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The screening theory proposed by Lazarus has been used to examine the impurity diffusion in zinc. The 
difference in the activation energies (AQ) for the impurity diffusion and self-diffusion in zinc have been cal
culated using a screened Coulomb interaction between the vacancy and the excess charge Ze of the impurity 
ion. The change in the energy of formation of a vacancy next to the impurity ion is calculated by considering 
the electrostatic interaction between the impurity ion and the vacancy when they are nearest neighbors. In 
a saddle-point configuration, the diffusion ion may be assumed to be flanked by two half-vacancies. The 
change in the energy of motion has been calculated by considering the electrostatic interaction between the 
two half-vacancies and the impurity ion in the saddle-point configuration. Correlation corrections have 
been calculated using the expressions for the correlation factors. The estimated differences in activation 
energies for trivalent and monovalent impurities in zinc have been compared with the available experi
mental data. The estimated values check fairly well in the case of indium and gold, whereas the agreement is 
poor in the case of silver. Correlation corrections are important for a trivalent impurity, whereas the dif-
fusional jumps of the monovalent impurity are relatively uncorrected* 

INTRODUCTION 

SINCE the tracers became readily available, a con
siderable amount of experimental data on tracer 

diffusion in metallic systems has been accumulating. 
It is known that impurities diffuse at a different rate 
with different activation energies and frequency factors 
as compared to self-diffusion. The screening theory 
proposed by Lazarus1 has been fairly successful in 
accounting for the impurity diffusion in monovalent 
metals. According to this theory the change in the 
activation energy is taken to be made up of two parts : 
the change in the energy of formation of a vacancy next 
to the impurity ion and the change in the energy of 
motion. Size effects and correlation corrections have 
been completely ignored. On the other hand, Swalin2 

has taken a different point of view. He has calculated 
the difference in activation energies from purely elastic 
considerations and the main emphasis is on size effects. 
However, the impurity diffusion data tend to show a 
systematic trend as a function of the valence of the 
diffusing ion. LeClaire3 has used the screened inter
action model with considerable success to account for 
the impurity diffusion in copper, silver, and gold. He 
has included the correlation corrections, whereas the 
size effects have been neglected. Recently, experimental 
data on impurity diffusion in a noncubic divalent metal 
zinc have been reported.4*5 Self-diffusion data on zinc 

*This article is based on a thesis submitted to the Physics 
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are also available6 (see Table I). It is the purpose 
of the present article to apply the screened interaction 
model to the understanding of the impurity diffusion 
in zinc and to examine to what extent the simple model 
is valid for a hexagonal matrix. The main emphasis, 
however, is on calculating the differences in the activa
tion energies (AQ) for self-diffusion and impurity dif
fusion and on checking these calculations against the 
experimental values. 

TABLE I. Frequency factors and activation energy for tracer 
diffusion in zinc single crystals. 

Isotope 

In114 

In114 

Agno 
Agno 
A u198 
A u198 

Zn6s 

Zn65 

Diffusion 
direction 

1! 
_L 

II 
± 
II 

J-

II 
J_ 

Frequency 
factors 

(cm2/sec) 

0.062±0.008 
0.14 ±0.02 
0.32 ±0.02 
0.45 ±0.07 
0.97 ±0.22 
0.29 ±0.12 
0.13 
0.58 

Activation 
energy 

(kcal/mole) 

19.1±0.1 
19.6±0.1 
26.0±0.1 
27.6±0.2 
29.7±0.3 
29.7±0.5 
21.8±0.2 
24.3±0.5 

Ref. 

4 
4 
4 
4 
5 
5 
6 
6 

DIFFERENCE IN THE ACTIVATION ENERGY: A<? 

The method of calculating AQ is illustrated for the 
impurity diffusion in the parallel direction. (Parallel 
direction and also c axis will always mean the direction 
parallel to the hexagonal axis.) Experiments indicate 
that the diffusion coefficients for zinc tracer and im
purity can be expressed by simple Arrhenius-type 
equations: 

AUo=^ii,oexp(~(2ll,o/^), (1) 

D{l=Al{exp(~-Qn/RT). (2) 

JDJI.O and D\\ are the corresponding diffusion coefficients 
6 G. A. Shirn, E. S. Wajda, and H. B. Huntington, Acta Met. 

1, 513 (1953). 
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of zinc tracer and impurity parallel to the c axis in zinc 
single crystals. Q\\t0 and Q\\ are the corresponding 
activation energies for zinc tracer and impurity ex
pressed in calories/mole. A \ \ ,0 and A \ \ are the frequency 
factors. 

From the atomistic point of view, we can express 
D\i>0 and D\\ as 

D\\,o=ifec2VAofA,z:Q exp(dSA0/R) 

XexpZ-(EAQ+HA0)/RTly (3) 

D\\—hc2vAfAtZexp(8SA/R) 
Xexv£-(EA+HA)/RT1, (4) 

where vAo and vA are the corresponding nonbasal (or 
abasal) frequencies for zinc and impurity atoms, /A,*:O 
and fAfZ are the correlation factors for self-diffusion and 
impurity diffusion in the parallel direction, EAo and EA 

are the energies of formation of a vacancy next to zinc 
and impurity in solvent metal, HA0 and HA are the 
activation energies for exchange of a zinc atom with 
the vacancy and that of an impurity atom with the 
vacancy, and 8SA o and 8SA are the entropy factors in 
both cases. 

To a first approximation, we assume that 5SAo and 
dSA are equal. (In the case of self-diffusion, no dis
tinction is made between the tracer atom and zinc 
atom in the host lattice.) The correlation factors are 
temperature-dependent, and hence the activation energy 
measured in an experiment may not be identified as 
equal to EA0+HAQ or EA+HAy as the case may be. 
From the experimental data, one usually finds •— Rd hiD/ 
d(l/T) and identifies it with the activation energy. 
Expressions (4) and (3) can be treated in a similar 
manner. Then we get 

-Rid lnD/d(l/T)l=HA+EA-Rld \zfA,Jd(l/T)l, 
Qn = HA+EA-CA. 

Similarly, 
Q\ I , o = HAQ-\-EA<}— CAQ . 

Therefore, 

011-211,0= (HA-HAO)+(EA-EA0)-(CA-CAo) (5) 
AQU = AHA+AEA-ACA. 

If AEA is negative, vacancies are attracted by impurity 
ion; and if positive, repelled by them. The quantity 
(—AEA) is then the binding energy between the im
purity and a vacancy. We shall assume that many of 
the factors contributing to the absolute value of the 
activation energy (and frequency factor) to be nearly 
the same for both solute and solvent. As mentioned 
earlier, our main attempt will be to account for AQ\\ 
— Q\\~Q\\,o rather than trying to calculate Q\\ and 
0n,o directly. 

SCREENED INTERACTION MODEL 
TO CALCULATE AQ 

We assume a free-electron model for the solvent and 
that both the valence electrons can be treated as free. 
The positive charge of the doubly ionized zinc ions is 

smeared out uniformly. A vacancy in zinc metal will be 
treated as a point charge — 2e. Whenever an impurity 
of different valence is dissolved substitutionary in zinc 
matrix, we shall assume that the impurity ion can be 
treated as a point charge Ze. For indium and silver (or 
gold) as solutes in zinc, Z will be + 1 and —1, respec
tively. This excess charge attracts electrons (if Z is 
positive) or holes (if Z is negative) to screen the charge 
at large distances. The potential V(r) around the 
impurity ion is calculated in the linearized Thomas-
Fermi approximation.7 Then, 

F(f)=(Ze/r)exp(-8f), (6) 

where q2= (4me2/h2)(3no/w)m, m is the mass of an 
electron, e is the electronic charge, no is the number of 
electrons per unit volume, ft is Planck's constant di
vided by 27r, and q is the screening constant. Lattice 
parameters8 a=2.66A and c=4.94A were used to 
calculate nQ and, hence, q. We get »o= 1.321 X1023 

electrons/cc and q= 1.947X108 cm-1. 
Recently, solutions of the Thomas-Fermi equation 

have been given in a series form for monovalent 
metals.9-11 The leading term is, for V, at a distance r 
from the excess point charge, 

V(r)=a(Ze/r) exp(-qr). (7) 

The values of a have been listed for different Z values. 
No such solutions are available for a divalent metal 
zinc. The "master solution" given by Umeda and 
Koboyashi10 has been used to obtain a for Z= + l in 
zinc by interpolation. The value of a turns out to be 
0.83. For impurities with negative Z, the method sug
gested by Alfred and March11 has been used to evaluate 
a for Z= —1. This turns out to be 1.3. Diffusion of 
indium, silver, and gold is considered in detail. Before 
we proceed to calculate AQ, a brief review on the cor
relation factors12 for the zinc lattice is now given. 

CORRELATION FACTORS 

The expression for the correlation factor12"14 can be 
written as 

A i = i + 2 E - — r , (8) 
"=1 (X»\i)2 

7 N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936). 
8 C. Kittel, Introduction to Solid State Physics (John Wiley & 

Sons, Inc., New York, 1953), 2nd ed., p. 41. 
9 H . Fujiwara, J. Phys. Soc. Japan 10, 339 (1955); 13, 250 

(1958); 13,939 (1958). 
10 K. Umeda and S. Kobayshi, J. Phys. Soc. Japan 13, 148 

(1958). 
ii L. C. R. Alfred and N. H. March, Phil. Mag. (7) 46, 759 

(1955); Phys. Rev. 103, 877 (1956); Phil. Mag. (7) 48, 985 (1957). 
12 H. B. Huntington and P. B. Ghate, Phys. Rev. Letters 8, 

421 (1962). 
is J. G. Mullen, Phys. Rev. 124, 1723 (1961); Phys. Rev. 

Letters 9, 383 (1962); (private communication). 
14 The possibility of some numerical errors in the equations in 

Ref. (12) was suggested to us by Dr. A. D. LeClaire. The nu
merical errors have been corrected and the correct equations are 
given in this article. The suggestion of Dr. A. D. LeClaire is 
gratefully acknowledged. 
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where ^j is the jth component of the ith-type jump 
and Xn(i) is the ^th jump of the diffusion atom in the 
sequence of the jumps of the diffusing atom that fol
lowed ith type in question. We introduce the vector 

S^f^nco, (9) 

which can be thought of as representing the average 
final displacement of the tracer. One can solve for the 
Si by a sort of recursion relation. Suppose the various 
jump rates of the vacancy are given by com, where the 
particular cor represents the reverse impurity vacancy 
jump. Then 

S»= (Z)m WmSm—0>Ai')/]Cm Om. (10) 

fij can then be expressed as 

Ay=l+2S 4 . - j / (Xi ,y) , (11) 
where j is the unit vector in the jth direction. 

The expressions for the vectors S* and the correlation 
factors are now evaluated. Let the z axis be parallel to 
the hexagonal axis. For a vacancy site B adjoining the 
diffusing impurity atom and in the same basal plane, 
the following frequencies are pertinent (see Fig. 1): 
03a, jump of B to another neighboring site in adjoining 
basal plane; w&, jump of B to a neighboring site in the 
same basal plane; o)c, jump of B to a site which does not 
adjoin the diffusing atom; and OOB, exchange of diffusing 
atom with the vacancy in the same basal plane. 

For a vacancy site A adjoining the impurity but in a 
different basal plane, the following frequencies are 
pertinent: a?/, jump of A into the same basal plane as 
that of the diffusing atom; co&', jump of A to another A 
site; coc', jump of A to a site which does not adjoin the 
diffusing atom; UA, exchange of the diffusing atom with 
the vacancy at site A . 

There are two different kinds of jump lengths for 
the diffusing atom in the hexagonal lattice A^ [jump 
length of nonbasal (abasal) jump] and A# (jump length 
of basal jump), depending on the initial position of the 
vacancy. 

After solving the set of linear equations (14), (15), 
and (16) for SA,I and SB,X one can substitute the results 
into Eq. (11). Then, 

fA,b=l+2SA,b/\A,b (17) 
and 

fB.*=l+2SBtaAB. (18) 

O DIFFUSING ATOM 

• VACANCY 

FIG. 1. Nearest neighbors of a diffusing ion and the 
pertinent frequencies. 

For SA, the suitable resolution is into components 
SA,Z and SAJ, respectively, parallel to the hexagonal 
axis and the projection of A^ on the basal plane. The 
appropriate components of SB are SB,x and SB,y. The x 
axis is so chosen that it coincides with the jump 
length A#. 

We have, from Eq. (10), for the z component 

—O>A(SA,*+1) 

2a>a'+7Fo>c' 

2cOa' + 2 0) A -\-TFu>c 

For the diffusion in the basal plane, 

The escape jump rates 7coc and 7co/ have been 
multiplied by a factor F. In the LeClaire-Lidiard15 

approximation F— 1, and this corresponds to the case 
where a vacancy jumping away to a nonnearest-neighbor 
position is assumed to be completely dissociated from 
the impurity atom. The effect of the vacancies returning 

2wa L(^/2)SB,x+hSB,yJ + 2o0b
f( — %)SA,b—O>A(\A,b+SA,b) 

SA,b = , (14) 
2coa+ 2o)b + 7Fooc'+co A 

2Q)a(y/5/2)SA,b+20)b(h)SB,x—0>BQiB+SB,x) 
SB,X— , (15) 

2ooa+2a>&+ 7FCOC-\-O)B 

2a)a(h)SA,b+2a>b(—i)SB,y 
&.y = . (16) 

2coa+2o)b+7Fo)c-{-o)B 
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EQUILIBRIUM CONFIGURATION 

SADDLEPOINT CONFIGURATION 

FIG. 2. Diffusing ion and the vacancy in the equilibrium con
figuration and in saddle-point configuration. 

back to the nearest-neighbor positions is to reduce the 
values of 7wc and 7a?/. In the case of an fee lattice, the 
effect of returning vacancies on the correlation factor 
has been worked out by Manning,16 and F is approxi
mately equal to 0.736. In the case of hexagonal struc
tures, F can, approximately, be set equal to 0.736.17 

This seems to be a good choice, as the correlation factors 
reduce to 0.78 within a fraction of a percent when all 
frequencies are equal. The correlation factors for hex
agonal structure have been obtained by Compaan and 
Haven18 and Mullen13 by different techniques, and they 
obtain a value close to 0.78, within a fraction of a per
cent, when all the frequencies are equal. With 7?= 0.736, 
the equations for fAtZj JAM a n d fsf» are used in evalu
ating the correlation correction. 

IMPURITY DIFFUSION IN THE 
PARALLEL DIRECTION 

It has been shown earlier that-AQu is made up of 
three parts, namely, AEA, AHA, and AC A- These quan
tities are calculated as follows: 

AEA. A vacancy in a divalent metal zinc is treated 

as a point charge — 2e. The change in the energy of 
formation AEA is assumed to be due mainly to the 
electrostatic interaction between the vacancy and the 
impurity ion when they are nearest neighbors. Since we 
are interested in the parallel diffusion, the vacancy and 
the impurity are in the adjacent planes. The nearest-
neighbor distance (nonbasal jump distance) is equal to 
X̂  (see Fig. 2). Then, 

AEA=-~2eV{\A). (19) 

V(r) is given by Eq. (7). For indium we set Z= + 1 and 
a=0.83, and for silver (or gold) Z= —1 and a=1.3. 
The values of AEA are listed in Table II. This model 
has been used earlier by Lazarus1 and LeClaire3 for 
impurity diffusion in monovalent metals with a con
siderable amount of success. 

AHA. For the saddle-point configuration, we assume 
that the diffusing ion, situated midway between two 
equilibrium sites, is flanked by two half-vacancies whose 
charges are assumed to be centered at the centroids of 
the hemispheres (see Fig. 2). (This simple model was 
suggested earlier by Huntington19 and has been em
ployed recently by LeClaire3 with fair success.) Then, 
AHA is estimated as the difference in electrostatic-
interaction energies between the two charges —e, each 
situated at a distance (11/16)XA from the impurity 
ion of effective charge Ze, and a charge — 2e situated 
at a distance \A from the impurity ion. We get, 

Therefore, 

AHA= -2eV(mA/l6)-AEA. 

AEA+AHA= -2eV(ll\A/16).. (20) 

The values of AHA are listed in Table II for indium, 
silver, and gold. 

AC A. The expression for fA,i developed earlier will 
now be used to calculate the correlation correction. Let 

o>a'=Va'exp(-Ha'/RT), 

o>A'=vAexp(-HA/RT), 

ae
,= v,,exp(-H//RT), 

(21) 

where va
f, vA, and vj are the appropriate frequencies and 

HJ, HA, and HJ are the appropriate activation 
energies. Then, 

/A,Z=-

va' exp(-Ha'/RT)+%Fvc' exp(-Hc'/RT) 

va
r exp(-~Ha7RT)+pA exp(-HA/RT)+iFvc' exV(-Hc'/RT) 

[see Eq. (13)]. Divide the numerator and the denominator by w^o, where o)Ao=vAo exp(—HA0/RT) represents 
16 J. R. Manning, Phys. Rev. Letters 1,365 (1958); Phys. Rev. 116, 819 (1959); H. B. Huntington (private communication); 

Phys. Rev. 128, 2169 (1962). 
17 A. D. LeClaire (private communication). 
18 K. Compaan and Y. Haven, Trans. Faraday Soc. 52, 786 (1956); 54, 1498 (1958). 
19 H. B. Huntington, Phys. Rev. 61, 325 (1942). 
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the nonbasal jump probability of the zinc atom in the lattice. Then, 

Aim 

fA,z = -
(pa'/vAo) exp(-AHa'/RT)+lF(ve'/rAf>) exp(-AHc'/RT) 

' (va'/vAo) exp(-AHa'/RT)+(vA/vAo) exp(-AHA/RT)+^F(vc/vM) exp(-AHc'/RT)' 

AHa
f=Haf—HAoi and so on. 

Since va', v/, and vA0 refer to the frequencies of the same atomic species, we may assume with Manning16 that 
the ratios va'/vAo and vc'/vAo can be set equal to unity. A minor point that may be noted here is that 7co/ actually 
involves nonbasal and basal escape jumps. Since the effect of this quantity on ACA is small, as the numbers will 
indicate later, setting ve'/vAo= 1 is not a serious approximation. Therefore, 

/ A , « = -
exp(-AHa'/RT)+iF exp(-AHc'/RT) 

~exp(-AHa'/RT)+(vA/vA0)exp(-AHA/RT)+iFexp(-AHc'/RT)' 

We can use this expression to evaluate d \n(fA>z)/d(l/T). A long but straightforward calculation gives 

r AHA+AHa'-] r AHA+AHC'~\ 
(AHA-AHa

f) exp l+^F(AHA- AH7) exp 
L RT J L RT J Au ACA 

-fA,z:oexp 

(22) 

We also note that 

and 

Zexp(-AHa'/RT)+iFexp(-AHc'/RT)J 

VA A„ fA,z:0 AC A 

A 11,0 RT 

fA..= l-
A» 

jA,z:0 

-exp-
VAQ 4̂n,o fA,z RT 

exp(ACA/RT) exp(-AHA/RT) 

MI,0 exp(-AHa'/RT)+%F exp(-AHc'/RT) 

(23) 

(24) 

(25) 

For self-diffusion 7a)/ has four basal jumps and three 
nonbasal jumps and co</ and o)A are equal. If o)sa and 
O)AQ are the jump probabilities of basal and nonbasal 
jumps for self-diffusion, then 

fA 
4.208+2.944(oW«W 

6.208+2.944(wBO/w^o)' 
(26) 

Mullen13 has evaluated the ratio O)BO/COAQ using the self-
diffusion data for zinc,6 

of these cases AH J has been evaluated by following the 
procedure outlined for the calculation of AHJ. For 
positive Z, two of the jumps give negative values and 
the rest give positive values. The average is calculated 
as follows: 

(1/7) L exp( -A# c ' / i ? r )=exp[ - (AHc%v/RTl. 

(AHc)av has the same sign as that of Z. For positive Z, 
the vacancies are attracted by the impurity and the 

W « * o = 1 7 exp(-3.83X103/i?r), (27) 

-0.265 forRT= 1.1 kcal/mole, fA,z:o=0.742, and CAo= • 
kcal/mole. 

To evaluate CA we have to evaluate AHa' and AHc
r. 

These are evaluated as follows. 
AHa* In the initial configuration, the vacancy is at 

a distance X̂  from the impurity. In the saddle-point 
configuration, the solvent atom will be midway between 
the initial and final positions, and we assume the two 
vacancies to be situated at a distance (11/16)XA on 
either side of the solvent atom, as shown in Fig. 3: 

AHa'= -eV(rd-eV(rt)-AEA (28) 

r\ and r2 are the distances of the centroids of the half-
vacancies from the impurity. Values of AHa

r are listed 
in Table II for indium, silver, and gold. 

AHc- In all, there are seven escape jumps. In each 
FIG. 5. Saddle-point configuration for a nearest-neighbor 

solvent jump. 



Aim P. B. G H A T E 

migration of the vacancies away from the impurity 
atom is made more difficult, and conversely for nega
tive Z values, because of the repulsion between the 
vacancies and the impurity ion, the escape jumps are 
made more easier. (AHJ)^ has been evaluated for 
RT=1A kcal/mole. This corresponds to r«280°C, 
which is fairly representative of the midpoints of the 
temperature ranges of self-diffusion and impurity-
diffusion measurements. Values (AHc')av are listed in 
Table II. 

We can now use the calculated values of AH A, AH</, 
(A£Tc')av, /A,Z:O, and Co (see Table II) and the experi
mental values of A u and AUto (see Table I) to evaluate 
CA- The calculated values of AC A, fAtz, and VA/VAO are 
listed in Table II. 

IMPURITY DIFFUSION IN THE 
PERPENDICULAR DIRECTION 

Diffusion of Indium Perpendicular to the c Axis 

The analysis of the diffusion perpendicular to the c 
axis is more complicated than the analysis of the 
parallel diffusion because two types of atomic jumps, 
basal and nonbasal, are contributing to the perpendicu
lar diffusion. One can express Dxx(—Dx) in terms of the 
lattice parameter a, correlation factors, and energies of 
formation and motion in the following manner13: 

DXX=DL= (a2/8)fB,xvB exp(5SB/R) 
Xexp[ - (HB+EB)/RT-]+ (a2/24)fA,bPA 

Xtxp(8SA/R) exp[~ {HA+EA)/RT1, (29) 

a is the nearest-neighbor distance in the basal plane; 
vB and VA are the corresponding vibrational frequencies; 
8S, H, and E, with proper subscripts, are the entropy 
factors, energy of motion, and the energy of formation 
of a vacancy, respectively; fBfXis the correlation factor 
for basal jumps; and /A,& is the correlation factor for 
nonbasal jumps. 

TABLE II. Change in the activation energies, correlation factors, 
etc., for parallel diffusion, (All energies are expressed in units of 
kcal/mole.) 

a 
AEA 
AHa' 
AHA 
(AHc'U 
An 
AutQ 
/4..:0 
CAO 
ACA 
(AQu) theory 
(AQn)exptl 
fA,z 
VA/VAO 

Diffusion of 
indium 
Z=+l 

0.83 
-0.655 

0.210 
-4.933 

0.05 
0.062 cm2/sec 
0.13 cm2/sec 

0.742 
-0.265 
-2.978 
-2 .61 
- 2 . 7 

0.363 
0.065 

Diffusion of 
silver 

Z = - l 

1.3 
1.026 

-0.329 
7.726 

-0.184 
0.32 cm2/sec 
0.13 cm2/sec 

0.742 
-0.265 

0.269 
8.48 
4.2 

—1 
2.36 

Diffusion of 
gold 

Z = - l 

1.3 
1.026 

-0.329 
7.726 

-0.184 
0.97 cm2/sec 
0.13 cm2/sec 

0.742 
-0.265 

0.266 
8.48 
7.9 

—1 
6.82 

The following expression can be obtained by manipu
lating the expressions for Dx and Du [see Eqs. (29) 
and (4)]: 

2 a? fA>z 1 1 
Dx Du 

3 c2 fA,b 
—vB exp(5SB/R) 

JB,X 8 

Xexpt-(EB+HB)/RT1. (30) 

|a2A2=0.19. 

F=A exp[ - (EB+HB)/RT2, (31) 

Y= WfB.*)lDl-0A9(fAJfAtb)Dnl 

A= (a2/S)vB exp (5SB/R) = const. 

In order to calculate fB>x and JAM ft *s necessary to 
solve the following simultaneous equations for SB,X 

and^.&r 

For zinc, 

Then 

where 

and 

t co6 coc co5~| 
2+-+7F-+2— 

0>a 0)a C0aJ 

T C0&' 0)c' UA / 

J 2+3—+7F—+2 ( 
L C0a' C0a' 0)a \ 

V35A,& Xj?, 

C0& CO, 
2+3—+7F-

0)a CO, 
-+—) =v^,*-( — 
a C0a/ J Vco/ 

COA\ 

(32) 

(33) 

These simultaneous equations are obtained by ma
nipulating Eqs. (14), (15), and (16). To solve Eqs. 
(32) and (33), co&/co0, coc/coa', etc. have been evaluated at 
three temperatures corresponding to RT— 0.9, 1.1, and 
1.3 kcal/mole. 
Typically, 

o)B O ) B COJSO COAO 

C0a CO^BO CO îo C0« 

cos/Wo = (vB/vB0) exp (—AHB/RT), 
«BQ/WO= 17 exp[- (3.83X 103)/i?T] ,13 

and 
coa/o)Ao= (va/i>Ao) exp(—AHJRT). 

We note that vB and vBo correspond to the atomic fre
quencies of the impurity and solvent ions. We will 
assume that 

vB/vB0= VA/VAO= 0.065 

(see Table II). 
Since va and VAO correspond to the atomic frequencies 

of zinc atoms, following Manning,16 we set va/vAo~ 1-



I N T E R A C T I O N M O D E L F O R I M P U R I T Y D I F F U S I O N I N Z n A1173 

TABLE III . Changes in the activation energies required to cal
culate fA,b and fs,x for the diffusion of indium tracer: Z = + l ; 
a=0.83. (All energies expressed in units of kcal/mole.) 

AEB AHB AHa AHb AHe AHa' AHb' AHC' 

-1.166 -7.387 0.722 0.556 0.103 0.210 0.291 0.050 

It is possible to calculate AHB and AHa by consider
ing the disposition of the moving atom and the vacancy 
in the equilibrium and saddle-point configurations with 
reference to the impurity. Table III summarizes the 
values of AHa, AHb, AHb', etc. The simultaneous equa
tions are then solved for SAJ and SB,X, and these in 
turn are substituted in Eqs. (17) and (18) to obtain 
the values of /A* and fB>x at three different tempera
tures. Table IV summarizes the values of the correla-

TABLE IV. Correlation factors pertaining to the 
diffusion of indium tracer. 

RTX 10~3 

0.9 
1.1 
1.3 

*<°C) 

180 
280.7 
381 

}A,z 

0.171 
0.363 
0.535 

f*,b 

0.124 
0.287 
0.455 

JB,X 

0.045 
0.095 
0.156 

tion factors. Table V summarizes the values of Y [that 
have been calculated by using the experimental values4 

of Du and DL (see Table I)] at these three temperatures 
and the estimated values of the correlation factors. 
Figure 4 shows a plot of Y versus 1000/r on a semilog 

TABLE V. Diffusion coefficients Du and Di, and Y (in units of 
cm2/sec) as a function of temperature for indium tracer. 

RTXIO-* 

0.9 
1.1 
1.3 

DM 

3.764X10"11 

1.784X10"9 

2.580X10-8 

Di 

4.878X10"11 

2.558X10-9 
3.966X10"8 

Y 

9.687 X10~10 

2.411X10~8 

2.275X10-* 

scale. These three points lie fairly well on a straight 
line. From the slope of this straight line, EB+HB has 
been determined and this turns out to be 15.98 kcal/ 
mole. 

A similar analysis has been carried out to evaluate 
EBO+HBQ for self-diffusion6 (see Table I). We note that 

7a)c=4&>AO-\~3uBo> 7 c o / = 3O)AO+4&)BO, 

OOA — ^a =01a
:=0)AO'<*>B — 0)b ==O0b=a)B0* 

We have evaluated /A,*, /A,b, and fB,x at two tempera
tures, corresponding to (1000/r) = 2 and 1.5. This 
choice of the temperatures was made because Mullen13 

has used the experimental values of DJDU at these 
two temperatures to evaluate COBO/WAQ from his analysis. 
Table VI shows the correlation factors at these two 

1 , ,—_—, r 

IOOO/T°K 

FIG. 4. A plot of Y versus 1000/T to determine EB+HB. 

temperatures. The bracketed values in the table are the 
correlation factors interpolated from the table of cor
relation factors given by Mullen.13 As Table VI shows, 
the correlation factors evaluated by using Eqs. (13), 
(17), and (18) check fairly well with the values obtained 
by Mullen13 using a different technique. After the 
analysis is carried through, we obtain 

EAO+HAO= 21.53 kcal/mole, 

EBO-\-HBQ=Z 26.16 kcal/mole, 

(EB+HB)- (EBO+HBO)= 15.98-26.16 
= -10.18 kcal/mole. 

From Table II we have AEB+AHB= -8.55 kcal/mole. 

TABLE VI. Correlation factors pertaining to self-diffusion. 

1000/r 

2.0 

1.5 

COBo/o)AO 

0.360 

0.944 

JA,Z 

0.725) 
(0.716) 
0.777 

(0.776) 

fA,b 

0.702 
(0.716) 
0.775 

(0.778) 

/B,X 

0.851 
(0.849) 
0.784 

(0.788) 

Diffusion of Silver and Gold 
Perpendicular to the c Axis 

We shall assume that VA~VB—V and 8SA:=8SB=8S 
[see Eq. (29)] and substitute the estimated values of 
AEB, AHB, AEA, and AHA (for Z = - l ) to calculate 
EB+HB and EA+HA- One can then express DL in the 
following manner: 

A = (a2/24) exp(6S/R) exp(-30.29X 103/i?T) 
X [ l + 3 exp(~9.27X103/^r)]. 
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The bracketed quantity is evaluated at three tem
peratures corresponding to RT= 0.9, 1.1, and 1.3 
kcal/mole: 

RT [1+3 exp(-9.27XW/RT)~\ 

0.9X103 —1.0002 
1.1 X103 —1.0006 
1.3X103 —1.0024 

The bracketed quantity differs from 1 only by a frac
tion of a percent. This indicates that the contribution 
of the nonbasal jumps to the perpendicular diffusion is 
predominant and that the activation energy for the 
perpendicular diffusion will be almost equal to that for 
the parallel diffusion. Therefore 

(Qi)theory^ (Qu)%heory=EA+HA=30.29 kcal/mole; 

for silver4: 

( 6 H ) O T U = 26.0 kcal/mole, 

((?j.)exPti =* 27.6 kcal/mole; 

for gold5: ((?,,)eXpti = 29.7 kcal/mole, 

«?i)«Pti=29.7 kcal/mole. 

DISCUSSION 

We have assumed that a solute atom differs from 
atoms of solvent only in its possession of a different 
ionic charge, and that the difference Ze is concentrated 
as a point charge at the center of the solute atom. We 
have calculated the potential around the impurity in 
the Thomas-Fermi approximation. The inner cores of 
the solutes (In, Ag, and Au)4 '5 studied so far are dif
ferent from that of the zinc atom. The effect of the core 
of the solute (different from that of the solvent atom) 
in primary solid solutions has been studied by Friedel.20 

This effect leads to a polarization of the electron density 
in the neighborhood of the solute. This would contribute 
further to the screening charge cloud and would affect 
the potential around the solute. We have neglected this 
effect. Recent calculations of Kohn and Vosko,21 of 
Langer and Vosko,22 and of others indicate that the 
potential around an impurity in cubic metals shows an 
oscillatory behavior instead of falling monotonically. 
They have shown that the curvature of the potential 
at the nearest-neighbor distance is different from the 
one obtained by using Thomas-Fermi potential. Prob
ably the potentials around an impurity and a vacancy 
in zinc also have such an oscillatory behavior. The 
potentials may not be spherically symmetric in the 
zinc matrix. A precise calculation of the potential 
around an isolated impurity or an isolated vacancy is 
complex. The magnitude of the complexity is increased 
when the impurity and vacancy are adjacent to each 

20 J. Friedel, Advan. Phys. 3, 446 (1954). 
21 W. Kohn and S. H. Vosko, Phys. Rev. 119, 912 (1961). 
22 J. S. Langer and S. H. Vosko, J. Chem, Phys, Solids 12, 196 

(1960). 

other, because of the local charge redistribution and 
relaxation of the lattice. Certainly the local charge re
distribution and its interaction with the impurity in 
the saddle-point configuration cannot be calculated 
without drastic assumptions. Correlation effects would 
certainly add their share of complexity to the problem 
of evaluating the activation energy for diffusion. In the 
absence of any detailed calculations for the potentials 
of the impurity and vacancy (even the isolated ones) in 
zinc, it is as good a starting point as any to use a 
Thomas-Fermi approximation in an attempt to under
stand impurity diffusion in a divalent metal zinc, 
exploiting the information available on the impurity 
diffusion in monovalent metals. 

Diffusion of Indium 

From Table II , we note that, for parallel diffusion, 

theory — (AHA+AEA)-ACA 

= - 5 . 5 9 + 2 . 9 8 = - 2 . 6 1 kcal/mole 

and 

(AQii)expti= —2.7 kcal/mole. 

(AQn^heory checks with the experimental value within 
4%. The calculations show that correlation correction 
is of considerable importance. We note that the correla
tion factor fA,Z(0.363) for diffusion of indium tracer is 
smaller than /A,Z-.O(0.743), and that is what we expect. 
This is consistent with the concept that the diffusion 
jumps are highly correlated because of the strong 
attraction between the impurity and a vacancy. 

The ratio of the vibrational frequencies VA/VAO is less 
than 1 (VA/VAQ=0.065). LeClaire3 has shown that 
VA/VAO should be fractional for Z positive and greater 
than 1 for Z negative. This does not contradict the 
experimental fact that indium diffuses faster than zinc. 
The relative diffusion rates are determined by the ratios 
W /̂COAO and O /̂COJSO. For example, 

O)A/O>AQ= (VA/VAO) txp(~AHA/RT) 

= 5.8 for RT= 1.1X103 cal/mole. 

Similarly it can be shown that CCB/OOBO> 1. 
The analysis of the diffusion perpendicular to the c 

axis is rather involved because of the two types of 
diffusion jumps. Before one can estimate the activation 
energy (EB+HB) for basal jumps from the data of 
perpendicular and parallel diffusion, the knowledge of 
the magnitudes of the correlation factors and also their 
temperature variation is necessary. The correlation 
factors evaluated at three different temperatures are 
listed in Table IV. In the calculation we have made 
use of the ratio VA/VAO, obtained from the analysis of 
the parallel diffusion. Another reasonable assumption 
has been made, namely, VA/VAO= VB/VBQ- I t is interesting 
to note that /B , X is very small and strongly supports the 
viewpoint that motion of the indium in the basal plane 
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is highly correlated as a result of the strong attraction 
between the indium and a vacancy. In fact the position 
of a vacancy in the same basal plane as that of the 
indium atom and at an adjoining site is energetically a 
favorable configuration. The small value of /B,X may 
be interpreted as suggesting that indium-vacancy pairs 
stay together for a considerable length of time. Table IV 
shows that correlation factors increase with the increase 
in temperature. This is reasonable because the motions 
of the atoms become more random with increase in 
temperature and hence less correlated. 

The activation energy for basal diffusion (only basal 
jumps involved) is determined by using the experi
mental data and the calculated values of the correla
tion factors, and this turns out to be 15.98 kcal/mole. 
We have determined EBO+HBO by making use of the 
self-diffusion data and the calculated correlation factors. 
This turns out to be 26.16 kcal/mole. 

(AQbasal)exptl = EB+HB~ (EBO+HBO) 

= 15.98-26.16 
= -10 .18 kcal/mole, 

(AQbasai)theory = AEB+ AHB = - 8.55 kcal/mole. 

The theoretical and experimental values differ by 
16%. This difference is felt to be not too serious because 
the evaluation of (A@basai)exPti involves the numerical 
estimates of the correlation factors which in turn de
pend on the ratios of the jump rates such as ouA>a', 
etc. These ratios are calculated using the estimates of 
AH A, AHB, AH J, etc. The ratio VA/VAO determined from 
the analysis of the parallel diffusion has been used to 
determine some of the ratios of the jump rates. I t may 
be noted that evaluation of VA/VAO involves the use of 
experimental values of the frequency factors Au and 
^4n,o. With all these considerations taken into account, 
it may be said that the theoretical estimate checks 
fairly well with the experimental value. 

Diffusion of Silver and Gold 

As Table I shows, the correlation factors for parallel 
diffusion in the two cases are almost equal to unity and 
suggest that the diffusion jumps are uncorrelated. The 
correlation correction AC A is negligible. 

The experimental values of (AQU) are as follows: 

(AQu)expti=4.2 kcal/mole for silver4 

= 7.9 kcal/mole for gold.5 

Our calculations predict the same change in activation 
energies for both these impurities, since each has an 
excess charge Z = — 1: 

(A<2n)theory=8.48 kcal/mole. 

The predicted value of (AQu)theory checks with (A(>n)expti 
for gold within 7%, whereas (A@N)eXpti for silver is 
nearly 50% smaller than the predicted value. This dis
crepancy suggests that the effective excess charge Z of 
silver is possibly greater than —1 (and less than zero). 

Our calculations of AEB+AHB and hence EB+HB 
suggest that a major contribution to the perpendicular 
diffusion comes from the nonbasal jumps. If the per
pendicular diffusion were to take place entirely due to 
nonbasal jumps, then one would expect the anisotropy 
(Du/Di) to be — 5.2 for zinc. However, Du/Dx is 
approximately 3.3 in the case of gold diffusion, and of 
the order of 2 in the case of silver diffusion. This sug
gests that both types of jumps are probably contribut
ing to the perpendicular diffusion. 

One may note that silver diffuses faster than gold, 
even in gold-silver solid solutions, throughout the whole 
range of composition.23 A more precise analysis would 
require a better potential around an impurity, which 
would include the effects of the core of the impurity 
atom. 
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