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A simple model of a boson system is considered for which the exact Schrodinger equation reduces to a dif
ference equation which can be solved numerically. Application of the Bogoliubov method and comparison 
of its results with the numerical results then yield some insight into the validity of the Bogoliubov approxi
mations. The simple model considered has, in the absence of interactions, only a zero energy state and two 
states of unit energy available to each boson. Initially there is assumed to be no interaction between bosons 
in the degenerate excited states and all existing interactions are assumed to be repulsive. The ground-state 
energy is calculated in the Bogoliubov approximation, with and without the depletion effect considered, and 
in another numerical approximation. These results and the results of the numerical solution of the exact 
Schrodinger equation converge to the Bogoliubov result with depletion ignored when the number of par
ticles in the system approaches infinity. It is surprising to note that, for the interaction strengths considered, 
the Bogoliubov result is within 3 % of the numerical result for as few as 32 particles in the system, and within 
10% for only 4 particles. A modification of the above system is considered in which there exists an additional 
two-body interaction between particles in the degenerate excited states which may be attractive or repulsive. 
It is shown that the ground-state energy, with this additional interaction present, deviates from the 
Bogoliubov value linearly with the strength of the added interaction, i.e., W — WBog-}~ciF (with F the 
strength parameter of the interaction). The factor a is found to be small and constant over a wide range of 
F and in this range the deviation of W from the Bogoliubov value is small. There is, however, a transition 
point FT, beyond which a is constant and large and the usual Bogoliubov approximation is invalid for in
teractions more attractive than that characterized by FT- A Bogoliubov-like approximation is shown to 
be quite accurate in this region. It is then shown that FT'1 is a linear function of the number of particles in 
the system. 

INTRODUCTION 

IN order to supply motivation for the following 
analysis of a simple model of a boson system 

consider a system of particles constrained to a ring of 
radius L. If there were no interaction between the 
particles, each particle would be described by the 
Schrodinger equation 

where 

( - h2/2mL2) (d2x[//dd2) = Erf/. 

The general solution to (1) is 

f=Aeike+Be-ik9, 
with 

k=L(2tnE)m-

(1) 

(2) 

(3) 

By virtue of the required periodicity of \p and its 
derivative, k and E are quantized according to 

k=n (4) 
and 

E= h2n2/(2mL2) (n is any integer). (5) 

A system of TV" such Bose-Einstein particles, of equal 
mass and zero spin, with a two-body interaction 
present, would be described by 
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N h2 d2 

H=Z +£*(Mi) (6) 

and <£, the many-body wave function, is symmetric 
with respect to an interchange of coordinates. The 
solution of such a problem is often more convenient if 
the theory is formulated in the second quantized 
representation. This is, in effect, accomplished by 
introducing a field operator, 0, and its Hermitian 
conjugate which satisfy the usual Bose-Einstein com
mutation relations. If the <£'s and <£t's are then expanded 
in a Fourier series, the coefficients of which are the 
usual creation and destruction operators, one finds for 
H in the second quantized representation 

H=j:m2/(2tnWak 
k 

+i E (&3&41 v (0i,02) | k^akjajcja^aja, (7) 

where 
<*8*4|*(01,02)|*1*2> 

-***JJ ddx^e-Wi-^^-W^Wtvidxfa), (8) 

and ftk is the momentum of a particle. 
For simplicity let us assume that 

v(e1,e2)=v(\d1-e2\)y (9) 
in which case 

(hk4\v(ehe2)\kik2)=u(ki—k4)8kl+k2th+k^ (10) 
A935 
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Then 

k 

+ J £ u(ki— k^bk1+h2,kz-\-HahiCik2^0'HaH' (11) 
ki,k2,kz,ki 

Suppose one considered the above situation in an 
approximation where all but the two lowest single-
particle energies were neglected. In this case, one 
would be led to investigate a system with only a zero-
momentum state and a degenerate excited state, with 
equal and opposite momenta, available to the single 
particles. Setting the kinetic energy of a single particle 
in the excited state equal to unity and labeling the 
excited momentum states by + and —, the Hamiltonian 
becomes, in this approximation 

X [#0^0 (#+*#++ a-^aJ)+#o%+#_+ a<?a.^aJi~] 
+^u(0)[^aoho(2a+^a++ao^ao+2aJaJ) 

+2#+t#_ta+a_+ a+ia+ta+a+-\- aJaJa-aS\. (12) 

In the first sections of the following, a Hamiltonian 
will be considered which is equal to the above, with 
^(0) assumed to be zero. In the later sections, the 
effect of scattering of particles in the + state with 
those in the — state will be investigated. The appro
priate Hamiltonian will then be the above with all 
terms in the last bracket ignored except #+ta_t#+#_. 

A SIMPLE BOSON SYSTEM 

We consider a model boson system in which there are 
only three states available to each boson. In the 
absence of interactions between the bosons these states 
are a zero-energy state and two states of unit energy. 
We designate the creation and destruction operators 
for the zero-energy state by aj, #o and for the degener
ate excited states by a+t, a+, a_t, &_. The interaction 
is such that it destroys (creates) a pair of particles in 
the zero-energy state while creating (destroying) a 
particle in each of the degenerate energy states. The 
Hamiltonian is then 

+ao
t20+#-+ ao2a+ta-J~]. (13) 

The total number of particles 

N = 00*00+a+te++ a_t#_ 

is a constant of the motion, and so also is 

A = a+ta+— a-Ja-. 

EXACT SOLUTION 

(14) 

(15) 

A procedure for obtaining exact eigenvalues for this 
problem is the following. Let \N,A,n) be an eigen-
function of ao^o, <*+*«+, and aJa~ belonging to the 
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FIG. 1. A typical graph 
of the ground-state ener
gies, plotted versus 1/JV, 
as calculated by the various 
methods. WADP is the ener
gy calculated using the 
"better" approximation, 
T̂ Bog the Bogoliubov ener
gy with depletion ignored, 
W-B.vr.d. the Bogoliubov en
ergy with depletion con
sidered, and T̂ Num the 
result of the computer 
calculation with the exact 
Schrodinger equation. 
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eigenvalues TV for ao
t#o+#+

t0++#-*#-, A for a+ia+ 

—aJa,-, and n for a J a— We assume A>0. This then 
corresponds to the eigenvalues 

adtao=N—-A—2n, a+^a+=A+n, aJa-=n. (16) 

Then we can write an eigenfunction of H in the form 

(JV-A)/2 

* = E Cn\N,A,n), 
n = 0 

(17) 

provided N—A is even (which we shall assume for the 
present) or with the upper limit (N—A—1)/2 if N—A 
is odd. The equation H^= WSP then takes the form 

ZL(A+2n)+g(N-A-2n)(A+2n)-WlCn\N,A,n) 
n 

+ L gl(N-A-2n)(N-A-2n-l) 
n 

X (A+n+1) (»+1)] 1 ' 2 ^ | N, A,n+1) 

+ L gl(N-A-2n+l)(N-A-2n+2) 
n 

X(A+n)nJl*Cn\N,A,n-l)=0, (18) 
or 

gl(N-A-2n+2)(N-A~2n+l)(A+n)n']1iiC„-i 
+ZA+2n+g(N-A-2n)(A+2n)-W2Cn 

+g[(N-A-2n-l)(N-A-2n) 
X(A+«+l) («+l ) ] 1 «c H . 1 =0. (19) 

This is a set of difference equations that uncouples at 
«= (N-A)/2. We thus set 

C_i = C(iV-A) /2+1 = C(iV-A) /2+2' ' =0. (20) 

The n= (N—A)/2 equation will be a redundant one 
and must be satisfied by the CVs generated previously 
if W is to be an eigenvalue. 

The CVs must of course satisfy the normalization 
condition 

£ C n 2 = l (21) 
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-gN*cx2 Xo determine N°, one requires 

N°+(a+la++aJa-.)=N°+2s2 

« # , (28) 

FIG. 2. The average 
fractional occupation of the 
ground state for various 
gN values, plotted versus 
\/N. 

where N is the number of particles in the system. Thus 

N=N0-l+(l+gN0)/(l+2gN°)^K (29) 

To fix the relationship between the Bogoliubov 
approximation and the exact solutions, we let \n) 
represent an eigenstate of a+1a+ and a-la,-. belonging, 
for each, to the eigenvalue n. Then letting 

* = L C „ | n > , (30) 

we have, from HB%— W&, 

in order to have the usual probabilistic interpretation. anN0Cn-i+r2n+2mN°—W~\C, 
For A=0, the equation simplifies to 

gnl(N- 2n+ 2) (N- 2n+ l)Jt2Cn-i 
+[2n+2gn(N-2n)-W~]Cn 

+g(n+l)NGCn+1=0; (31) 

and this, we see, corresponds to approximating 

Let us now solve Eq. (31). To do this, let This set of equations can readily be solved using a 
computer/This was done for various values of g and N. 
The results are displayed graphically in Figs. 1 and 2. 
(See Appendix for summary of program procedure.) 
The results will be discussed in a later section. 

BOGOLIUBOV APPROXIMATION 

The Bogoliubov1 approximation consists of replacing 
ao and a J in Eq. (13) by a c number N0l/2, so that 

HB— a+*a+-\-aJa-. 
+gN°Za+ia++aJa-.+a+a-+ai+aJ~]. (23) 

As a result N is no longer a constant of the motion, 
though A still is. The Hamiltonian HB can be diagonal-
ized by the canonical transformation 

n=0 
(32) 

Then 

a+=ca+—SOLJ , a_= ecu—sa+1, 

a+t=ca+t—sa-, o_t=ca_t—sa+, 

& = E nCnx"-* = E (n+ 1)0*1*", (33) 

*$'= E nCnx
n= E nCnx

n, 

(**)'= (E Cnx^)'= £ (n+l)Cnx», (34) 

*(*»)'= E (n+l)Cnx
n+1= E MC„_IX». 

with 

*= C ( l + ^ + e ) / 2 6 j / 2 , *= [(1+giV0- €)/2eJ/2, 

€=[1 + 2 ^ ] ^ , 

cs=gN°/2e, c2+s2= (l+giV°)/€. 

Then 

HB= e-l-gN°+e(a+ia++ou.Jta-). 

Thus the lowest eigenvalue is 

Wo=e-l-gN°. 

(24) Multiplying (31) by xn and summing, 

gN°x(o(®y+2(l+gN0)x$!-W$-gN0&=0, (35) 

or 

$7$=[]^-giV0x]/[giV r o(l+^)+2^]. (36) 

This leads to 

A [x+ (gNQ+1 - e)/gN0'] i(w+gN0+i)i2 e-|] 

(25) 

(26) $ = -
| > + (giV°+1+e)/gN°2 [C^+^°+i)/2 •+« 

L N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947). 

If the exponent of the numerator is nonintegral, the 
(27) 

Cn's are not normalizable. If we choose 
W=e-gN0-l+2m, 
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then the CVs are normalizable. For n=0, 

gN° / -gN°x 

Thus, 

v-'tt. ~ 

n=o gN°+1+<= \gN°+1+ eJ 

AgN° / -gN° 

I —gNux \ n 

kgNo+l+J ' 
(37) 

/ -gN° \ " 

AgN°+l+e) ' gN»+l+AgN°+l+e/ 
/ gN° \2n+2 

£ C „ 2 = £ 4 2 ( ) = 1 , 

gAro K2-,i /2r(giV0+l+e)-

and 
L V^0+i+6/J L gA™ J ' 

A "BETTER" APPROXIMATION 

(38) 

We have seen that the Bogoliubov approximation 
corresponds to the replacement by N° of £(N—2w+2) 
X(iV-2«+l)]1 '2 , l{N-2n-\){N~2n)Ji\ and N 
—2n. It was thought that perhaps a more accurate 
energy would result from the approximations 

£(N-2n+2)(N-2n+l)Ji*-+ N-2n+2, 

l(N- In- 1)(N- 2«)]1/2 -+N-2n, 
(39) 

and 
N-2n-*N-2n. 

The difference equation now becomes 

gn(N- 2n+2)Cn-i+ L2n+2gn(N- 2n) - W~]Cn 

+g(n+l)(N-2n)Cn+i=0. (40) 

This set of equations was also solved using a computer. 
The results are displayed in Figs. 1 and 2. It is sur
prising to note that this improved approximation 
leads to a correction in the wrong direction. 

RESULTS 

A typical graph of the ground-state energies, for a 
given value of gN, is plotted versus l/N in Fig. 1. 
The point marked WBOS is the Bogoliubov-approximate 
energy calculated with the depletion of the number of 
particles in the ground-state ignored, i.e., 

W=€-gN-l. (41) 

I t is therefore a constant for fixed gN. The line labeled 
T^B.w.d. is calculated by the above formula with N 
replaced by N° which was found by solving (29) by 
iteration. WAVV is the energy calculated using the 
presumably improved treatment of the square roots in 
the difference equation. W^um is, of course, the result 
of the computer calculation with the exact Schrodinger 

equation. The calculated values did not fall exactly on 
the straight lines shown. There was a small deviation 
for the lowest N value. The straight lines were drawn 
through the calculated points for the higher N values 
so that the asymptotic behavior is as shown. The 
deviation for iV"=4 is in the fifth significant figure. We 
note the following general features from the graph: 
The extrapolated values for the energy, with an infinite 
number of particles in the system, converge to the 
Bogoliubov-approximate energy for all three methods 
of calculation. Taking the depletion effect into con
sideration corrects the energy in the direction of the 
exact value, the amount of the correction being the 
greatest for the largest value of the effective coupling 
constant giV. The "better" approximation method adds 
a correction to the Bogoliubov-approximate energy 
which goes as l/N as does the exact result. The coeffi
cient of this correction term is, however, of the wrong 
sign! 

In Fig. 2 will be found a graph of the fraction of 
particles in the ground state, for various gN values, 
plotted, again versus l/N. These values for N° were 
taken from the numerical solution for the distribution 
weighting factors but the iterated solution of Eq. (29) 
gives almost exactly the same values. The calculated 
values fall to the limit of visual accuracy on the straight 
lines shown. We see that, as would be expected, the 
deviation of this fraction from unity increases as gN 
increases. I t is perhaps surprising that the deviation 
for small numbers of particles is quite small. We see 
that in the limit of an infinite number of particles the 
fraction, in all cases, becomes unity. This explains the 
virtual exactness of the Bogoliubov-approximate energy 
with depletion ignored in this limit. 

In the following section the fluctuation in the number 
of particles in the ground state is calculated for this 
system. We see that for small values of gN the value 
of the fractional number of particles in the ground 
state will not be appreciably altered by fluctuations. 

FLUCTUATIONS 

The root-mean-square fluctuations in the ground 
state were calculated for this simple gas using the 
Bogoliubov-approximate distribution. The result is 

R 

where 

Thus 

/ W > a v - W a v V / 2 

V Wav2 / 
b 

4N2(1-b)2-4:Nb(l-b)+b2'' 

b**gN*/(gN»+l+€). 

(42) 

(43) 

limR -> 0 [From (43) b->0 implies gN° -» 0 ] , (44) 
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\imR -* 1 (Of course, b ~> 1 implies gN° -* oc). (45) 

We may conclude that there are situations where 
the quantity gN° is sufficiently small so that the 
fluctuations do not make the approximation of N° by 
a c number invalid. 

A MODIFIED SIMPLE BOSON SYSTEM 

We can consider here the simplified boson system 
investigated in the previous sections with the modifi
cation that there will now exist a two-body interaction 
between particles of opposite momenta, i.e., between 
particles in the + and — states. The Hamiltonian for 
the system in second quantization is 

H= a+^a±+aJa-+gJiaQ^ao(a+h++aJaJ) 
+ao2a+iaJ+aoj[2a+aJ]+ha+^a+aJa-., (46) 

where h is the two-body potential in the momentum-
space representation for the interaction of a particle in 
the + state with one in the — state. 

Application of the Bogoliubov approximations to 
this Hamiltonian will yield exactly the same results as 
in the preceding sections because the additional inter
action does not contain any creation or destruction 
operators for the zero-momentum state and will thus 
be ignored. We can now perhaps gain some insight into 
the effect of such ignored terms in the Hamiltonian for 
an actual system by solving this modified problem 
numerically and examining the effect here of the 
additional term. 

Proceeding as in the previous case, we write 

*=£cn\N,A,n), (47) 

and upon substitution of this and H from Eq. (46) into 

H*=WV, (48) 

we find the following difference equation (for A=0): 

gnl(N- 2n+2) (N- 2n+ l)]1/2C„-i 
+ [2n+2gn(N- 2n)+hn2- W~]Cn 

+g(n+l)t(N-2n-l)(N-2n)J*Cn+1=0. (49) 

This set of equations with the boundary conditions 
(20) was solved using the computer and the same 
technique as is described in the Appendix. The results 
are displayed graphically in Figs. 3-6. The value of h 
used in the calculations was varied from 

h=g 
to 

&«=—4g. 

It was anticipated that the fractional occupation 
number of the ground state would be increased when h 
was positive, with a corresponding increase in the 

gN=O.B 

.21 h-

- W 

FIG. 3. The ground-state 
energy plotted versus 1/N l91 
for various values of ht fe 
with constant gN. 

9 
. 1 5 I I I I 1 

X X. X X X 
32 16 8 4 N 

energy, and would be decreased when h was negative, 
with an accompanying decrease in the energy. 

In Fig. 5 the fractional occupation number of the 
ground state is plotted against 1/N for constant gN 
and various values of h. The Bogoliubov result with 
depletion ignored is given by the asymptotic result for 
A=0 in the limit of infinite N. The Bogoliubov result 
with depletion considered is again virtually identical 
with the h— 0 result. We see that the predicted behavior 
is indeed present. It is perhaps surprising that in the 
limit of infinite N the fractional occupation numbers 
approach unity, the Bogoliubov value, for all values of 
h. This verifies the Bogoliubov assumption that the 
interactions of excited particles amongst themselves, 
i.e., multiple scatterings, is negligible, at least in this 
simple case for this value of gN. It is shown in the 
next section that, if the value of h were increased 
further, an appreciable depletion would take place by 
virtue of the lower potential energy of particles in 
states of higher kinetic energy. In order for an effect 
to persist in the limit of infinite N, however, much 
larger values of the effective coupling constant, gN, 
would have to be considered. 

In Fig. 6 the fractional occupation of the ground 
state is plotted against h for constant gN and N. 
Again we see the diminution of the depletion as N 
increases (or g decreases). These results also indicate 
that a more pronounced effect would occur if larger 
values of h were considered. At least for small numbers 
of particles we see a hint of the assumed inversion of 
energy states as k is made increasingly negative. 

In Fig. 3 the energy is plotted versus 1/N for various 
values of h again with constant gN. Again we see that 
the Bogoliubov energy is virtually exact, even for 
negative hy in the limit of infinite N. The energy is also 
seen to follow the predicted pattern. We see from the 
graph of the energy versus h for constant gN and 
various values of N (Fig. 4) that, as the number of 
particles approaches infinity, the presence of the added 
interaction produces no effect. We note further that 
the neglect of such interaction terms yields poor results 
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F' FIG. 4. The ground-state energy 
plotted versus h for various values of 
N, with constant gN. 
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for very small numbers of particles but, that for even 
as few as 16 particles, the error involved for these 
values of h is at worst of the order of 10%, and for 
32 particles the largest error is of the order of 5%. 

In the next section the effect of the added interaction 
for larger values of h will be studied. Of course from 
the fluctuation calculation it seems obvious that for 
large enough values of gN the Bogoliubov approxi
mations will be invalid because of the fluctuations in 
the occupation number of the ground state. 

THE "PHASE TRANSITION" 

The modified system, considered in the previous 
section, was studied for a fixed number of particles in 
order to understand more completely the effect of the 
added interaction. The graph in Fig. 7 shows the 
behavior of the ground-state energy as a function of 
F, where F=—h/g. This graph, which has iV=64 and 
g— 0.01, shows the characteristic behavior of the energy, 
since the results were of the same form for a wide 
range of N and g. 

The energy at F= 0 is essentially the value obtained 
from the Bogoliubov method, with or without the 
depletion effect taken into consideration. From the 
graph we see that for negative F and positive F smaller 
than 6.23 the Bogoliubov approximation remains 
virtually exact. At this transition point, FT, the 
Bogoliubov approximation completely breaks down. 
The energy is a linear function of F, as it is in the 

FIG. 5. The average frac
tional occupation of the 
ground state plotted versus 
1/N for various values of 
h} with constant gN. 

"normal" region, but the constant of proportionality is 
a much larger number. 

This transition can be partially understood from the 
graph in Fig. 8. Here C0 is the square root of the 
probability of finding all of the particles in the zero-
energy state. The value of C0 in the normal range of F 
is a good measure of the relative probability of finding 
any particle in the zero-energy state because the 
distribution of CVs decreases monotonically and 
sharply from the value at n=0. Co in this range is 
approximated quite well by the Bogoliubov value (see 
Fig. 2), and since CV^0.98 nearly all the particles are 
in the zero state. The transition region was examined 
as closely as the computer accuracy would permit and 
the apparent discontinuity in C0 remained. Beyond the 
transition point Co decreases exponentially, with the 
first Co beyond FT being of order 10-15. The distribution 
of CVs now rises monotonically and sharply from the 

I.OO 
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— N=32 
~~N = I6 

^ N = 8 

1N=4 

FIG. 6. The average fractional 
occupation of the ground state 
plotted versus h for various values 
of N, with constant gN. 

q O -g -2g -4g 

n= 0 value. There is thus an inversion in the population 
beyond and this region will be called the inverted 
region. 

The variation of the reciprocal of the transition value 
of F with N, as numerically computed, is shown in 
Fig. 9. Perhaps the most interesting feature of this 
graph is that FT is infinite for N=2. For N=2 there 
can be only one + , — pair present, implying perhaps 
the presence of one pseudoparticle. Thus one might 
conclude that the transition phenomenon is a result of 
pseudoparticle scattering. 

The transition value of F is plotted, for fixed N, as a 
function of g in Fig. 10. This graph is of the nature of 
a phase diagram with the normal and inverted regions 
separated by the Fr(g) curve. The numerically com
puted values of FT and those obtained from Eq. (60) 
were almost equal. 

A DIAGONALIZING TRANSFORMATION IN 
THE INVERTED REGION 

We have seen that in the modified model boson 
svstem considered in the previous sections there is a 
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FIG. 7. The ground-
state energy plotted 
versus F, where h 
— —Fg, with con
stant g and N. 
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critical value of the interaction strength parameter 
beyond which there is a population inversion between 
the two energy levels and that in this inverted region 
the Bogoliubov method is inapplicable. Because the 
+ and — levels are now "macroscopically occupied" 
and the zero state is almost empty, one is naturally 
led to apply a Bogoliubov-like method in the inverted 
region where a+t, a+, a.J, and a_ are treated as c 
numbers and only aj and #o are treated as operators. 
We thus set 

a + t = a + = aJ= a_= (N/2)w (50) 

with the restriction 

(ool(h)+N=N: (51) 

The Hamiltonian (45) in this approximation is 

H=N+igNt2a0iao+ao*+ao?l+lhN>. (52) 

Introducing pseudoparticle operators as in the usual 
transformation we have 

where 
ao= cao+sao^, 

c2-s2= 1 

(53) 

(54) 

FIG. 8. C0, the square root of 
finding all of the particles in the 
zero-energy state, plotted versus F. 
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in order that the transformation be canonical. The 
transformed Hamiltonian is 

H=N+lhN2+gRs(s-c)+gN(c-s)*aoi<xo 
+teft(c-snaaoio+aoW) (55) 

In order to diagonalize this Hamiltonian one would 
ordinarily set c—s=0. However (54) could then only 
be satisfied if c+s were infinite. Thus, the transfor
mation is singular and invalid in addition to which 
such a transformation would not give the excitation 
spectrum since the coefficient of ao^o is equal to that 
of the nondiagonal part H. 

These difficulties can be circumvented by writing 
(52) as 

H=N+hg^M+a^+a^+a^^gN+\hN2 

=N-teN+lhN*+hN(ao+aci)\ (56) 

This Hamiltonian is already diagonal in the operator 

A =(10+ao*, (57) 

6 8 
F 

FIG. 9. The variation of the reciprocal of the transition value 
of F as a function of N as calculated from Eq. (60) and the 
computer results. 

which has the character of a field operator (or more 
precisely a position or momentum operator) and has a 
continuous spectrum extending from — <x> to oo# 

Because it is the quantity A2 that enters in H the 
excitation spectrum will consist of the continuum of 
positive numbers. 

Thus, the ground-state energy in the inverted region 
should be given by 

JF=#-Jgff+i*tf*. (58) 

The values of W, ignoring any "depletion effect," as a 
function of F in the region beyond FT are virtually 
identical with the computer values shown in Fig. 7. 
Of course this approximation (50) is invalid for F<FT. 
From (27) and (58) one should be able to predict at 
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FIG. 10. The transition value of F plotted versus g for fixed N. 

what value of F the transition will occur for any N 
and g. Equating the two expressions for W at the 
transition point we find, ignoring both depletion effects 

Ll+2gN21I2~ l-gN=N-%gN-iFTgN* (59) 

or 

FT — 
l+kAH-JV-[l+2gi\Q 

(60) 

The value of FT"1 for g=0.01 as a function of N is 
shown in Fig. 9 along with the actual computer values. 
The large fractional errors for small N are partially 
attributable to the inaccuracy of the usual Bogoliubov 
approximation for small N. The values of FT~l for 
i\T=64 and various values of g were calculated from 
(60) and compared with the computer values. The 
agreement is again very good with the error increasing 
as g increases with less than 3% error for g as large as 
2 (Fig. 10). 

THE FIRST EXCITED STATE 

In the previous sections it has been shown that the 
ground-state energy of a system of simple bosons can 
be very well approximated by the usual Bogoliubov 
method in the normal region and by a Bogoliubov-like 
method in the inverted region. We now consider the 
first excited state. The Bogoliubov value for the energy 
of the first excited state is, as given in Eq. (26) 

Wl=ll+2gNji*-l-gN+2ll+2gNji\ (61) 

the coefficient 2 of the last term being a result of our 
choosing A=0. The results of the previous sections 
lead one to anticipate that this approximation will be 
valid only in the normal region and that for F beyond 
FT, W\ must be obtained from Eq. (56). 

Consider the value of W\ calculated according to 
(56) at the transition point. 

Wi**N-\gN-\FTgN*. (62) 

The A2 term of course giving no contribution. Using 
(60) for FT this becomes, of course, 

Wi(FT) = W0= Zl+2gN21/2-l-gN. (63) 

Equations (61) and (63) thus lead us to believe that, 
while the ground-state energy is continuous with a 
discontinuous derivative at FT, the energy of the first 
excited state is itself discontinuous, with a discontinuity 
of magnitude 2[l+2giV]1/2. Furthermore, for the values 
of g and N considered (g=0.01 and iV=64), Eq. (61) is 

and Eq. (63) 
Wi= +2.8899 

W!(FT)= -0.13002. 

(64) 

(65) 

A program was designed to compute the energy of 
the first excited state and the corresponding distribution 
of Cn's. In the normal region the computing method 
was quite accurate and the resulting excited state 
energies were, for g=0.01 and N= 64, 

F 
0.0 
1.0 
3.0 
5.0 
6.2 

Wi 
2.8757, 
2.8603, 
2.8302, 
2.7994, 
2.7807. 

The distribution of CVs was now found to be peaked 
at n—\ and was relatively level until n = 2 at which 
point it began to decrease sharply. This perhaps 
indicates the presence of two pseudopartides. 

In the inverted region the behavior of the excited 
state energy*as computed was essentially as predicted 
There is a discontinuity at FT of magnitude 2.9128 as 

N = 6 4 
g = O.OI 

FIG. 11. The energy of the 
first excited state plotted as 
a function of F with 
constant g and N. 
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compared with the predicted 3.019934. The energy 
then follows the Bogoliubov ground-state energy over 
a small range in F and then decreases linearly with F 
in the same manner as the ground-state energy. The 
energy of the first excited state as a function of F, for 
g=0.01 and ^ = 6 4 , is shown graphically in Fig. 11. 
The computer program was not entirely dependable in 
the inverted region and perhaps the quantitative 
features of Fig. 11 are not to be relied upon there. 

The first excited state energy as given by Eq. (56) 
thus is qualitatively all right but is quantitatively 
quite inaccurate. 

CONCLUSIONS 

The results of this analysis can be summarized as 
follows: 

(1) For the model boson system with the h inter
action not present, the Bogoliubov method yields quite 
accurate ground-state and first excited-state energies 
for a wide range of gN and N. 

(2) With the h interaction present, the Bogoliubov 
method yields accurate ground state and first excited-
state energies in the normal region. 

(3) There is a transition point FT beyond which the 
Bogoliubov method is completely inapplicable. In this 
region, a Bogoliubov-like method yields quantitatively 
accurate ground-state energies and describes qualita
tively the behavior of the energy of the first excited 
state as a function of F. 

The same procedure as was applied here could be 
used to investigate the system described by the Hamil-
tonian (12) with all terms considered. The simple 
model used in this analysis and the discontinuity in 
the derivative of its ground-state energy may provide 
a convenient model for investigating phase transitions. 
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APPENDIX: SUMMARY OF COMPUTER PROGRAM 

We wished to solve the set of Eqs. (22) with the 
conditions (20) for the energy W and the distribution 
weighting factors Cn. We began by setting Co=l, 
letting W equal the Bogoliubov energy, and using the 
equations to generate the following Cn's for increasing 
n. If the energy were too large, i.e., larger than the 
lowest eigenvalue, a negative Cn would be generated. 
(This is analogous to the wave function for a hydrogen 
atom in the ground state having no nodes and for any 
higher energy having at least one node.) If the energy 
were too large or too small the (N/2)th equation, 
which is redundant, would not be satisfied. The pro
cedure was then to start with the Bogoliubov energy. 
If a Cn were negative, we halved the energy and began 
calculating the Cn's again. We continued this until the 
CVs were all positive. If the (N/2)th equation were 
satisfied (within the limits of accuracy of the computer) 
this energy was considered the eigenvalue. If the 
equation were not satisfied we raised the energy, half 
the amount of the last interval. By continuing the 
process until the CVs were all positive and the (N/2)th 
equation was satisfied within certain limits, or until 
two successive energies were equal to some order, we 
determined the eigenenergy. The CVs were very 
sensitive to the value of the energy used with this 
procedure. Thus, though the energy could be well 
determined by this method, the CVs were not. We thus 
used the calculated energy and solved the set of 
equations by satisfying the (iV/2)th equation and 
generating the Cn's for decreasing n. This procedure 
was found to give the CVs to a much greater accuracy. 
(It should also be noted that when the energy is far 
from the eigenenergy, the magnitude of the Cw's became 
too large for the machine to handle. This difficulty was 
circumvented by calculating the ratio of two successive 
Cn's.) 

In the inverted region it was found that greater 
accuracy could be obtained by inverting the above 
process, i.e., searching for the eigenvalue by generating 
the Cn's for decreasing n and then generating the more 
accurate Cn's, with this energy, for increasing n. It is 
hoped that a more efficient and more accurate procedure 
can be developed, especially since there is some doubt 
about the validity of the excited-state calculations in 
the inverted region. 


