaining points, the present results indicate (f) a
diminution in magnitude but no drastic change in shape
to ensue when the double-differential cross section is
evaluated on the basis of a ‘higher-than-two-channel
approximation,” whereas (g) a radical alteration in both
magnitude and shape can occur when an unobserved
transition intervenes (for example, Fig. 5 is entirely
different from Fig. 4 or from the correlation which
results for a 0+ — Jymy — 24 — 0+ sequence apply-
ing to inelastic neutron scattering to the first level of the
e-e target nucleus. Or cf. Fig. 1, in which the correlation
Is isotropic with respect to ;). Since the actual nature of
the radiation in an unobserved transition does not enter
into the treatment of that reaction step, Satchler’s
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theory applies unchanged to consideration of a process
such as 0+ — Jym» 4+ — 24+ — 04 in which y-y
cascade coincidences are measured, but the inelastically
scattered nucleons are unobserved. Results of such
calculations have been quoted in the paper of Broude
and Gove!® and have also been derived independently.
The latter unpublished work was applied to the
Fefo(n,n'y) reaction at 2.60 MeV; for this case the
correlation structure differed very slightly from that
deduced by the former authors for Ne¥®, Mg*, and Si%,
Since the Fe®® results are absolute, they cannot directly
be compared with the latter, which have been expressed
in relative units and hence the question as to whether a
real discrepancy exists is at present unresolved. Re-
garding points (h) and (i), the correlation magnitude
and structure depend drastically upon the spin transi-
tion sequence and upon the ¥ multipolarity, albeit not
in a directly obvious way, and can markedly be in-
fluenced by the value and sign of the mixing ratio [see
Fig. 8; alternatively, it may be mentioned that a
Spielrecknung with As==—3 {or the (M14-E2) mixed v
multipolarity in the 04 — Jyzry — 24 — 24 sequence
applied to Zn®(nn'y) at E,=2.37 MeV (cm.) as
against the value Ag=-+3 used in Fig. 2 yielded a cor-
relation which peaked around 6,=90° and had larger
amplitude].

It is thus evident that not only -y but also particle-y
correlation studies can yield information on the magni-
tude and sign of multipole mixing ratios which even
now have not fully been established; to a recent
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compilation,’” which gives references to earlier work,
one might add Ref, 44, and the work by Singhal and
Trehan.®® The latter studies have the additional versa-
tility of furnishing information on reaction mechanism,
which may be more sensitive and clear-cut than that
offered by angular distribution investigations in addition
to being potentially capable of indicating the relative
admixture of a competing mechanism [see Sec. 4A (43) or
Refs. 12, 42, 48 and the “unified reaction” approach of
Feshbach ef al.5-%7], It is with the hope of stimulating
and clarifying such studies that the present paper has
been compiled.
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