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MgO has relatively high (cubic) symmetry. In any 
case the vibrational spectra in a—AI2O3 are considerably 
more complicated than the MgO.V24" spectrum indi
cated in Fig. 6. It is in fact difficult (especially for 
a—A^OgiMn44*) to separate the effective "one-phonon" 
density of states from the multiphonon contributions 
to the vibrational structure. 

If and when the lattice spectrum of MgO is deter
mined, the MgO:V2+ and MgO:Cr3+ cases seem to be 
promising ones for an attempt to calculate the impurity-
phonon interaction from first principles. Not only is 

A. INTRODUCTION 

THIS paper is an extension of two previous papers,1 

hereafter referred to as I and II. An analysis of 
the expressions for the Griineisen parameter derived in 
these papers indicates the conditions under which a 
crystal can have negative thermal expansion coefficients 
or anomalous positive thermal expansion coefficients. 
Recent experimental evidence2 shows that certain crys
tals, such as silicon, ZnS, InSb, Si02, and Agl, undergo 
negative thermal expansion. Blackman3 has considered 
an ionic zincblende structure and found from an analy
sis of the elastic constants that it would have a negative 
expansion at low temperatures. It was concluded that 
open structures, those with a coordination number of 
four and having a very low shear elastic constant (Cu), 
should have a negative thermal expansion. 

In I, we considered some ideal cubic crystals having 
short-range interactions, such as a two-dimensional 
diatomic square lattice and a simple cubic lattice. It 
was found that they exhibited negative expansion when 
they were unstable or approached instability.4 The fol
lowing analysis suggests that the instability or approach 

* Present address: 1352 Findlay Avenue, Bronx 56, New York. 
1 By paper I, we refer to "Equation of State of Certain Ideal 

Lattices," Phys. Rev. 131,2087 (1963), and by paper II to "Equa
tion of State of Alkali Halides (NaCl)," Phys. Rev. 132, 73 (1963) 
both by M. Arenstein, R. D. Hatcher, and J. Neuberger. 

2 R. D. McCammon and G. K. White, Phys. Rev. Letters 10, 
234 (1963). 

3 M. Blackman, Phil Mag. 3, 831 (1958). 
4 For a discussion of stability of simple lattices, see M. Born 

and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon 
Press, Oxford, England 1954), Chap. 3. 

the lattice an exceptionally simple one, but the point-
charge model has been shown to give quantitatively 
correct results for the effect on the 2E state of static 
strain.9'16 It remains to be seen if equally good agree
ment can be obtained for interaction with the phonons. 
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to instability may be the cause for negative expansion 
or anomalous positive expansion in a real crystal. Such 
a possibility is interesting since the explanations for the 
melting of solids5 and the ferroelectric transition6 have 
been sought in the approach to instability of the acoustic 
modes in the former situation and the transverse optical 
modes in the latter. 

The volume coefficient of thermal expansion /5 of a 
crystal can be written as 

0= (X2aMi/dT)/V, (1) 

with ji the Griineisen parameter given as 

y^-dlnvi/dlnV. (2) 

Here X is the isothermal compressibility, V is the vol
ume, Ei is the thermal energy {hvi/£exp(hvi/kT)—l']}, 
and vi is a normal mode frequency. T, h, and k have 
their usual meaning and the sum over i is to be taken 
over all normal modes. Since X, V, and dEi/dT are 
always positive, it can be seen that if 7,- is negative for 
a large number of frequencies or if 7,- is very large and 
negative (7*—> — 00) for just a few frequencies, then 0 
will be negative. Expressions for 7* have been found for 
several ideal lattices and for a real crystal such as 
NaCl.1 It is expected that 7,- will take the same form for 
many molecular and ionic solids. It can be shown that 
the conditions under which the lattice approaches nega-

6 M. Born, J. Chem. Phys. 7, 591 (1939); J. H. C. Thompson, 
Phil. Mag. 44, 131 (1952). 

6 W. Cochran, in Advances in Physics, edited by N. F. Mott 
(Taylor and Francis, Ltd., London, I960), Vol. 9, p. 387. 

P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 4A 17 F E B R U A R Y 1964 

Instability in Crystals and Thermal Expansion Coefficients 
MARVIN ARENSTEIN* 

Autonetics Research Center, Anaheim, California 
(Received 19 August 1963) 

An analysis is made of the Griineisen parameter ji= — d lrivi/d InF, where vi is a normal mode frequency 
and V is the volume for certain ideal and real crystals. It is shown that negative thermal expansion or 
anomalous positive expansion in a solid is a possible result of an approach to instability of the modes of 
vibration. 



I N S T A B I L I T Y I N C R Y S T A L S A1035 

tive thermal expansion or anomalous positive expan
sion (Yi—» oo) are the same as the conditions for the 
lattice to approach instability. 

B. IDEAL CRYSTALS 

By an ideal crystal, we mean one having short-range 
forces; that is, we consider nearest and next-nearest-
neighbor interactions. Thus, considering a two-dimen
sional square lattice, the simple cubic, face-centered 
cubic, and body-centered cubic lattices, an expression 
for Yt can be derived1 from lattice dynamics and put 
into the form 

7*= - (l/LKrW/at+rWy/lwW], (3) 

where L is the dimension of the lattice, r is the lattice 
separation, ai=4r2/"(rO, a2=2/ /(rJ);/(r2) is the inter
atomic potential energy, y is a function of the wave 
vectors and the lattice separation and depends on the 
structure of the crystal (for convenience, the values of y 
for the various lattices are given in the Appendix), p, is 
the reduced mass of the ions, and the prime indicates 
derivatives with respect to r2. 

The first term in Eq. (3), —r2ai/Lai, is positive if we 
consider a Mie-Lennard-Jones interatomic potential 
energy having the form — \r~m+^r~n. where m, n, X, and 
f are positive parameters characteristic of the lattice. 
This potential energy has been used often before in the 
study of crystals. If we assume the equilibrium condi
tion, we have 

- rW/Lai = (m+n+4:)/2L. (4) 

The second term —r2a2'y/2w2Lpvi2 can be shown to be 
negative. The only quantity in this term which needs 
examination is«2/ = 2///(r2) since all other quantities are 
obviously positive. We show that this is positive using 
the equilibrium condition and assuming that the re
pulsive force is short range so that n>m. We have 

f'(r2) = n(n--m)Sr-n-2/A>0. (5) 

Thus, ji will be negative when 

| rWy/2ir2Lnvi2 \ > \ rW/Lon \ (6) 

and since the quantity on the right side of Eq. (6) is 
fixed this condition should be met when v? —-»0. Since 
Vi varies with y, it is important to look at this term in 
the long-wave limit. It can be seen from the values of y 
in the Appendix that y —» 4civ2K2a2 for all lattices con
sidered, where a is a lattice constant and K is the wave 
vector. Thus 

r2a2'y/27r2Lixvi2 -> 2r2a2'a
2/Lp U2, (7) 

where U is the elastic wave velocity. U can be expressed 
in terms of the elastic constants Cn, C±2, and Cu. For 
certain directions in the crystals (for example, the £100] 
direction) we have for longitudinal (Ui) and transverse 
(Ut) elastic waves, the relations pUi2=Cu and pUt

2 

= Cu, where p is the density. 
For cubic lattices with central forces, Cu=Cu and 
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FIG. 1. Griineisen parameter 7 " vs temperature for a two-
dimensional diatomic lattice with one mass double the other and 
with central forces cr^/cri — b^ —0.1. 

the stability conditions can be written as Ci2>0 and 
Cu—Ci2>0. More generally a crystal will be stable for 
all small deformations if the normal modes have real 
frequencies. Thus as v —> 0 or as C44—C12— 0̂ we see 
that 2r2a2'a?/Lp,U2 —» 00 giving us a large negative value 
for ji and at the same time the lattice approaches insta
bility. That this occurs for the two-dimensional square 
lattice and the simple cubic lattice can easily be seen. 
•We have for the two-dimensional lattice that 

pW=cn+(r2 , pUt
2=a2, (8) 

where ai and c2 are, respectively, the nearest-neighbor 
and next-nearest-neighbor Hooke's law constants. Thus 
<T2=:Cu and for <r2 negative the lattice is unstable. In 
finding the thermal expansion coefficient for this lattice 
in I, negative eigenvalues of the dynamical matrix were 
excluded. However, the reduction of pUi2, as well as 
the over-all smaller values for the frequencies, cause the 
thermal expansion coefficient to become negative. If 
we define a weighted temperature-dependent Griineisen 
parameter as 

^(V^^^idEi/dT/XMi/dT (9) 

such that Eq. (1) can be written as 

P=Xy"(V,T)ItfE</dT/Va, (10) 

then we can characterize the thermal expansion by the 
value of 7" at a particular temperature. Examining 
Fig. (1) we note that y"(V,T) is zero at 100°K and 
negative below that temperature. 

The simple cubic lattice is known to be unstable under 
homogeneous deformations as all neighbors are con
sidered and the interatomic potential energy is of the 
Mie-Lennard-Jones form.4 For the simple cubic lattice 
we have 

(<Ti+2<j2)/a=Cu-Cu (11) 
2<T2J a=C44=C12. 
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FIG. 2. Griineisen parameter y" vs temperature for a modi
fied Kellermann model of NaCl utilizing a frequency spectrum 
of 11 454 frequencies and 7/s . 

Thus choosing o-2 to be very small, we have Cu small. 
c^/ci was chosen in I to be 0.1 with the result that the 
lattice underwent negative thermal expansion at low 
temperatures. 

C. REAL CRYSTALS 

By a real crystal we refer to a model of a solid which 
considers long range forces. Thus a Kellermann model 
of NaCl,7 as well as a modified Kellermann model, is 
considered. In these models the Coulomb interaction 
between all ions was taken into account along with 
short range repulsive forces. The models differ in that 
repulsive term for the modified model is taken to be a 
Born-Mayer repulsive potential energy Ae~Br, where 
A and B are variable parameters which are adjusted to 
give good results compared to experiment, whereas the 
Kellermann model considers a repulsive potential en
ergy of the form cr~n, where c and n are constants which 
are eliminated in the final equations by applying the 
equilibrium and compressibility conditions. 

An expression for y* was obtained in II for these 
models of NaCl by perturbation theory and we expect 
the same general form for many other ionic crystals. 
For the modified Kellermann model we have 

(12) 

where o> is the circular frequency, e is the charge of 
the electron, r0 is the lattice separation; 

dBmm/dr=Rf{ ( I / M I ) [ ( ^ im°)2+ (u*m«y+ (u,jy] 
+ (1/M2)[(M2+ (U,JY+ (*76M°)2] 
-2/(MlM2)1/2(^lm°f/2m° COST?* 

+ Uzm(iUAm0 coSTrqy+U^m
0U6m

0 cosirqz)} 

+2S'{ ( I / M I ) [ ( ^ ° ) 2 + (Uzm°y+ (Usjy] 
+(iMZ(u*m°)*+ (u,m°y+ (uQm°y] 
— 1 / (M1M2)1 / 2 [ (COSTT^H- cosqz) Uim

0U2m
0 

+ (coswqx+coswqe) Uzm0U^m
0 

+ (cosirqx+cosirqy) U5m
0UQm

0"]} (13) 
with 

R' = (4B*A/<?) (3r0
2- Br0

z)<rBr°, 
S'=- (IBA/e2) (2rQ-BQr2)e-B'°; (14) 

7 E. W. Kellermann, Trans. Roy. Soc (London) 238, 513 (1940). 

7<=i[ l - (e2/6r0V) (dBmm/dr)l, 

where m and /x2 are the masses of the ions, U° is an un
perturbed orthonormalized eigenvector which comes 
from the equation of motion of the ions and is therefore 
the amplitude of the displacement, and q=2r0o", where 
a is the wave vector. If it can be shown that we can 
have dBmm/dr>0j then as o> —>0, we will have yt-
—> —00. Consider Eq. (13) and let MI=M2:=MJ which 
should not affect our results, but will make our expres
sion easier to handle. We then have 

dBmm/dr= (R'+lS'/ti-lR'/^UiJU^ coswqx 

+ Uzm
0U4m

0 cosTrqy+U5m
0UQm° COSTT )̂ 

- 2S7/x[(coS7r^+cos7rg2) Ulm°U2m° 
+ (coswqx+cosTqz)Uzm°U4m°+ (coswqx 

+coSTrqy)Usm°U6m
0l. (15) 

The first term (R'+2Sf/ji)=±BAr&-**«/e2v(Bn--±) 
X (—Bro+l) is negative except when lg23r0^4. Thus, 
for some particular directions in the crystal where the 
second and third terms vanish or do not overweight the 
first term,8 we have dBmm/dr>0. A small value for 
Br0 corresponds to a rather long range repulsive force, 
whereas it is found for a crystal such as NaCl that 
Bro^9 and, therefore, one finds mostly positive y*y. 
Negative values for y* were found for NaCl for the 
transverse acoustic branch indicating that even for 
Br0^9 that the second term on the right of Eq. (15) 
can dominate and with Rf<0 cause dBmm/dr>0. 
Since these negative y»'s were very small in number 
compared with the total spectrum and were small in 
magnitude, negative expansion could not occur. In 
fact, since dBmm/dr<0, then as co—•»0 we should ex
pect rather large values for y*. Examining Fig. (2), we 
note that y"(V,T) approaches a minimum at 11°K and 
then rises to its value at 0°K. Low frequencies or acous
tic modes dominate at low temperature and this ac
counts for the behavior of y"(V,T). Recently, S. Gane-
san and R. Srinivasan,9 have investigated an equivalent 
temperature-dependent Griineisen parameter for the 
CsCl structure. This lattice is known to become un
stable for n^7.3. As they reduced the value of n from 
30 to 8, it was found that y" grew very large at low 
temperatures, indicating that as instability is ap
proached the lattice undergoes an anomalous positive 
thermal expansion. 

An interesting aspect of negative thermal expansion 
with regard to the compressibility X can be seen by 
examining the Griineisen parameter y» derived in II 
from the Kellermann model. 

We have 

<=§ 
2rr4r -r 2 ex-] 

X X2 dr J r 

(16) 

8 It should be noted that due to the orthonormality of the eigen
vectors some of the terms Uim

0' Ujm° ij^j are negative and there
fore the terms in parentheses and brackets can be either positive 
or negative depending on direction in the crystal and the frequency. 

9 S. Ganesan and R. Srinivasan, Proc. Roy. Soc. (London) 271, 
154 (1963). 
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where 

r « (i/Mi)[(t/im0)2+(t/3W°)2+(^5m0)2] 

+ (1/M2)C(^2W°)2+ (^ 4n>°)2+ (tf 6m)2] 

+ C2/(MiM2)1/2](̂ im°^2m° cosirqx+U zJU Am° cosTrg, 

+ Uto?Utm°castrq,). (17) 

For positive T the condition for negative thermal ex
pansion is 

r4r r2 /dX\ n 
( — J > 0 as co->0. 

LX X2\dr/TJ 

This will occur when dX/dr is very small, zero, or nega
tive. We may expect then that the isothermal compres
sibility approaches a minimum as the lattice contracts 
and then increases as the lattice expands. 

Since, as was indicated in the introduction, insta
bility in the optical or acoustical modes may be present 
at a phase transition, the thermal expansion at these 
transitions may give valuable information concerning 
the mechanism causing the transition. For example, the 
anomalous thermal expansion in antiferromagnetic ma
terials10 indicates that either phonon modes or magnon 
modes or both approach instability. 

The ferroelectric transition from the cubic to the 
tetragonal phase in BaTi03 is thought to occur when 
the transverse optic mode frequencies cor approach zero.6 

One may expect large positive or negative 7/s associ
ated with these low transverse optical modes. We can 
write for O)T that 

M W 2 ,2 = R o>_ [ 4 T ( C + 2 ) (Z'e)*/9Val, (18) 

where /x is the reduced mass of the ions, R0' is the short 
range force constant, Z'e is the effective ionic charge, e 
is the high-frequency dielectric constant, and Va is the 
volume of the unit cell. We have for yi 

Va rdRJ 4rr(€+2)(Z'e)2l 
7*= " + • (19) 

2liuA-dV 9Va
2 J 

The term 47r(e+2)(Z'e)2/9F0
2 is positive, and even 

if dR'/dV is negative, as the lattice contracts, the 
former term can become larger than the latter. There
fore, if 

\^{€+2){Z,e)2/9V2\ > \dR0'/dV\ , (20) 

7i will be negative and becomes quite large as cor —> 0. 
Experimental evidence11 shows that as the transition 
point is approached from the cubic phase a single crystal 
of BaTi03 contracts. At the transition point a spontane
ous expansion occurs apparently due to electrostrictive 
effects. It is suggested that the lattice vibrations also 

10 C. G. Skull and E. O. Wollan, in Solid State Physics, edited by 
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1956), 
Vol. 2, p. 137. 

11 F. Jona and G. Shirane, in Ferroelectric Crystals (Pergamon 
Press, Inc., New York, 1962), Chap. 4. 

contribute to this effect although it is difficult to esti
mate the magnitude of their contribution. One must re
member that no large negative expansion should be ex
pected since it is only the transverse optical mode which 
is assumed to become unstable while the other modes 
remain uneffected. However, one may find fairly large 
effects, i.e., negative thermal expansion or anomalous 
positive expansion, if experiments which properly ac
count for the electrostrictive effect are performed on 
single crystal ferro-electrics having low-temperature 
transition points. 

D. CONCLUSIONS 

We conclude that those crystals which approach an 
instability in some of their normal mode frequencies will 
either undergo negative thermal expansion or anomalous 
positive thermal expansion. If we follow the rule of 
thumb that the stability of a crystal varies with the 
coordination number (being most stable for the highest 
coordination number and less stable for low coordina
tion number), we see why Blackman found that those 
crystals with a coordination number of four undergo 
negative thermal expansion. It is suggested that the 
nature of a phase transition in a crystal as well as the 
nature of the ionic and covalent forces in the low coordi
nation number crystals may be determined through 
careful thermal expansion experiments. 
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APPENDIX 

The values of y for the various ideal lattices which 
were derived in I are given here for convenience. 
Ki i = l , 2, 3 is the wavevector and a is the distance 
between nearest neighbors in the two-dimensional 
square lattice and simple cubic lattice, whereas it is the 
distance between next-nearest neighbors in the face-
centered cubic and body-centered cubic lattices. 

(a) Two-dimensional square lattice; 
y=4— 2[cos27riTia+cos27ri^2a]. 

(b) Simple cubic lattice; 
y=6— 2[cos2wKia+cos2irK2a+cosTKza]. 

(c) Face-centered cubic lattice; 
y—12—4[cos7ri£ia cos7ri£2#+cos7rZ'30 cos;rjf 2a 
+C0S7ri£ia COSTKZO] . 

(d) Body-centered cubic lattice; 
y^S-2lcos7ra(K1+K2+Kz)+coswa(-Ki 
+K2+Kz)+coswa(Ki—K2+Kz)+cosTa 
XiKx+Kt-Kt)!. 


