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Summation Over Feynman Histories: Charged Particle in a 
Uniform Magnetic Field* 
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Using a particular parametrization of paths, the nonrelativistic propagator for a charged particle in a 
uniform magnetic field is derived by the Feynman method of summation over histories. I t is shown that 
this sum is independent of the parameterization as long as the classical path is included. The result is used 
to obtain the density matrix for the system. 

I. INTRODUCTION 

IN Feynman's Lagrangian formulation of quantum 
mechanics,1 the Schrodinger equation is replaced by 

an integral equaion which describes how the wave func
tion " propagates" in space and time, 

- / 
vHr",*)= K(T",t',i)Hr',0)d¥. (1) 

It is postulated that the kernel or propagator K is 
given by 

K(t»,t,T) = A £ e x p ( i V * ) , (2) 

where 

Jo 
(3) 

is the classical action function, L being the Lagrangian, 
evaluated with respect to a possible trajectory r(0 
satisfying r (i) = r", r (0) = r'. The sum is to be taken over 
all "physical" trajectories or histories connecting the 
initial and final points. The normalizing factor A is 
determined by the requirement that the transformation 
(1) be unitary. Beginning with the Schrodinger equation 
it is straightforward to prove that 

£ ( r V , 0 = X ; *»(*") exp(-flC//ft)^„(0*, (3a) 

when 3C is the Hamiltonian and the sum is over the 
eigenstates of 3C. 

The problem of properly defining and carrying out the 
summation in (2) has been discussed by several authors 
and is reviewed by Brush.2 In particular, Davies3 has 
given a convenient prescription for parameterizing the 
trajectories and has applied his method to the cases of a 
free particle and a one dimensional oscillator. The pur
pose of this article is to apply his prescription to the case 
of a charged particle in a uniform magnetic field. 

In Sec. I l l we show that the evaluation of the propa
gator requires only knowledge of the classical path. 

* This study was supported in part by U. S. Air Force Office of 
Scientific Research Grant No. AF-AFOSR-262-63. 

1 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 
2 S. G. Brush, Rev. Mod. Phys. 33, 79 (1961). 
3 H. Davies, Proc. Cambridge Phil. Soc. 53, 199 (1957). 

\_Note added in proof. This approach has been used by 
F. Erdogan, Parke Mathematical Laboratories Report 
AFCRL-TN-60-1109 (unpublished).] However, in view 
of. the possibility of applying Davies' procedure to 
classically intractable problems, it appears instructive 
to carry out the integrations. We conclude by using our 
result to rederive Sondheimer and Wilson's expression 
for the density matrix. 

II. THE CALCULATION 

The Langrangian for a particle of charge — e in an 
electromagnetic field given by the vector potential A is 

=|mf2 •(e/c)A. 

To represent a constant uniform magnetic field Ho in 
the Z direction we choose A= (—Hoy, 0, 0). The propa
gator is not gauge invariant and may be obtained for 
any other choice of gauge by a suitable unitary trans
formation. Thus 

L=im(&+j*+&)+(eHt/c)y&. 

Motion in the z direction represents free particle 
propagation; we shall neglect it here but include it at 
the end of the calculation by properly modifying"^. We 
therefore consider the two-dimensional problem of 
motion from the point (#', y ' ; /=0) to (#", y"; t—T). 
Following Davies'3 prescription we represent the path 
in terms of a cosine series 

<» nirt oo ftirt 
*(t)~ Z <ln COS , y ( / ) = £ &nCOS . 

n=0 T n=0 T 

The summation over paths is to be effected by integrat
ing over the coefficients an, bn. It is possible that paths 
having nonphysical characteristics such as discon
tinuities may be introduced in this way; this problem 
will be dealt with in Sec. III. 

The action (3) is now given by 

mir2 oo 2eH0 pajbn 
S= £ **2(0»2+&n2) £ . 

4T n=0 c j+n j 2 — n2 

odd J 

Representing the sum over all paths by integrating over 
the a's and #'s we see that the propagator (2) is pro-
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portional to the integral: 
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where 

/

OO / . O O 

daedal• • • da,N I dbodbi • • • db& 
-OO 7_oo 

Xexppo- X) n2(an
2+bn

2)'] exp is £ 7 
n=o L »+i w2—j2 J 

X8CC'V" (*'+*")/2]5[X' ay-Ax] 

X«[X"&i —JCC V - Ay], 

00 4 * 2 00 ^ yfy. 
Ai= X) > A 2= Z —, and Ak=^ . 

*-i k2 *-i &2 / 4Jfe2-y2 

These sums are evaluated in Appendix B. We now 
observe that 

tf~exp{ - \isAx(y'+y") }KaKh, 
where 

r 
Ka~ I daidaz'^exp 

J —00 

i<r 53' n2an
2—i 53' an

2 

n 64(7" w 

X C a n - A « a ] ( * a = * , *6=y). 
where cr=mir2/4:hT, s=2eH0/hcJ Ax=(x'-x")/2, Ay 
— {y'~y")/2, and 53 ' denotes summation over odd j , 
5 3 " over even j . . 1 

We shall not at tempt to make the calculation . T h e s e l a s t l nregrals are done by introducing the 
mathematically rigorous. However, most of the Integra- m t e S r a l representation for the 5 function: 
tions and summations can be formally justified by 

/

OO / tOO 

e-ipAxdp-jj> / danexp{\nan
2+ipan} 

-co » J-cc 

Since ao does not appear in the exponent, the ao ^exp{A#« 2 /£}, 
integration is trivial. In carrying out the integrations where 
we shall neglect any factor which does not depend on the r / c \ 2-1 
end coordinates. These factors contribute only to the Xn==io- n2—( ) £= 53 ^ ^ I ) - 1 

L \8<rJ J *-i 

normalization which will be determined at the end of 
the calculation by the requirement of unitarity. The 
remaining even a integrals give simply 

ts* 00 1 s'irz 00 

exp] 53 k2Bk
21 =exp{ —i 53 bj2 

(7 *«i ) I 64cr y-i 
where 

• A = E ' 
h 

£ is evaluated in Appendix C. So including a factor 

exp{(i?n/2fiT)(z'--z")2} 

for free % propagation, we find finally, that 

i (i2-4£2) ~-B(T)exp\i\ 
This formula is proven in Appendix A. The Z>o integra
tion is now easily performed and gives 

/2m\rpHo /m*T\ 
'' !l — c o t l 

4 V % I 

where 

r 

-expj — isAxl JtH', 

Xt(x"-x'y+(y"-y'¥l 

4r 
" -S ' ) 2 ] } , (4) 

/.00 /.00 

' = / daidaZ' • • / dbidbz- • -exp{ior 53' w2an
2} 

j —00 J —00 

j2djbn 

n even ft2— j 2 

j odd J 

Xexp{iV 53 ^2^n2} exp] is 53 

n = l 

f tfV 1 
Xexp 2 : ' bn2 exp{isAx 53" h) 

I 64(7- n J j 

xa[E/ *r- Ax]a[E/ &;- Ay]. 

where 0 is the Bohr magneton efi/lmc. 
We shall now determine the normalization 23(/) (up 

to a phase factor). Unitarity requires: 

U= (dHfK(T",t\t)K*{x\rj) = b{x"-T). 

Let (d=2m/h2), b=lPH0CQt(pHit/ti), c*= |/3#o, rf= ft/4/. 
Then from (4) we easily find 

U = (87r3/2a2^) 15 (01 2 exp{m[>Atf (*"+#) 
+JAy ( / / +y)+c(xV / -^ )+^A3(^+25) ]} 

X8.(A2)8(26A«+(;Ay)5(2iAy+cA«), 

where A#=#"— x, etc. By the theorem in Appendix D 

exp{-;(s2/16<r)(Ai+2AxA2)} e x p { - (is2w2/96o)Ax2} , 5(2bAx+cAy)5(cAx+2bAy) = (4.b2-c2)~18(Ax)d(Ay). 

At this point, the bzu integrals are easily evaluated, 
and their contribution is simply 
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Hence, since %"y"— xy=%£Ax(y"+y)+(x"+x)Ayl, 

4TT8 

so the action takes the form 

U = ~ B(f)| 28(Az)d(Ax)d(Ay). S=SC+ f {**»(£+**>+ {eH*/c)ni}dt=SA-S' 
Jo 

and S' is independent of the endpoints. Therefore, 

aH(£b2-c2) 

Therefore, unitarity requires that 

| B(t) | = = [ ^ ( 4 6 2 - ^ 2 ) / 4 T T 3 ] 1 / 2 

- (m/2wht)^2(mot/h) cac(pH<t/ti). 

To obtain the propagator in the symmetric gauge and since 5 ' is independent of the endpoints the sum 
A=%HQ(—y, x, 0) = |HoXr, we need only multiply by contributes only to the normalization. This means that 
the phase factor exp{i(eHo/2foc)(x'y'—x"y")}. There- if we choose the proper normalization the sum may be 
fore, for this gauge taken over any set of paths which includes the classical 

K(r"/,t) = B(t) exp{t(m/2h2) A g a n a p p l i c a t i o n of (5) w e s h a l l o b t a i n t h e density 
X[0ffo cot(m4/ft)l(xf -x')2+ (y' -y )2] m a t r i x f o r a n electron in a uniform magnetic field. For 
+{h/t){z"-z')2+2$Ho(x"yr-x,y")']}. (5) nonrelativistic quantum mechanics i£(r",r',/) is given 

by (3a). Sondheimer and Wilson4 have evaluated the 
III. DISCUSSION quantity 

In the previous section we pointed out that Davies' 
prescription for evaluating the sum over histories 
introduced a number of unphysical paths, such as those 
with discontinuities. We avoid this difficulty by showing for the case we consider here. To obtain their result we 
that only the classical path contributes to the spatial need only make the replacement t=—ihy and inter-
part of the propagator, all other paths contributing to change the initial and final points of the paths. When 
the normalization only. 

We have 

* ( r V , 7 ) = E *»*(*") exp(-TX)$„(r ') 

X~£exp(iS*/f t ) , SB=[Ldt9 

H J 

where L=^m(x2+y2)+(Ho/c)yx. We write 

(x,y) = (%c(t),yc(t))+ti(t)Mt))> 
where (xc,yc) denotes the classical path and (£,?/) == (0,0) 
at /=0, T. Then the Lagrangian takes the form: 

L=Lc+im(l2+v2)+m(xc^+yci)) 
+ (eHo/c) (yei+V&c+ri£), 

where Lc is the Lagrangian computed for the classical 
path. Hence 

S=Se+m / (xe£+ycv)dt 

these replacements are made, (5) becomes 

* ( r V , 7 ) 

-3/2 (J3H*y) 

•*y/ sinh(/?#<>7) 

/ m \8 / 2 (0H«y) i / m \ 

\2 j r*V sinh(3H0y)eXP\ \2irftV 

J 0 

H / (ye£+nxe+rig)dt+im I (|2+??2)*. A . s^y\k2Bk
2 

c Jo Jo . . 

X\JHQy coth03Fo7)[(^ ,-^ ,)2+ ( j " - / ) 2 ] 

+ (z"-zy+2ipH0y(xy~xY)lY 

This is precisely the result obtained in Ref. 4. 
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APPENDIX 

Now, integrating by parts, we find 

*»/ (%c!i+ycri)dt=—ni (x^+Vc^dt. 
Jo Jo 

However, the classical equations of motion are 

fnxc+(eHo/c)yc=*0, 

myc— (eHo/cjXc^O, 

- A E ' bJ>iS(n/2J/2)+& £ ' nn
2S(n/2), 

where 

S(a,b)= £ 
* - i ( * » - « * ) ( * » - * » ) 

, S(a) = Z 
¥• 

k~l (£2_ a 2)2 

4 E. H. Sondheimer and A. H, Wilson, Proc. Roy. Soc. (London) 
A210, 173 (1951). 
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Starting from the well-known formula 

£ = cot7ra, 
fc«i£2-a2 2a2 2a 
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Again, 

(1A) *«i &2 ? 

where 

we easily find 

50 

MO)= E 
l 

7T#2 r C O t 7 T & COt7Ta" l 7T 

a^) — cot7r& = 0, 
2(a2-b2)L b a J 2b 

where the last equality is due to the fact that a and b 
are to be halves of odd integers; and 

Therefore, 

7T 7T 7T 

S(a) =— cscVa cot7ra=— 
4 4a 4 

64 n 

B: Ai= E 

where 

X(a,6)= E 

+*£'»4anW2), 

l 

*-ift»(#-a»)(**-6*) 

Again from (A.l) we find 

7r2 a2+&2 

, X(6)=E 
1 

X(a,J) = 

k=sltf(k
2-b2) 

6a2b2 2aW 2{a2-b2) 

w rcot7r6 cotton 

a2-b2)L bz a* J 

so 

and 

so 

X072,n/2) = 
8x2 32(</'*+»2) 

3j2n2 j % 4 

X(6)==— |~— cotx&H cscV& 
664 66 4&5 4&4 

X (»/2) - 20TT2/3^4~ 64/#6. 

Therefore, 

7T 7T 

A 1 = - ( Z ' « y ) 2 4 — Z 
6 » 4 

7T2 7T2 / #A 
—Ax 2 +— E ' a/-4Ax( E ' — J. 

6 4 >' V* f/ 

Hence, 

and 

k=ik2(k2-a2) 

1 7T2 7T2 

: c o ^ 
2a4 2a3 6a2 

M(i/2) = 8/j4-27r2/3j2 

a,- ?r* 
A 2 - 2 E ' — Ax. 

i i2 6 
Combining, we find 

7T2 7T2 

Ai+2AxA2=— £ ' %2 Ax2. 
4 y 6 

C: H E = ~ E ( 2 * - l ) 1 - ( - l • 

From the well-known sum, 

1 Tt 7TX 

• tan-

we find 
fc=i (2fc-l)2-x2 4x 2 

£=2/w tan 07r2/16<r). 

D: Theorem: 

n n 1 » 
^ = n SEE *w«*:=-n «(«*), 

where A = d e t U ^ | ^ 0 . 
Proof: 

4 = (2i 
/

oo 

-oo 

dkvdkne
ik^iU)zi 

(we sum over all repeated indices). Let Ki=kjaiij'\ The 
Jacobian of the inverse transformation is simply A. 
Hence, 

/

°° n 

cOTi- • •<«£:„«**<**= A"1 I I «(**)• 
•-1 


