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The distribution of zeros of the grand partition function for a gas obeying van der Waals' equation of state 
(together with Maxwell's rule) is studied. For infinite temperature the zero distribution is located on part of 
the negative real axis, but with decreasing temperatures the distribution branches off the real axis circum
venting the origin on both sides. Below the critical temperature the distribution forms a closed curve around 
the origin with a diameter decreasing exponentially to zero as T —> 0. An additional tail of the distribution 
remains on the negative real axis at all temperatures, but with a density of zeros"going linearly to zero with 

INTRODUCTION 

FOR a classical gas, Yang and Lee1 have demonstrated 
that the equation of state of the condensed phases 

as well as the gas phase can be obtained from a knowl
edge of the distribution of zeros of the grand partition 
function as function of the fugacity z, in the limit of an 
infinite volume. However, the problem of determining 
this zero distribution is a formidable one. To the authors' 
knowledge the distribution is known in four cases only, 
viz. for (a) the one-dimensional lattice gas with nearest-
neighbor interaction2 (corresponds to the one-dimen
sional Ising ferromagnet), (b) the gas of hard rods,3 

(c) the gas with very weak repulsion of very long range,3 

and (d) the lattice gas with very weak attraction of very 
long range4 (corresponds to a Bragg-Williams or Weiss 
field ferromagnet). Only the last model exhibits a 
phase transition. 

It seems to us of interest, therefore, to study the 
properties of the zero distribution for a gas obeying van 
der Waals' equation 

p=kT/(v-d)-a/v2, (1) 

supplemented with the well-known Maxwell construc
tion. The reason for choosing this equation of state is 
threefold: (i) It has a simple analytic form, (ii) it 
describes real gases qualitatively well, and (iii) it is 

y 

T»TC 

rigorously the equation of state of a one-dimensional 
fluid model with pair interactions.5. The interaction 
potential in this case consists of a hard core d and an 
attractive part to be considered in the limit when its 
strength —» 0 and its range —><*> so that the integral 

/ dx$*ttr(x) = a (2) 
Jo 

has a finite value. 
We rely heavily on the electrostatic analog devised 

by Lee and Yang.2 The lines on which the zeros coalesce 
in the limit of an infinite volume are line charges'in this 
picture. The logarithmic potential as determined by'the 
equation of state is multiple valued, and the discontinui
ties in the electric field strengths across a charged line 
originate from joining two different Riemann sheets 
along the line. 

The equations do not seem to allow a complete 
analytic solution, but rigorous results are obtained in 
limiting cases. In broad outline the movement of the 
zeros when the temperature decreases seems to be as 
indicated in Fig. 1. 

2. THE ELECTROSTATIC POTENTIAL 

We assume that in the limit of V -^°° the zeros of the 
grand partition function Zg(z,V,T) coalesce into lines C 
in the complex z plane, so that Vg(s)ds is the number 
of zeros in the line element ds at z=z(s). Then the well-
known relation1 between the equation of state and the 
zero distribution g(s) is as follows: 

T-Tc -o 
FIG. 1. The position of the zero distribution at 

different temperatures. 

1 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). 
2 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952). 
3 E. H. Hauge and P. C. Hemmer, Physica (to be published). 
4 S. Katsura, J. Chem. Phys. 22, 1277 (1954); Progr. Theoret. 

Phys. (Kyoto) 13, 571 (1955). 

with 

p/kT=X(z) 

P = **'(*) 

InZ 

(3) 

(4) 

\nZg r / z\ 
x(z)= lim = / g(s) ln( 1 — )ds. (5) 

F-"° V Jc \ s/ 

Here p= 1/v is the number density. 
The last relation displays the Lee-Yang interpretation 

of x(s) as the complex logarithmic potential of charged 

« M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 
4, 216 (1963). 
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lines C with a line charge density g(s). Separating the 
real and imaginary parts of xW> 

x(x+iy)=$(x,y)+i$(x,y), (6) 

the curves $(xyy) = const, are the equipotentials and thus 
$ is an everywhere continuous function of z.6 The 
curves ^ (x,y) = const, are the lines of force. The field 
strengths are 

Ex=d$/dx=d¥/dy (7) 

Ey=d$/dy=-M/dx (8) 

by the Cauchy-Riemann relations. The charge distribu
tion can be determined by evaluation of the line integral 
of the electric force around a closed curve. This gives 

2wg(s) = Wr(s)/ds- d*i(s)/ds, (9) 

where ^ is a natural coordinate along the curve 
(ds2=dx2-\-dy2) and the subscripts denote the right- and 
the left-hand side of the oriented line element. Finally, 
we note that 

*(**)=*(*), (io) 
and 

w=*(s) , (u) 
*(z*) = - - * ( z ) , (12) 

since the nonreal zeros %i must occur in conjugate pairs. 
For the van der Waals gas (1) the relation between 

the potential and the density is 

X ( * ) = P / ( 1 - P ) - ^ , (13) 

by use of Eq. (3), and with 

v=a/kT. (14) 

For convenience we use such units that d= 1. Inserting 
the result (13) in Eq. (4) we find 

p (dz/dp) = z\_ (1—p)~2—2 vp~] 

with solution 

exp 2vp , 
> Li—p J 

(15) 

(16) 

The infinite dilution limit, x / s —> 1 when z —* 0, 
determines the integration constant. The inverse func
tion p(z) as defined by (16) is multivalued, and by Eq. 
(13) the potential x(^) will also be multivalued. These 
two equations form the basis for the subsequent 
discussion. 

3. THE HEAD OF THE DISTRIBUTION 

The branch points of the multivalued function p(z) 
are given by dz/dp=0, or 

2 , p ( l - p ) ^ l . (17) 
6 This reflects that for each finite pole z% the discontinuity across 

the cut associated with the corresponding logarithmic singularity 
in x (z) is purely imaginary. 
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FIG. 2. The position of the head of the distribution for T>Te. 

The discontinuities in SF arise by choice of different 
sheets of the function p on the two sides of the charged 
line. An endpoint, or "head", of the line charge is thus 
a branch point of the function x(s) (but not necessarily 
vice versa). 

Let us now fix the attention on temperatures above 
the critical temperature. This corresponds to 
v<vc=27/8. Equation (17), determining the branch 
points, is easily solved if we for convenience introduce 
a new parameter u instead of v by 

2v=sin33^/sin22^ sim/. (18) 

The temperature interval (r c ,°o) then corresponds to 
the interval (0,TT/3) for u. By insertion one sees that 
(17) is satisfied by the two complex conjugate values 

Ph= 1 - (sm2u/sm3u)e±iu, (19) 

and one real and positive value 

p = 1+sinu/sin3u . (20) 

The real value (20) corresponds to z real and negative. 
Near the origin one must have p ^ s , and it is not dif
ficult to see that the set of p, z values given by (20) 
belongs to a branch of the function p{z) that does not 
behave properly. 

The remaining values (19) yield by Eq. (16) the 
following values for z: 

2 A = -
2e cosw 

exp 
sin3u cosAu 

2 cosu sin2u 

/sin3w cos2i/ 
=F* 

cosu 
-3u)\ (21) 

Figure 2 shows the location of these points as function 
of the temperature. At the critical temperature (^=0) 
the two points close in onto the positive real axis at 
zc=ie~7,4

y as expected. For T -—>oo (u —•> |TT), Z% —» — 1/e. 
This is as it should be, because in this limit Eq. (13) 
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FIG. 3. The three branches of % and the density of zeros near 
the real axis for the critical temperature. 

reduces to xh , c ,00 for a gas of hard rods of unit length, 
whose zero distribution covers the interval ( ~ oo, — l/e) 
on the real axis.3 In the neighborhood of these limiting 
points we have approximately 

9AT f 4 i / A r \ 1 / 2 

4 r c I 3 \3TJ 

and 
AT=T-TC«TC (22) 

ezh~- 1 + f (2v)*i* exp(±|7ri) T»TC 

4. CRITICAL TEMPERATURE 

(23) 

Let us study the zero distribution at the critical 
temperature Tc in the neighborhood of the point 
3=3 c=Je~7 / 4 on the positive real axis. Putting 
y=j>c=27/8 and 

z—Zc+z 

in the basic Eqs. (13) and (16), we find 

V 2 c = 3 5 2 - 4 ^ - 3 6 2 - ^ 4 + 0 ( ^ 5 ) 

^ = ( f ) 4 P 3 ~ ( f ) 5 P 4 + 0 ( « , 
where 

(24) 

(25) 

(26) 

$=p-pc=p-h (27) 

2 = X - X c = X - | . (28) 

Elimination of fi between Eqs. (25) and (26) yields 

& 3 / 2 z \ 4 / 3 

X = — + ( f ) 6 / 5 4 = — + ( 9 / 4 ) ( — ) , (29) 
Szc 3zc \9zc/ 

to this order. The first term on the right-hand side is a 
single-valued function of z, but the second term shows 
that z=zc is a branch point of order two. Putting 

2z/9zc=ae^y (30) 

where a is real and positive and — 7r<j3<7r, then the 
three branches of the function £ are 

fc= (3/2)ae#+ (9/4)a4 '3eW3, (31) 

fci = (3/2)ae#+ (9/4) a 4 ' V ^ 2 ^ '3 , (32) 

* m = "(3/2)ae«H- (9/4)a4/3e i^-2->/3. (33) 

On the positive real z axis x has to be real. Therefore 
the relevant branch to the right of z=zc (i.e., for /3=0) 
is xi. To the left we must have branch I I above the real 
axis (0=+7r) and branch I I I below (0= — v). 

Now we have to ensure that 3>=Rex is continuous 

everywhere. For jS>0, Eqs. (31) and (32) show that 
<f>i=<f>n only for fi=%ir. Similarly below the real axis 
^1=^111 for j8= — \tr only. This means that the charged 
line crosses the real axis at a right angle. 

The discontinuity of ^?{y) across the line charge is 
easily found to be 

2TT 
A*==^i~-^n==fa:4/3 sin— = (4e7;y4/v3)1/3 (34) 

3 

for y > 0 . By Eq. (9) the density of zeros close to the 
real axis is given by 

1 dA* 
g(y)= = T-12b/*3~7/*e7/*ym=2.£ 

2?r dy 
• y / 3 , (35) 

as shown in Fig. 3. 
For completeness one easily assures oneself that both 

$ and SF are continuous between branch I I and branch 
I I I , so the real axis is not charged. 

5. THE CHARGE DISTRIBUTION NEAR THE HEAD 

In the immediate neighborhood of the head (21) of 
the distribution we can treat 

z—Zh^&^ae® (36) 

as a small quantity, and for the potential x—X—Xh 
we find in the same way as in the previous section 

^ 3 3 / 2 

2vzh{\-Phy 3»zA«(l-Pfc)1 / 2(3p„-l)1 / 2 
•, (37) 

where pn and zh are given by the Eqs. (19) and (21), 
respectively. The expansion is valid for TC<T<<*>. In 
this case 2 = 0 is a simple branch point. Written in terms 
of the variable u the second term on the right-hand side 
takes the form 

2vzh{\-pnY 

8(ae)3/2 sin2u cos2u (3 sin3u cos4w\ 

3 sin23w(l+9 coto)1/4 

/3 sm3u cos4w\ 
exP( ~~ : — ) 

\ 4 cosu sin2u / 

Xexp ± i § tan"1 

(38) 

(3 cotu) 

3 sin3u cos2u TTH 1 
+ Au +f/K+farf} , 

2cosw 2J J 

with k integer. The upper sign always refers to the upper 
half plane. The two branches differ with w in the argu
ment. I t follows that the real part $ of the function 
takes the same value for both branches if and only if 
the argument for each branch equals nw/2, where n is 
odd. This determines '0=p h (u), and thus the direction 
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of the line charge near the head. We find 

t l 8 sin3uco$2u 2ir~ 
- tan"1 (3 cot«) -—u-\ r | . (39) 

cosw 

t 2x1 

3 J ' 

In order to fix the above integer n we have used the 
previous result j8A=dbj7r at the critical temperature 
(u=0). The variation of this direction with the tempera
ture is sketched in Fig. 4. 

The imaginary part of x, Eq. (38), determines how 
the density distribution behaves in terms of a, the dis
tance from the head. By Eq. (9) 

g(<*)z 
1 dA* 4 sin2u cos2u 

2TT da 7rsin23w(l+9cot%)1/4 

3 3 sin3^ cos4w~| 
Xexpl - + \a1/2. (40) 

4 cos^ sin2w 
• \al 

The coefiicient in front of a112 increases without bound 
both for T—>TC and for 71—>oo, indicating the lack of 
validity of the expansion (37) for these limiting values. 

Note especially that for very high temperatures the 
direction of the distribution tends to 

&(r->oo)->±(13/9)*r. (41) 

For high temperatures it thus seems that the charged 
line starting from the head in the upper half-plane 
would meet the corresponding line in the lower half-
plane in a point Y on the real axis near z— — l/e> In 
the next section this high-temperature behavior is 
examined in more detail. 

6. HIGH TEMPERATURES 

In the case T^>TC, i.e., v<^l, we study the neighbor
hood of z= — 1/e by setting 

e>Z=-l+fj,2/3# (42) 
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FIG. 5. The three branches of 
X for high temperatures. 

/Zh 

% 

Using Eq. (16), one easily finds that this region to 
lowest order in v corresponds to 

with 
f=fM

2 -2M - i . 

(43) 

(44) 

If we denote real and imaginary parts by subscripts then 
(44) is equivalent to 

£ r= — 2fir(fir
2+fii

2)-1+^fxr
2—%m2, (45) 

and 
ri=A*£20«r»+^)-i+Mr]. (46) 

The corresponding expansion of the potential (13) 

X = - 1 + ( M - M - 2 > 1 / 3 + - - - > (47) 

or 
*= - l + \jir+ W-Mr2) (»r2+rf)-2yiZ , (48) 
^=Ml[l+2Mr( /z;+MiV],i/3. (49) 

The position of the head %h of the charged line is the 
singular points of /x(f), Eq. (44). We find for the relevant 
zeros of d$/dp—/x+2/T"2: 

^=211*6***1', i .e . ,^=3X2- 1^± 2- / 3 , (50) 

in agreement with Eq. (23). 
In order to determine the intersection point Y of 

Fig. 5, let us focus the attention on the real axis. By 
Eq. (46) z is real for three different values of m: 
/ . 

/x*=0, 

hr== 2Mr Aflr > 

$=-i+0.r-^-2)^3, 
* = o . 

II and III. 
Mi=±(-2M r-

1-/.r2)1 '2, 

fr=/*r1+2jUr2, 

*=-l+l(Mr-Mr4)^1 / 3 , 

^=±§[-(2+Mr
3)v-1]1/2. 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

FIG, 4. The direction of the line of zeros near the head. 

The two last solutions exist only if --21/3<jur<0, so 
that for f > —3X2~1/3 solution I must be chosen. This 
is in accordance with the exact solution3 for i/=0, which 
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FIG. 6. Density of zeros on the real axis for high temperatures. 

shows that ^ = 0 for x> — 1/e, y=0, ^ > 0 for x< — 1/e, 
y=0+, a n d ^ < 0 for x< — l/e, y=0—. 

The location of the point Y is determined by 

$I(ZY) = $II(ZY) = $III(ZY), (59) 

or by Eqs. (53) and (57), 

2/xr(I)-2iur-
2(I)=Mr(II)-Mr4(II). (60) 

Comparing Eqs. (52) and (56) we see that 

Mr(I)=-2Mr(II) (61) 

corresponds to the same point in the z plane, and it is 
not difficult to show that the other solutions of the 
equation f (I) = f (II) must be discarded. Solving the last 
two equations we obtain 

Mr(II) = -(5+3v5)-1/3 , (62) 
and hence 

£F= - (3+3v3")(5+3v3)~2'3= -1.7430- • •. (63) 

The point Y therefore moves to the left with decreasing 
temperature as 

zT= _o.3679-0.6412^2/3. (64) 

The charge densities on the three lines coming together 
in Y are also functions of the temperature. Since 
^oc^/3 and d£/dz=ev-2/*, it follows by Eq. (9) that 
gozV~llz, decreasing with decreasing temperature. On 
the real axis to the left of the point F, Eqs. (9) and (58) 
yield 

g= (./27r),-1/3C-M,(2+Mr3)]1/2, (65) 

where - (5+3VJ)-1/3<Mr(s)<0 is given by Eq. (56). 

7. LOW TEMPERATURES 

Now we consider temperatures so far below Tc that 
v—a/Vr can be treated as a large parameter. It follows 
from the equation of state that for very low temperatures 
the fugacity z that corresponds to the saturated vapor 
line is very small, and that the corresponding densities 
pg and pi of the gas and the liquid are close to 0 and 1. 
This means that in the complex z plane the line charge 
crosses the positive real axis to a point very close to the 
origin. Moreover, the two branches of the function 
x(z) on each side of the line charge are obtained for p 
close to 0 and Irrespectively. 

Let us therefore study the function z(p), Eq. (16), 
in these two limiting cases. For 2vp<0. we have 

z=p+0(p>), (66) 
or inverted 

p=z+0(z>). (67) 

In the other case, 1—p«l, we get to lowest order 

8 = ( l - p ) - i « p [ ( l - p ) - » - 2 ^ (68) 

or, approximately, 

( l -p)- i=2H-lns. (69) 
The corresponding approximations for the potential 

(13) read 

and 
Xf^pcxz, (2vp«l) (70) 

X ^ ( l - p ) - i - » ~ H - I i i a (1 -P«1) . (71) 
Putting z^re1*, and requiring continuity of the real 

part of x, we obtain for the position of the line charge 

r cos4>= v+lnr (72) 
or 

r=e~-verc0B*~e-v(l+e-v cost), (73) 

to this order of accuracy. The corresponding p values 
are of the order of e~v and 1 — v~l, showing the validity 
of the expansions. 

In this approximation, therefore, the charge is dis
tributed on a closed curve deviating only slightly from a 
circle with radius e~v around the origin. The lines of force 
are by Eqs. (70) and (71) given by 

^ f f=rsin0; ^?i=<t> (74) 

and sketched in Fig. 8. Using the fact that ^rg is negli
gible, we obtain for the charge density 

S(*) = «'/2T. (75) 

In this zeroth approximation the total charge is uni
formly distributed on the closed curve. 

In the same way one can of course carry the calcula
tion to higher order. As long as exponentially small 
terms in the density are neglected, only Xt is needed, and 
as a better approximation we find7 

Xj=H-lnz-ln(2H-lns). (76) 

On the charged curve the imaginary part of this becomes 

* ^ ( l _ „ - i ) , (77) 

FIG. 7. The fugacity z as 
function of the density p for 
low temperatures. 

'fa %\> 
7 As a check, Eq. (76) yields the approximate values p j ~ l —v""1, 

pgc^.ve~% which agrees with the liquid and gas densities one finds 
at very low temperatures by Maxwell's rule. 
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from which the density 

(78) 

follows. The total charge on the curve thus equals 
2we~pgc=l — v~1. The small rest of the charge lies on the 
negative real axis. Here the imaginary part of x> Eq. 
(76), has the form 

^(y==0±)~± T-tan- 1 

L 2H-ln(-*)J 

~±Jl 1 . (79) 
L 2H-ln(-x)J 

The corresponding density is by Eq. (9) 

1 d 
g«i.(*) = [¥(y=0-)-¥(y=&«-)] 

2T dx 

1 

(-*)[>+ln(-tf)]2 . (80) 

It is easily checked that the total charge on the real 
axis just equals the remaining part v~l of the total 
charge: 

kT 
dxgaxia (x) = v~l=— . (81) 

a / : 

For T —» 0 this part disappears linearly, and the total 
charge approaches a uniform distribution on a circle 
whose diameter decreases exponentially towards zero. 

8. CONCLUDING REMARKS 

We have determined the main features of the zero 
distribution corresponding to the van der Waals equa
tion of state. The zero line was fixed by the continuity 
requirement of the real part of the multivalued function 
x(z), whereupon the discontinuity of the imaginary 
part of x(z) determined the actual value of the density 
of zeros. By the same procedure one could clearly obtain 
all quantitative details by numerical calculation, if 
desired. It should be noted that the Maxwell rule is not 
a separate requirement, but included in this general 
procedure. 

The resulting distribution of zeros is much more com
plex than in the case of lattice gases with attractive 

FIG. 8. Lines of force at 
low temperatures. 

interaction (&»•= + «>, 4>ij<0 iorj^j). For these Lee 
and Yang2 proved that all zeros zn have the same 
modulus 

W=exp(§L'<^Ar), (82) 
3 

approaching zero when T—>0 in the same way as in 
our case. A lattice gas analogue of van der Waals' 
equation is obtained for a very weak attraction of very 
long range, yielding the equation of state8,9 

with 
p/kT=-ln(l-p)-vp>, (83) 

(84) 

Analytic results for the angular distribution G(0) 
= 2we~vg on the circle [ ̂  | == ̂ ~v were obtained by 
Katsura.4 

Van der Waals' equation (1) and Eq. (83) are both 
equations of state for models with an attractive tail 
y<j>{yr) considered in the limit when the range I/7 —»°o. 
An analysis of the distribution of zeros for very small, 
but finite values of 7 would be of interest. The point is 
that while one can prove the nonexistence of a phase 
transition in one dimension for any finite Y,9 an expan
sion in powers of 7 yields a phase transition to every 
order, with (1) or (83) as the zeroth order equation of 
state.5 This means that the expansion for small 7 and 
T<TC cannot be a pointwise approximation method 
for the density of zeros: On the positive real axis g=0, 
but it is approximated by distributions that cross the 
real axis with finite density. The nature of this gap in 
the line of zeros presents an unsolved problem. 

8 T. L. Hill, Statistical Mechanics (McGraw-Hill Book Company, 
Inc., New York, 1956), Sec. 46. 

9 M. Kac, Phys. Fluids 2, 8 (1959) and further unpublished 
calculations. 


