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calculated from the corresponding values of ?«, P, and 
n as deduced from the two latest experiments.1 

X. CONCLUSIONS 

The results of the experiment have been analyzed 
by expressing the probability of seeing the observed 
data as a function of the assumed tx —» e+y branching 
ratio £• Limits on the electron range and electron-
gamma angle have been used in the selection of events 
to exclude regions strongly favoring ju—>e+y+v+v 
over |t—*e+y. Once events with the shortest range 
electrons have been excluded, the results are sub­
stantially independent of the exact choice of limits. 
The probability is largest for B=0, drops to less than 
50% of this value for B^0.SX10-% and to less than 
10% of this value for B= 2.2 XlO"8. 

The results of this and the two preceding experiments 

1. INTRODUCTION 

RECENTLY, Feinberg and Pais1 studied the higher 
order effects in weak interactions. In their work, 

the weak interactions are assumed to be mediated by 
massive bosons W of spin 1, and neutral lepton currents 
are assumed to be absent in the Lagrangian. In studying 
two-body scattering processes involving only leptons, 
Feinberg and Pais restricted their consideration of 
higher order weak interactions to the uncrossed ladder 
graphs only. The rungs of these graphs consist alter­
natively of W+ and W~, a fact of great importance in 
their work. So far as leptonic weak interactions are 
concerned, one of the important conclusions of Feinberg 
and Pais is that, for the so-called allowed processes, the 
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could be combined by multiplication of the three proba­
bility distributions. However, this joint probability is 
not significantly lower for J B < 2 X 1 0 ~ 8 and thus does 
not change the above results appreciably. 
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factor 
- i (^ ,+m~ 2

M , ) / (g 2 +w 2 ) (1.1) 

in the expression for the matrix element should be re­
placed, when higher order effects are taken into account, 
by 

-m,v(l-im~Y)+im-%qy2/(q"+m^ (1.2) 

provided that q satisfies 

| g Y / m 2 | « l . (1.3) 

Here m denotes the mass of W} and g is the PF-lepton 
coupling constant. 

It is the purpose of this paper to study in more detail 
the properties of these uncrossed ladder graphs. We do 
not inquire into the effects of more complicated graphs; 
instead, given these uncrossed ladder graphs and some 
rules of computation to be outlined in Sec. 2, we ask 
what mathematical deductions are possible. Since it 
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seems necessary to use a t least one regularized propa­
gator, we choose as our start ing point the ^-limiting 
process of Lee and Yang.2 I n other words, we shall 
regularize the W propagator once while leaving the 
lepton propagators unregularized. 

The Bethe-Salpeter integral equation is simplified in 
Sec. 3, and the approximate integral equation used by 
Feinberg and Pais is studied in Sec. 4. I n Sec. 5 we sum 
exactly the leading terms of the uncrossed ladder graphs 
by first reducing the problem to a pair of differential 
equations. Without using the iterative procedure of 
Feinberg and Pais, i t is then found tha t from the 
differential equations the result (1.2) follows. Moreover, 
when the present procedure is followed, (1.2) is found to 
hold even without the restriction (1.3). Therefore, with­
in the approximation of taking into account only the 
uncrossed ladder graphs, the precise result to the order 
g2 is now known. There are, of course, higher order 
terms in g2 due to uncrossed ladder graphs,3 b u t these 
are not discussed here. The notat ion of Feinberg and 
Pais is followed in this paper. 

2. PROCEDURE OF COMPUTATION 

We are interested in the dominating part as £ —•» 0 of 
each ladder graph. When there is only one rung, this 
dominating part is simply 

X( « „ , + — ) • (2.1) 
\ m2 /q2-{-m2—ie 

When there is more than one rung, this dominating pa r t 
can be writ ten down explicitly by using the following 

P*QI x p+ki p*k„ or p + Q2 

kr<4 K i ko-k, Q,-kn 

p-Qt T p-k, $ p-kn a p-Q2 

FIG. 1. A scattering graph of order 2(w+l). 

simplified Feynman rules: 

(a) a t each PF-lepton vertex, insert a factor 

(b) for each fermion propagator, insert a factor 

. P 

p2-ie' 

where p^—iy^; 
(c) for each W propagator, insert a factor 

M>/ i i \ 
m2 \p2-ie f+A2-ie/ ' 

where A 2 = £ - % 2 ; and 
(d) the momenta of external leptons are taken to be 

zero. 
I n rule (b) we have neglected the lepton masses, in 

rule (c) we have neglected the W mass in the denomi­
nator. We shall justify these approximations as well as 
rule (d) by the following considerations. 

Take a ladder graph of order 2 ( ^ + 1 ) as shown in 
Fig. 1. The contribution from such a graph, before any 
approximation has been made, is given by (the spinor 
factors for the external lines are omitted) 

Mn+i(p,QhQ2) = g2<n+1)- [#kv • -#kn 
(2wYn J 

r p+kn+nii p+hn-i+mi p+Ri+mi -l 
X 7. (1+75)- Y P ( 1 + 7 5 ) - Tx(l+75) 

L (<P+kn)
2+mi2-ie (P+kn-i)*+tnt-U (p+ktf+mf-ie J 

(i) 

X 7«(l+75> 
p—kn+Ml , . % p—kn-1+nti 

(p—kn)
2+mi2—ie 

70(1+75} 

(p+kn^y+tnf-ie {p+kx)
2+mf-ie 

p-ki+mi 

(p-kn-i)
2+m?-ie (p-ktf+fnf-ie ]

(2) 

x K 

X 8 p r r 

(Q2-kn),(Ql-kn) 

m< - M y 2 - kn?+m2-ie (Q2 

(kn— kn-ljp (kn— kn-\)fi 

X 

T — ! —1 
T — 1—1 

r , (Jn-QMii-QOrir 1 1 n / N 
5 X T + (2.2) 

L w2 JL(k1-Q1)
2+mi-u (Jn-Qtf+tf-ieJ 

2 T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962); T. D. Lee, Phys. Rev. 128, 898 (1962). 
8 See, for example, G. Feinberg and A. Pais, Phys. Rev. 133, B477 (1964). 
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where mi is the lepton mass. To single out the leading term in the variable £~S we make a scale transformation 

Since p, Qi, Q2, m, and mi are fixed quantities, p/Ay mi/A are all small in the limit £ —» 0 and can be neglected in 
calculating the leading term, which we shall denote by N^i: 

g2/gA\2n in~l r r kn
f k*-i' h{ ~p 

m2\m/ (2TYnJ L kn'
2-ie kn-i

2-i* W2-ie J 

iya 
-k f 

X | 7«(1+T») 7/9(l+75> 
-fc*-l' 

kn-i2--ie k 

-hi -f> r 1 l i 
Tr(l+76) *»,'*»«' 

i'*-*€ J Lkn'
2-ie k^+l-ieJ 

X (*»'-J^IOP(*»'-W)J" T ' -Wftirf— ; -1 • (2.3) 

This leading term is thus independent of the external 
momenta and the lepton masses. And the rules of 
computation outlined above follow. 

As discussed by Feinberg and Pais,1 the allowed and 
forbidden processes are, respectively, described by 

Modd=Mi(q)+'E N2n+i 

and 

Mt even 2~t ™2n» 
w=4 

(2.4) 

(2.5) 

4 (^ 4ka_ki 
Kn-kn-

namely the values of the infinite sums in (2.4-5) in the 
limit \ —* 0, which may be interpreted as direct four-
fermion interactions. In other words, from the present 
point of view, the discussion near the end of Sec. 7a in 
the paper of Feinberg and Pais1 applies for all q} not 
necessarily small. 

3. INTEGRAL EQUATIONS 

Let us denote by Nn+i(q) the amplitude of a graph 
with external momenta (0, 0; q, — q) as shown in Fig. 2, 
computed on the basis of the simplified Feynman rules 
(a)-(c). Thus, for example, 

iV1fe) = ~^[7M(l+75)](1)C7,(l+75)](2) 

Ci-kn X-
M 

0 -k1 -k„ -q 
FIG. 2. The graph for Nn+i (q). 

As £ —> 0, each iV„ is infinite. Thus the limit £ —> 0 is to 
be taken after the sums are found. Moreover, for small 
but finite £, the sums are divergent. It is therefore 
necessary to give a meaning to the divergent series. 
This point is to be discussed later. 

Contrary to the procedure of Feinberg and Pais, in 
this paper we observe strictly the rule of summing only 
the leading terms, in the limit £ —» 0 while all physical 
quantities are fixed. Since these leading terms Nn(n> 1) 
are independent of momenta and lepton masses, the 
matrix elements for the allowed and forbidden processes 
are respectively determined by one real number each, 

Define 

and 

m2 \q2 

^(+)(g)=E i W ? ) 

( - — ) • 
\(72—ie q2-\-A2—ie/ 

(3.1) 

(3.2) 

The following relations are obtained: 

N«=limiVn(q) , » > 1 , 
0->0 

ilfodd=M,(9)+| lim[tf<+>(q)+W->(q)-2N1(q)^ (3.4) 
«-+0 

(3.3) 

and 
M- even = 

Since Nn(q) satisfies the recurrence relation 

(3.5) 

r r k i<»r -k i » 
JW«) = *W d%\ 7,(l+75)—-J I 7.(1+75): &s-

k -|« 

x-
(q-k)c(q-k)a\ 

m' 
r—i 
1 ( 9 - 1 ) (q-kY-ie (q-kY+A*-ie. J 

(3.6) 
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it follows tha t N^(q) satisfy the following integral equations: 

N^($~~i^ ( ) C 7 M ( 1 + 7 5 ) ] ( 1 ) C 7 , ( 1 + 7 5 ) ] ( : 

m2 \o2—ie q24-A2—u/ 

1(2) 

q2+A2 

i f f k n ( 1 ) r —k i ( 2 ) Q Q r 1 1 i 
± g 2 / d%\ T f f ( l + 7 5 ) 7«(l+76) — \ ; \N^(k), (3.7) 

(27r)4i L k2-itl L k2~-ieJ m2 l(q-k)2-ie (q-k)2+A2-ieJ 

where Q=q—k. 
The integral equation (3.7) can be simplified in two steps. We shall first eliminate the 7 matrices by substituting 

into (3.7) the explicit dependence of N(±)(q) on the 7 matrices 

^(=fc)(^) = [7,( l+7B)] ( 1 )C7,(l+75)] ( 2W^^) (3.8) 

and by introducing the notation %\pirT defined by1 

(I~75)rx7p7cr=|xp(rr(l—7e)7r. (3.9) 

Substituting (3.8) and (3.9) into (3.7) and canceling out the y matrices, we obtain 

qtf,/ 1 1 \ 

m2 \q2—ie q2+A2—ie/ 

± / d*k ; \Nafi&(k)Zkp*lll;„fiw. (3.10) 
(27r)4i (k2-ie)2 m2 l(q-k)2-ie (q-k)2+A2-ieJ 

Since Nap
(±) (k) is of the form 

Na0(±) (k)=A c±> (&%,+B<*> ( * W „ (3.11) 
and Jxpa^ satisfies 

kpkatXpav^&fafi ( 3 . 1 2 ) 

and 
* « ^ p * a < ? x e r k p « , ^ = * ^ , , , (3.13) 

(3.10) can be further simplified to 

A ^ (q2)hv+B^ (q2)qfiqv= -if—-( — ) 
m2 \q2—ie q2+A2—ie/ 

Ug2 f > Q2 1/ 1 1 \ 
± / <WH .4<±>(£2) 8„+B<*>(?)Q&, ( ) . (3.14) 

(2ir)%2J L V - w J\(g-ife)2-i€ (q-k)2+A2-~ie/ 

These integral equations are to be studied further in the singularity a t # 2 = 0 o f the inhomogeneous term, and 
Sec. 5. also t rea t a contour integration in a way to bring out the 

impor tan t role played by analytical continuation. 
4. FEINBERG-PAIS APPROXIMATION PROCEDURE T h e solution of the approximate integral equation is 

T h e integral equation (3.14) corresponds to the " a p - )( 2. , R ( ± w $\ 
proximate integral equat ion" (4.27) of Feinberg and A ^ )°t»>+B w )M* 
Pais,1 if we neglect q in Q and thus pu t Q= —k. I n this ^2 * r- 4^2 -1-1 
case, the equation is soluble since it takes the form of an =—- I dixeiqxdlxdvAF(x2)\ I T AF(x2) , (4.1) 
algebraic equation in coordinate space. Because of our ^ 2 J L m2 J 
rule of summing only the leading terms, even with this 
approximation our calculation differs somewhat from w n e r e 

that of Feinberg and Pais. In this section, we study this \ r / 1 1 \ 
approximate integral equation in some detail. This AF(x2)= I d*pe"~ipx( ) . (4.2) 
seems worthwhile because it makes contact bo th with (2ir)4 J Vp2—ie p2-\-A2—ie/ 
the work of Feinberg and Pais and with the considera­
tion of the next section, where explicit solution is not We shall s tudy these solutions in some detail in this 
possible. I n particular, we shall see the consequence of section. 
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We compute the trace of (4.1): Here we use 

k2 r r 4*g2_ I"1 

=— / dAxei<ixnAF(x2)\ 1=F AF(OC2) 
m2J L m2 J 

(4.3) 

Explicitly, 

AF(x2)--
iA 

4TTV 4 X V ^ 2 

A 

'Kx(A^x2)6(x2) 

8 T T \ / - ^ 2 
•ffi<» ( A x / - ^ 2 ) ^ ( - ^ 2 ) . (4.4) 

Moreover, 

D A F ( ^ 2 ) = " - A 2 A F ( ^ 2 ) , 

where A^O*;2) is defined as 

1 r 1 
AF(#2) = d*pe~ipx , 

(2TT)4 J p2+A2-ie 

We have, as shown in Appendix A, 

i 1 
AF(x*)--

(4.5) 

(4.6) 

47r2 x2+ie 

r i iA 

-[: 
t A 

4ir2a;2 8 7 T A / - ^ 

JfiCAyV) |0(*2) 

Hi®>(W-x*) | 0 ( - * 2 ) . (4.7) 

Using the reduction formula of Feinberg and Pais,1 

we can write the trace (4.3) as the sum of a Bessel 
integral and a contour integral over the complex vari­
able r; defined by rf = x2. That is 

4:A^{q2)+B^{q2)q2 = J^{q2)+C^{q2), (4.8) 

where, for #2>0, 

ig24iir2 r00 

JC±)(g*)=: / J^qrj^Ariv) 
m2 q Jo 

r ^2- T 1 

X lT—AF(v) Wv, (4.9) 
L m2 J 

and 

ig2/Uw2 r 
C<±>(?2) = / J?i^(^)A2Ai 

w2 q J c 
6?) 

r 4»i*_ T 
X 1=F A,(ij) ^ . (4.10) 

L w2 J 

A,(,)~|- [ -^(Ar,)]] , (4.11) 
47r2U2+t« U 2 1, J) 

» r i A 1 
AK>?)=— #i(A>?) (4.12) 

and the contour is along the first quadrant counter­
clockwise, at least for sufficiently small A2. 

Let f = A J ; . The Bessel integrals (4.9) become, in the 
limit q —» 0, 

/<±>(0) 
__ig2 r 

2m2 Jo 
Kiit) 

X 1 ± Ti-i 
?U2 i 

g 2 A 2 r i l 

TrWLf2 f 
: * i ( r ) * * # , (4.i3) 

which approach the limit zero as A2 —* oo. On the other 
hand, in terms of the complex variable f, the contour 
integrals (4.10) can be rewritten as 

C<±>(gs)=^L f H^iqtA-i) 
nfiqj c 

x i — — r — i f i G - ) ] } 
lr2+*« U2 r JI 

f g 2 A 2 r l 1 - I ] - 1 

which are also equal to zero for any space-like q in the 
limit A2—> oo. To see this, we first notice that the 
common numerator of the integrals is analytic in the 
first quadrant of the complex f plane for any space-like 
q which can be chosen as small as we please. In Ap­
pendix B, we study the locations of the zeros of the 
denominators. 

D(±>(r,z)=i±z[-—^(r)], 

where 

Lf2 r 

g2A2 

(4.15) 

(4.16) 

and obtain the following conclusions: There are no 
zeros of D™ (f ,Z) in the first quadrant if Z « l . When Z 
increases continuously, the zeros of D(+) (f ,Z) move into 
the first quadrant from the left across the positive 
imaginary axis. The denominator Z)(_) (f ,Z) has, in 
addition to the zeros which moves across the positive 
imaginary axis, a zero which moves from left to right 
on the positive real axis and which goes as Z1/2 when 
Z —> oo. Therefore we shall take different contours C(±) 
for the integrals C ( ± ) (#2). For a large value of Z, C(±) are 
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and consequently £ - plane £-plane 

N^(q> 
tg 

m 
;[î —M,] +0(q2). (4.24) 

(a) (b) 

FIG. 3. Contours of integration for C(±)(g). 

shown in Figs. 3 (a) and 3 (b), respectively. This choice of 
C(_) is that of Feinberg and Pais.1 Then we have, for 
space-like q, C^(q2) = 0 for all Z, and C^(q2), being 
equal to the residue at pole on the real axis, tends to 
zero as Z —» <*>. As a consequence, we have 

lim \imZ4:A^(q2)+B^(q2)q22=0. (4.17) 
A—>oo q—>0 

Note that the order of taking limiting values is the one 
prescribed in Sec. 2. 

We now turn to calculating the function J3(:t) (q2) as 
q—> 0. Let us define NnixV) Nnfiv(q) by 

(4.25) 

The correction from higher order ladder graphs is 

^\imlN^(q)+N^(q)-2N1(q)^=^ 

and the amplitude of the allowed process becomes 

XL8,v(^lm-y)+m-\qvy(q2+m2--ie). (4.26) 

We have thus reproduced the result of Feinberg and 
Pais1 without trying to justify the approximation. 

5. SUMMING THE LADDER GRAPHS 

In this section we study the problem of summing the 
uncrossed ladder graphs without using the Feinberg-
Pais approximation. The starting point is the integral 
equation (3.14). Let 

^ , = C7M(l+T5)](1)C7,(l + T5)](2Wn„, (4.18) a<±>(*2) 

and and 

-vrf. d'qe-^iq'-ky'A^ ((f), (5.1) 

^ ( ? ) = CY,(l+Y5)F[7,(l+Y5)]<2Wn/,,(?), (4.19) 

<mdAn(q*),Bn(f)by 

NnAqi) = An(qi)S„p+B„(q2)q,qr. (4.20) 

Because of the relations (3.3), the limit 

limiVV(22) 
q-*0 

exists for each n> 1 and is equal to NnfxV which has the 
form Cn^/xv, where Cn is a constant. In other words 

CJ^limtAniq^+Bniq^q,!, n>\. (4.21) 

Then it follows that, for n> 1, 

C n =in(0) and \imBn(q
2)q2 -> 0, 

since the components q approach zero independently. 
Therefore, if the limit q —> 0 is taken termwise 

limB^Hq^^limB^iq^q2^ -—. (4.22) 

B^(x2) = ( 2 ^ tfqe-wB^iq2), (5.2) 

then in coordinate space (3.14) takes the form 

na^ix^d^+d^B^ix2) 
= -^2m~2dMa,AF(^2)dz4fg2m-2[a^>(x2)DAF(^2)5^ 

+B^(x2)dfldvAF(x2)2, (5.3) 

which is a differential equation. Among the multitude 
of solutions of this differential equation, we choose the 
one such that (1) A^(0) exists, (2) B^(q2) = 0(q-2) 
for small q2 and (3) the integral in (3.14) exists. 

We again use the complex variable rj. In view of (4.9) 
and (4.10), it is sufficient to consider t\ to be in the first 
quadrant. It follows from (5.3) that J3(±)(#2) satisfies 

/d2 1 d\ 
( W±> 
\dr]2 rj dr}/ 

q->0 q-*0 
m£ 

The limit (4.22) is also obtained from a direct calcula­
tion of (4.1) in Appendix C. 

From (4.17) and (4.22), we can write 

g2r/d2 1 d\ -j 
= - » — ( JA, (1=F4B<±>). (5.4) 

m2L\drf 7] dr)/ J 

It is convenient to take the trace of (5.3). If we define 

j(±) (xt) = 4a<±> (x2)+B^ (x2), (5.5) 

then 7 ^ (#2) satisfies 

d2 3 d\ 
— + — ) r < ± > 
dr? rj drj/ (: 

limhW<±>(g2) = 
A-*oo g-*0 

*r g2r/d* 3 d\ -i 
(4.23) = - H — + )%F (l=F4r<±>). (5.6) 

m2L\drj2 T? drj/ J 
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Equation (5.6) can be simplified by using (4.5) 

2 

-A,(l=F4rfcB). (5.7) 
/& 3 d\ g2A2 

\drf rjdrj/ m* 

The problem is to determine A (0) from (5.4) and (5.7) 
together with appropriate boundary conditions. By 
(4.7), (5.4) and (5.7) have no singularity in the first 
quadrant of the complex rj plane, and thus both JB(±) and 
r ( ± ) are analytic there. Hence, the contour integration 
part of the reduction formula of Feinberg and Pais1 is 
zero in each case. Therefore, it is sufficient to restrict rj 
to be real and positive. It is interesting to note that this 
part of the argument is much simpler here than in the 
last section. 

We first consider (5.7) in some detail. Since ?7>0, we 
can set e —> 0 in (4.7), and (5.7) reduces simply to 

/<P 3 d\ A 
( — + \T& = -Zr-KM(frT<2>), (5.8) 

where Z is defined by (4.16). Consider r ( ± ) to be a 
function of rj and Z. In Appendix D it is shown that the 
iterative solution of (5.8) with the boundary conditions 
(D3) and (D4) converges for each rj>0 provided that 

| Z | < 1 . (5.9) 

This convergent solution defines T(±) when (5.9) is 
satisfied, and we define J,(±) in general by analytical 
continuation from this solution. In this process of 
analytical continuation, A is taken to have a small 
negative imaginary part. This gives a definitive meaning 
to the divergent series in the present case. 

If a solution of the corresponding homogeneous equa­
tion is assumed to be of the form T?X, then the indicial 
equations give the following values for X: 
as rj —> oo 

X=0, - 2 ; (5.10) 

as rj ->' 0, then for T<+) 

X=-l±(l+Z)1 /2 , 
and for r<-> 

(5.11) 

(5.12) 

When g —* 0, g~2T(±) may be found from the lowest 
order graph: 

X = - l ± ( l - Z ) : 1/2 

l im^ 2 r ( ± ) =-im- 2 AF. (5.13) 

Since T(±) is analytic in Z within the unit circle, (5.13) 
rules out one of the solutions in each of the cases 
(5.10-12). Accordingly, we get the following behavior 
for T& when Z < 1 : 
as rj —> oo, 

r ^ - c o n s t r r 2 (5.14) 
and as rj.—> 0, 

r < ± ) T ^ c o n s t ? r H V a ± 2 ) . (5.15) 

Equations (5.8), (5.14), and (5.15) determines T(±) 

uniquely when Z < 1. 
Rewrite (5.14) in the form 

T^ = a^r*+o{r*). (5.16) 

Then ao(±) is a function of Z. We now note that, since 
(5.8), (5.14), and (5.15) also determine a unique T(±) 

even outside the unit circle, so long as Z F ^ T I , respec­
tively, they can be used directly to determine ao(±). 
Furthermore, this gives the proper analytical con­
tinuation. 

Since A is taken to have a small negative imaginary 
part, for Z < 1 (5.15) is replaced by 

TW^-i+Va+s) (5.17) 
and 

re-)/- -i+iV(z-i) (5.18) 

as rj —» 0. Assume Z —> oo and we want to determine 
aQ

(±) from (5.8) and (5.16-18). This problem can be 
solved by the WKB procedure. 

When Z r 1 ^ i ( f ) » l , it follows from (5.8) and (5.17-
18) that 

r<+> -i+c^+^rTf #i(r)]-1/4 

Xexp 
• / • 

zw drCr^iG-)]1'2 (5.19) 

and 

•Hd^rTr^ia)]-174 

XexpliZwfdftr'K^J* (5.20) 

On the other hand, when Z r 1 ^ i ( f ) « l , (5.16) holds. It 
remains to consider the transition region defined by 

| W / f o | « l , (5.21) 
where f o satisfies 

Zro"1i^i(fo) = l . (5.22) 

When Z is large, so is f o. Thus, in this region, (5.8) may 
be approximated by 

<PT^/d{2= -r-tf-MQTTfcB). (5.23) 

Equation (5.23) can be solved in terms of Bessel func­
tions. By (5.19-20) the appropriate solutions are 

TM = i+C2«
)Ko(2e-«-Ml2), (5.24) 

and 
r<~> = -\~liriC^m<P\2e-«-^). (5.25) 

The relation between Ci(±) and C2
(±) is of no interest 

here. Let f - f o » l , then (5.24) and (5.25) reduce to 

r<±>~±i+c2
(±>!(f -u). (5.26) 

On the other hand, when (5.21) holds, (5.16) gives 

r(±)-a0<±>A2f0-2Cl~2fo-1(f-fo)]. (5.27) 
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A comparison of (5.27) with (5.26) gives approximately 

a0^ = ±Uo2A~K (5.28) 

Since f 0 is defined by (5.22), it follows from (5.28) that 

Go(±) = 0 (5.29) 

as A —» co. In momentum space, (4.17) follows im­
mediately from (5.29). 

By an argument entirely analogous to that given in 
the last section, we again get (4.22) provided that it is 
permissible to take limits termwise. From the point of 
view of the differential equation (5.4), if a solution of the 
corresponding homogeneous equation is assumed to 
have the form ^x as rj —> <x>, then the indicial equation 
gives 

X=0,2 . (5.30) 

But from the second requirement under (5.3), B^ 
must have the following behavior 

B&(a?)~ao'<2>ir* (5*31) 

as t? —> oo. To determine #o/(±), it is sufficient to study 
(5.4) for large positive r\: 

d2 1 d\ 2g* 
LB<±> = (l=F4J3<±>)c4. (5.32) 

drf r\ drj/ i^m2 

Therefore 
g2 

<*o/(±)= , (5.33) 
4w2m2 

at least for sufficient small Z. By analytical continua­
tion, (5.33) holds for all Z and (4.22) follows. 

Once (4.17) and (4.22) are obtained, the rest of the 
computation is identical with that of Sec. 4. 

6. DISCUSSION 

By summing exactly the leading terms of the un­
crossed ladder graphs, we have verified one of the im­
portant conclusions of Feinberg and Pais,1 as expressed 
by (1.2). Our result is more general than theirs in that 
we do not need the restriction (1.3). However, this 
generality is mostly illusory. On the one hand, (1.3) is 
satisfied for almost all energies available in the labora­
tory at the present time; and, on the other hand, (1.2) 
must break down for sufficiently high energies because 
it violates unitarity. 

Since the final answer is identical to that of Feinberg 
and Pais when (1.3) is satisfied, all their discussions, 
with the exception of the part pertaining to very high 
energies only, still hold without alteration. However, the 
following remark may be appropriate here. Although, in 
general, higher order weak interactions may lead to a 
violation of local action of lepton pairs, no such violation 
occur within the present approximation. This is simply 
a consequence of the fact that, within the present ap­
proximation, the result takes the form of a sum of two 

terms, one of which is just the usual one through an 
intermediate boson, while the other one represents a 
direct four-fermion interaction as given by (4.25). 

The procedure followed may be summarized in terms 
of the following steps: (1) take the uncrossed ladder 
graphs; (2) compute the term containing the highest 
power of J"1 for each of these graphs; (3) sum these 
leading terms; and (4) take the limit £ —» 0. It may be 
worth re-emphasizing that in step 2, with the exception 
of the lowest order graph, there is no momentum de­
pendence. Accordingly, the quantities Nn(q) must be 
regarded as devoid of physical meaning for q^O, and 
they are introduced for mathematical convenience only. 
Thus, even though the integral equation takes the 
Bethe-Salpeter form, the usual physical interpretations 
of Bethe-Salpeter equations can be applied only with 
extreme caution. In particular, to extract physical in­
formation, it is necessary to take the limit £ —» 0 while 
still keeping £ finite. There are two obvious ways of 
taking this limit; we can either sum over the various 
graphs first and then take the limit, or take the limit 
q —•> 0 for each graph and then sum these limiting values. 
It is perhaps satisfying to find that at least these two 
ways of taking the limit give the same answer. 

The series of contributions from the ladder graphs 
under consideration may be divergent. When the ap­
proximation procedure of Feinberg and Pais1 is em­
ployed, it may be seen from (4.1) that the series is 
divergent for all values of £. Even though there is still 
a natural way of giving a meaning to this sum, such a 
situation does not seem to have been encountered before 
in physics. When the uncrossed ladder graphs are 
summed as in Sec. 5, not only do we manage to avoid the 
approximation procedure of Feinberg and Pais together 
with its numerous related questions, but we also find 
that the series is indeed convergent when (5.9) is 
satisfied. Consequently, it is possible to assign a unique 
value by analytical continuation to the series, which is 
divergent when .£ is sufficiently small. The situation is 
accordingly a rather familiar one in physics. 

The most serious problem with the present calcula­
tion, as well as that of Feinberg and Pais, is whether any 
consideration neglecting all graphs but the uncrossed 
ladder graphs is of any relevence to the physics of weak 
interactions. In particular, we may ask the much more 
restrictive question what happens if the single rung of 
the uncrossed ladder is replaced by a more complicated 
graph. So far it can only be said that (1) the independ­
ence of the leading term on momenta and lepton masses 
holds in general, provided that the graph is convergent; 
and (2) the trace T still seems to play an important role, 
at least in the restrictive case stated above. 
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APPENDIX A 

The expression (4.7) is obtained by substituting into 
the standard expression for AF(x2) 

1 ik 
AF(x2)=—8(x2)+ Ki(Ay/&)6(&) 

4TT 4 T T V * 2 

A 
• # i < 2 > ( A V - * 2 ) 0 ( ~ * 2 ) , (Al ) 

the well-known ident i ty 

1 P 

x2+ie x2 
—wi8(x 2 ) , (A2) 

where P denotes the principal value. 
We shall show that AF(q2)=(q2+A2-ie)~\ if we 

substitute the expression (4.7) into the reduction for­
mula of Feinberg and Pais. For q2>0 

4dir2f r 

q Uc 

• 

Jo 

-j Ji(qn)AF(vWdqj, (A3) 

where AF(rj) is given in (4.11) and the contour is along 
the first quadrant counter-clockwise. The contour inte­
gral is zero. And the Bessel integral gives the desired 
result by the Weber-Schafheitlin formula.4 

APPENDIX B 

We study the motion of the zeros of D ( ± ) (f ,Z) defined 
by (4.15) as Z goes from 0 to <*>. We concentrate only on 
the first quadrant. 

When Z = 0 , JD(±)(£,0) = 1. There are no zeros in the 
first quadrant of the complex £* plane. 

When Z « l , it is sufficient to let l f | « l in the 
equation D ( ± ) (f ,Z) = 0. In this case, 

Z 1 
D<±> ( f ,Z)~ l=h— In— 

2 r 
(Bl) 

There is no solution for D ( + ) = 0, while JD<-> has a zero 
at e~2/z on the real axis. 

As Z increases, zeros of D ( ± )(f,Z) may enter into the 
first quadrant through the walls: (a) the positive real 

4Bateman Manuscript Project, Higher Transcendental Func­
tions (McGraw-Hill Book Company, Inc., New York, 1953), 
Vol. 2, p. 93. 

axis, (b) the upper imaginary axis, and (c) the first 
quarter arc a t £—> <*>. As f —> °o f Ki(£)<^e~? we see that 
no zero comes in through wall (c). On the positive 
imaginary axis, let f=i<r, we have 

*i(#)=-Jrfri<»((r)=-KAto-irito]. (B2) 
A number of zeros of jD(±)(f,Z) enter through wall (b). 
Their entering positions (r0

(±) and the corresponding 
values Zo(rfc) are the possible solutions of the equations 

and 

/ i(«r) = 0 

l=FZ[(r-2+|7ro-1F1(o-)]=0. 

CB3) 

(B4) 

To check that a zero is entering instead of leaving the 
first quadrant at <TQ as Z increases from Zo, we let 

(T—<ro-jrd(xf Z = Z Q + 8 Z , (BS) 

and examine whether 

Im(8a/8Z)(±)-
1>0 

[i.e., Im(8<r/8Z)(±)<0 and so Re(5f/5Z) ( ± )>0], Substi­
tuting (B5) into the equation J9(±)($V,Z)=0, we get 

Im(5cr/5Z) ( : fcr1=|7r(Zo^ ))2((ro (±))-2/1
/(^o (±)), (B6) 

where Jx{o) is the first derivative of J\{o). For all sets 
of values of [cro(±),Z0

(±)], (B6) is indeed positive. On the 
positive real axis, Z?(+)(cr,Z) is nonzero for all Z, while 
£K->(f,Z) has a zero near Z1/2 for Z » l . This zero stays 
on the real axis. No zero comes in through wall (a). 

APPENDIX C 

From Eq. (4.1), we have, in coordinate space 

d2 

d(x2) 
•B^(x2)--

ig2 d2 

m2 d (x2)2 
AF(x2) 

r 4^2- T 1 

X | I T — A F ( x 2 ) . 
wt 

Define a function BQ(X2) by 

BQ(x2) = ZF(x2), 
m2 

(ci) 

(C2) 

then the difference 

— Z B ^ ( x 2 ) - B o ( x 2 ) l 
d(x2)2 

4g4 d2 p 4fg8 -pi 
* ± — A F ( ^ ) S F ( ^ ) I T AF(%2) (C3) 

m4 d(x2)2 L m2 J 
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can be transformed to q space as where a0
(n) is independent of rj. Let 

*-«-*<« SM-±«- CDS) 
64g4 d2 

w4 d(#2)2 
d*xeiqxAF(x2) and 

Qo(w)=f;r (n )(i?)2w, (D6) 
r 4^2- T 1 

X--7—AF(x2)\ 1=F AF(*2) . (C4) 
L m2 J 

a2 r 4ig2 

—AF(x2) 1 ^ — 
d(x)2 L m2 J when the series converge, then 

We again use the reduction formula of Feinberg and T^ = zFQo(rj, TZ) (D7) 
Pais, and split the integrals (C4) into Bessel integrals a n ( j 
and contour integrals. Following the same argument as ao(±) = =F5o(=FZ). (D8) 
given in Sec. 4, we can show that the contour integral for 
[ ^ ^ ( ^ - ^ o ^ j i s z e r o a n d t h a t f o r C ^ ^ C ^ - ^ o f e 2 ) ] We . a r e interested in the radii of convergence of the 
is equal to the residue at the real axis. However, series (D5-6). 

It is convenient to use the variable 

The Bessel integrals are, for f>0, T h e n / ( K ) i s determined for n>l by the differential 
* equation 

16igA f°° d2 

T ^ ? i „ ^J-q~1Mqr,)TApiv) /i-fii-Ww—^ic^rc^W, (DIO) 
\dr2 r dr/ 

d2 r Ug2 T1 

X AF(V)\ 1=F AF(V) tfdv\. (C5) together with the boundary conditions 
W L ** J T^{T) = O{T~«) (Dll) 

When #—»0, these integrals diverge logarithmically. 
Therefore 

limq2lB^(q2)-B0(q
2)^0 (C6) 

for all A. And it follows that 

HmB^(q2)q2=\imBo(q2)q2= -ig2/m2. (C7) 
Q-K) g->0 

and 
APPENDIX D 

00 

In this Appendix we study the iterative solution of a ( r , z )=Z T^(r)zn=Q0. (D15) 
(5.8). For this purpose, define T(n)(r}) for rj>0 recur­
rently as follows: We proceed to study the convergence of S(z) and ®(r,z), 

T^(n) = 1 (T>1) First, (DIO) may be solved to give 

near r = 0 for alia! 

Clearly 

Let 

S(z) 

>0, and as r--> <*> 

T^(r)^a^r-2. 

a ( n ) = = i A 2 a o ( n ) < 

i 

(D12) 

(D13) 

(D14) 

/d 3 d \ 
( — + _ _ Win) fa = -A^K^AriT^-v(v) (D2) T h u s 

T^(T) = T~2f Jr ,i^1(2r ,)^^-1Kr ,)min(r2,T ,2). (D16) 
^ 0 

and 

<f2 3 ^ 
)y(n) fo) = -Ay^K^T^-V (v) (D2) T h u s 

T^(T)>0 (D17) 

for ^ > 1. With (D2), the following boundary conditions for all r and all n. Hence, the radii of convergence may 
are used: near rj=0 be found by estimating KI(2T). We make the following 

particularly convenient choice. Let 
7™G/)=o6r«) (D3) 

for all a > 0 ; and as rj-* 00 w [r-4, for r ^ l , 
then 

T^{ri)^a^r\ (D4) 2r~1iT1(2r)<F(r). (D19) 
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Analogous to r ( n ) ( r ) , define ¥n)(r) recurrently as 
follows: 

and, for » > 1 , Z>(w)(r) is determined by the differential 
equation 

/<P 3 d\ 
I — + )&<»> (T) = - F ( r ) f t < ^ ( T ) , (D21) 

together with the boundary conditions that for r small 

bM(T) = o(r-°) (D22) 

for all a>0 , and that for r —» <*> 

&<*>(r)~/3^r-2. (D23) 

If (D25) converges, then W satisfies 

3 dy 
/ d? 3 d\ 

= -2r-2[l+TF(r,2)] , for r < l , 

= — 2r-W(r,2)5 for r > l , 
(D29) 

Also let 

and 

i 
(D24) 

TF(r,z)==£S<*>(r)2*. (D2S) 
1 

Similar to (D16), (D21) may be solved to give 

bM(r) = ir* f rfrVFCrOM^KrOminCr2,/2) 
Jo 

> 0 . (D26) 

Moreover, a somewhat tedious calculation gives 

6<1>(r)>r<1>(r). (D27) 

Hence, by (D19), (D16), and (D26) 

2><*>(r)>r<»>(r) (D28) 

for all n^ 1. Therefore, if (D24-25) converge, so do 
(D14-15). 

Equation (D29) can be solved in terms of Bessel 
functions. Indeed, this is the motivation for the choice 
(D18). The result is 

and 

PF(r,s) = 

F ( * ) « J Z ^ [ l - ( l - s ) i * ] , (D30) 

for r ^ l , 

for T M , 
where 

p = (l-zyVsrMJti^+Ji'is/z). 

(D31) 

(D32) 

To ascertain the analytic behavior of W in the variable 
2, we need to find the zeros of D. Let 

/(*,<*)= ( l -«) 1 /V-^/ i (v '*)+a/ i / ( \ /*) , (D33) 

where a^ 0. Then, for each a, /(S,GO is analytic in the z 
plane with a cut along the real axis from 1 to oo. In 
particular, 

Z>=/(*,1). (D34) 

When a=0 , /(a,0) has no zero in the cut plane, but has 
zeros along the cut, it may be verified that as a increases 
from zero, these zeros all recede from the cut plane. 
Moreover, no zero can appear through either this cut or 
from infinity as a increases. Thus f(z,a), and in particu­
lar, D has no zero in the cut plane. 

Consequently, for each r, the right-hand sides of 
(D30-31) each have a radius of convergence 1 in z 
when expanded into a power series. Thus, for |z| <1 , 
the right-hand sides of (D5-6) converge. It can also be 
shown that the right-hand sides of (D5-6) diverge 
when \z\ > 1 , but this statement does not seem to be 
useful. 


