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and instead of (21) we have 

S(l,5)=i+E - E P J H ^ 

X —+-—Oi(l+-—L 
l+n .y/s \ 2s/ 

since 
S(l,s) = l+2iy/sAQ,s). (21') 

In Eq. (5') and (210 Pn(s) are now the residues of 
the partial-wave S matrix rather than the partial-wave 
amplitude. 

In Fig. 1 (a)-(l), a plot of the real and imaginary 
parts of the S matrix versus the number of terms in the 
expansion for the Khuri series as well as for our series 
(21) for both m-m\ and m2=4mi2 is given. The 
horizontal lines correspond to the actual values of the 

I. INTRODUCTION 

IN this paper the cross section for the general reac
tion (pseudoscalar meson+nucleon—-» spin-| baryon 

+vector meson) is calculated by assuming that the 
reaction is dominated by the exchange of pseudoscalar 
and vector mesons. In Sec. II, we derive expressions 
for this cross section, and for the decay angular dis
tributions for the final baryon and vector meson. 
Section III contains a discussion of the structure of 
the form factors that appear in these expressions. In 
Sec. IV we use the results of the preceding sections in 
an analysis of the reaction w~~p —» 2°^*°, which analysis 
is an extension of one reported earlier.1 

II. CALCULATION OF CROSS SECTIONS 

We will use the conventions #= 6= 1 , g^=( l ? —-1, 
- 1 , - 1 ) , J ^ = ^ 0 B ° - A v B , {iW}*=2g»\ *»*=# 
XDYVK*],

 an<l 'y5=707V73. Also, eppx, is a completely 

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 

1 Gerald A. Smith, Joseph Schwartz, Donald H. Miller, 
George R. Kalbfleisch, Robert W. Huff, Orin I. Dahl, and Gideon 
Alexander, Phys. Rev. Letters 10, 138 (1963). 

S matrix. The Regge parameters used in the series as 
well as the actual 5-matrix values have been calculated 
by numerical integration of the Schrodinger equation, 

The fact that for g=5 the agreement is not quite as 
good as for g=1.8 may be due to small errors in the 
residues. For stronger potentials our numerical calcu
lation of the residues is less accurate. And for g=5 it 
turns out that, in some cases, only a few percent error 
in the residues introduces a considerable error in the 
values of the real or imaginary parts of the 5-matrix 
calculated from the series. 
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antisymmetric tensor, which is + 1 when (jxvkor) is an 
even permutation of (0123), —1 when it is odd, and 
zero otherwise. All spinors will be normalized so that 

Let us begin by considering the reaction Erp -* 
Aw—> (w~~p)(ir*"if~w0). Other reactions of the general 
form (pseudoscalar meson+nucleon—>spin-f baryon 
+vector meson) will have the same results, except for 
a possible over-all numerical factor for isotopic spin 
and a possible modification for different decay inter
actions for the final particles. Let p, r, JET, Q be the 
momenta of the target nucleon, incident pseudoscalar 
meson, final baryon, and vector meson, respectively, 
Define two additional momenta, k=H—p=r—Q and 
s=p+r=H+Q, so that k% and s2 are the squares of 
the invariant momentum transfer and of the total 
center-of-mass energy, respectively. Let m, rh be the 
masses of the target nucleon and incident pseudoscalar, 
M, M the masses of the final baryon and vector particle, 
and vp and vv the masses of the exchanged pseudoscalar 
(K) and vector (K*) mesons, respectively. Then the 
most general Feynman amplitudes that can be written 
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for the relevant three-particle vertices are 

m(pKA) = ( 4 f ) ^ ( f l ) [ f m M ) , (la) 

(M+m)Mpy(k), (lb) 

(M+m)lu(p)e8(k), (lc) 

m(KKa) = {A*)ll*f**><Q)> (W) 

and 

3rc(fflf*tt) = ( 4 r ) ^ / 4 € w i ^ ( e ) ^ ( * ) f Q V * , (le) 

where e(&) and e ( 0 are the unit polarization vectors 
of the exchanged and final vector particles, respectively. 
The five form factors /»• are dimensionless functions 
of the single variable k% which may be interpreted as 
the square of the "effective mass" of the exchanged 
particle. 

The K- and i£*-exchange contributions then give a 
Erp —» Ao> Feynman amplitude 

Wl(pKAu)=4:wu(H)lN^(Q)2u(p), (2) 
where 

Nli=F(fY^+myB-F2(p8+H8)/2Ml 

X(-g?y+k*ky/p*)e„9l?"Q'/M- (3a) 

=Fm^+tFiyt-F2HyMle8wr«Qt/M (3b) 

with 
F»=f>h/Q?-H*), (4a) 

Fi-ifi+ttfi/W-*.*), (4b) 
and 

Fi=[2M/(M+m)2Mi/(»- v/). (4c) 

If the w and A polarizations are unobserved and the 
proton is unpolarized, then the 

Erp —> Aco —» (TT~"̂ ) (i+rn*) 

differential cross section in the cm. system is 

da t\ | Hs | 
xrjf= x l £ |m(^Ao))|2 (5) 

X l T r C C f l ^ + J O ^ 
2s2|rs| 

X(M^+^)#J(-g^+^QVM2). (6) 
We obtain N from F by replacing the Fi by their 
complex conjugates J\% The symbols AB*=* (AB°AB) 
and OJ.,B refer to the vector .4 and the direction of its 
spatial part, both evaluated in the "rest frame" of the 
vector B, i.e., the frame in which the spatial part of B 
vanishes. Thus the subscripts sf Q, and H refer to the 
cm. system, the o> rest frame, and the A rest frame, 
respectively. The subscripts to the summation indicate 
which particles are included in the polarization sum. 

Note that we have included a factor rj^vjQriH in the 
cross section, where ^§(^i?) is the fraction of the final 
vector particles (baryons) that decay via the observed 
decay mode. 

Rather than evaluate <rH now, we first investigate 
the decay distributions predicted for the final particles. 
For the decay w—»7r+7r%~, the most general I-spin-
conserving Feynman matrix element is 

9TC(cwrinr) = Uev{Q)q+«qtqJ*evafn, (7) 

where q^ q, and q~ are the w momenta, and jfg is a 
function of two variables [e.g., (f and (A^q^°—qJ)2 
which is completely symmetric in the three 7r?s. The 
w _* w+wow- decay rate for a polarized w is, in the & 
rest frame, 

-I 

d*q-.d*qd?q+8KQ-q+-q-q-) 

(27r)616M?+Yg_° 
|3TC((0imr)|!!(8) 

d£ln,Qdd>dq-dA _ 
— |ilf/5q+Xq^|2(eQ.iiQ)2, (9) 

32(2TT)5M 

where ng is a unit vector in the direction q+Xq~~ (i.e., 
normal to the decay plane) and $ is the azimuthal 
angle of q about n$. Note that throughout this section 
the vectors q+f g, and q- are to be evaluated in the w 
rest frame although the subscript Q has been suppressed. 

If the target proton is unpolarized and the A polari
zation is unobserved, then the 

K~~p —> Aw —> (if~p) (w+TT'Tr0) 

differential cross section is 

<?Htn-
daH 1?|H, 

-=A 
dQn,Q 64TTV tAJ 

d$d<fdA 

32(2wyM 

X | Z\E^(pKAo))m(o>www)\2 

v\3s\ 
—-—Xl Tr[(ff„7«+Jf)«] 
2*2 r. 

(10) 

where 

r d$dq°dA 

J 32(2TT)5M 

&= (iV>*) (fiwfi+tn) ( # > ' ) . (12) 

Here A is a normalization factor to be chosen such that 
J%dQn,QO'H,n=GrH, and n* is a covariant unit vector 
with the value #o**= (0,«o) in the ca rest frame. From 
Eq. (11), we see that all azimuthal orientations of the 
a? decay plane about ng, as measured by $, are equally 
likely. Note also that the distribution in q° and A (i.e., 
the Dalitz-plot density) is independent of n*. Both 
these results are consequences of the form of the matrix 
element 'ffllfainrir), however, and cannot be used for an 
experimental check of our K- and i£*~exchange model. 
In treating the w decay in this way, we have assumed 
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only that the w has a long enough lifetime—and thus 
decays sufficiently far from the A—so that its decay 
pions do not interact with the A. Use of the relation 
fdQn,Qn»nv=(4:T/3)(-g'iV+Qi'Q>'/M2), along with a 
comparison of Eqs. (6), (9), and (11), shows 'A — 1/Ta 

and 
3*(H.| 

<rn,n= X i Tr[(#«7M-M)a]. (13) 
&ws2\t8\ 

Finally, we consider the A —> -irp decay, with a 
Feynman matrix element 

VK(A.irp) = H(h)Za+by*}u(B), (14) 

where the constants a and b are the parity-noncon-
serving and parity-conserving amplitudes, respectively, 
and h is the decay proton momentum. In the A rest 
frame, a A of polarization P will correspond to 

u(H)u(H)= ( 1 / 2 ) M ( 1 + T ° ) ( 1 + P - * ) = (l/2)M(l+7°) 
x(i+;P-m). 

If the polarization of the decay proton is unobserved, 
then the A —»irp decay rate in the A rest frame is 

TA= fdQhtHi: | m ( A ^ ) | 2 | h ^ | / 3 2 7 r W 2 (15) 

= fdQhiH(l+ahH'V)C\hH\/16wm, (16) 

where 

C=U*\W+M)+\b\KhJ-M)J, 
a = 2 | h f f | Im(a6*)/C, 

(17) 

(18) 

and hH is a unit vector in the direction of hjy. 
With unpolarized target protons and unobserved 

decay-proton polarization, the 

Krp —> Aw —» (TT~P) (ir+7r"~7r°) 

differential cross section is 

| h * | d(TH)n 3t?|H s | 

dQhfH 8ws2\t8\ 327r2lf2 
X|Tr [a (B] , (19) 

where 

(B = (Hay«+M) ( a + 675) (h^+m) (a+by5) 
X(H8y

s+M). (20) 

As before, B is a normalization factor to be chosen such 
that fdQh.HVH.n.h^vH.n- A simple calculation gives 

® = 2MC(l+iayMy„)(Hay«+M)=2MC£>} (21) 

where k* is a covariant unit vector with the value 
kH

ft= (0,kH) in the A rest frame. A comparison of Eqs. 
(13), (16), and (19) then shows B= l / rA and 

3*|H.| 
<rH,n,k= — X i Tr [a©] . (22) 

32wV r. 

The trace calculation is straightforward, and yields 

(1/4) Tr[aa>Z>o+*&ir (Di+Dd-D.), (23) 

where 

Po=iC(M-m) 2 -^] [ |Fo | 2 ( r .n) 2 +|F 1 | 2 ( rx i i ) 2 ] 
+2[ jF 1 - | ( l+w/M-)F 2 | 2 -^ |F 2 | 2 /4 iyr 2 ] 

X(Hxr-n) 2 , (24) 

Di^JmlF^{£(M-my-»2^n)tiB9 (25a) 

D2=2 JmtFo(Fi~F2)l(t>n)(R xr-n)p#, (25b) 

and 

D3=2 Im[Fift](H xr-n)(Rir xp*). (25c) 

Note that H, r, and n are to be evaluated in the 00 rest 
frame, although the subscript Q has been suppressed 
for conciseness. R is a covariant vector with the value 
RQ= (0, r xn) in the <a rest frame. We obtain o-H and 

by simply integrating Eq. (22) with respect to 
the solid angles Qh,H and Q„,Q. 

The "rest frames" of $, Q} and H are related by 
Lorentz transformations without spatial rotations. In 
order to avoid any possible ambiguities, those spatial 
vectors whose values in the A rest frame are required 
in Eqs. (23) and (25) are given below, expressed in 
terms of the vectors H, r, n, and !IQ : 

pH=-t-EZM-rQ*+m*t)/(HQ*+M)yM, (26a) 

Rff = ( r x n ) + H ( H xr-ii)/Jkf (H(f+M), (26b) 

and 

I M t a = h 0 - H [ V + (K.hQ)J(HQ*+M)yHQK (26c) 

Note that HH0 and | h# | are constants, independent of 
H and h^. 

For other reactions we may have to modify the above 
expressions because of isotopic-spin considerations. The 
isotopic-spin dependence of the matrix elements in 
Eqs. (1) has not been exhibited because it results in a 
factor of unity. For the reaction irp -~» AiT*°, however, 
we would include factors of VKVP, VK*VV, 'VK*TVVK, 
and VK*TTVK* in Eqs. ( la) , ( lb) , (lc), (Id), and (le) , 
respectively. Here V and V are two-component isotopic 
spinors, and r is the isotopic-spin analog of the Pauli 
spin matrices. Thus the above cross sections would be 
multiplied by an over-all factor 

\?K*T«VJ* = «*>(£ sxar-
Similarly, there would be a factor 2 for the reaction 
irp —> S°iT*0, and a factor 4 for a reaction such as 
Tr+p-*2+K*+. For the reaction K~p->R% which 
involves ir* and p± exchange, there is a factor 4. The 
factor is unity for the noncharge-exchange reactions, 
K±p —» Kty, but since rj and cu exchange are coherent 
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with 7T° and p° exchange in these reactions, we must 
make the substitutions F0 —> Fo^Fory F\ —> FiuzLFipf 

and F2 —> i72W±^2P, where the sign ± is the same as the 
K charge, and where F0n, F07rj F lw, Fip, F2(a, and F2p 

each have the form given by Eq. (4). Note that reactions 
with an incident T will generally not involve both p 
and o) exchange, however, nor both t\ and w exchange, 
because this would not conserve G parity. 

Finally, we consider the modifications to the above 
expressions that are necessary when particles other 
than the co and A are produced. The matrix element for 
decay of the vector particle can always be written in 
the form eM(<2)FM. The amplitude for production and 
decay would then have _the form ft(H)[NpVft'}u(p), 
where v»=(-g'»+Q'lQ'/M*)Vp. Thus v = (0, - V Q ) , 
and we obtain the correctly normalized cross sections 
simply by redefining n as the unit vector in the direction 
— VQ. For p—>7T7T or K*-*KT, V* is just the mo
mentum of one of the decay particles, so that n is thus 
a unit vector in the decay direction in the rest frame of 
the decaying particle. 

The results for the A decay distribution apply directly 
to the S* decay, but with different experimental values 
for a. The situation is more complicated for spin-J 
baryons that undergo a sequence of decays. The weak 
decay at the end of the sequence is the only decay that 
can produce anisotropy in the decay distributions, and 
is hence the only decay that can give any information 
on the polarization of the baryon. We will not consider 
such cases further, except for one comment concerning 
the S°—»A+7 decay. It is predicted theoretically2 

that after integration over the photon direction and 
polarization, the average A polarization is one-third 
that of the 2°, but in the opposite direction. Therefore 
our previous results also apply to 2° decay if we use a 
value a(S°) = —(l/3)a(A), and still let hH be the 
direction of the decay proton in the A (not 2) rest 
frame. Note that with our convention (i.e., protons 
emitted preferentially in the direction of the baryon 
spin for a > 0), experimental values for a are8 a (A) = 0.62 
±0.07, and therefore a(2°) = -0.21 ±0.02. 

FIG. 2. Typical diagrams 
that make up a three-
particle vertex. 

FIG. 1. Diagrams that contribute 
to the reaction np —• A«. 

(b) 

2 N. Byers and H. Burkhardt, Phys. Rev. 121, 281 (1961). 
8 U. W. Cronin and O. E. Overseth, Proceedings of the 1962 

International Conference on High-Energy Physics at CERN 
(CERN, Geneva, 1962), p. 453. 

III. DISCUSSION OF THE MODEL 

Again let us consider the reaction K~p —» Aw as an 
example of our general reaction. The Feynman dia
grams for this reaction may be separated into four sets 
of diagrams. The first set, represented by Fig. 1(a), 
contains all those diagrams that can be divided into 
two parts (one connected to the external p and A lines 
and the other to the external K~ and o> lines) by the 
cutting of a single internal line. In other words, these 
are merely the diagrams that contain a single virtual 
particle at some point in the k channel. Similarly, the 
second and third sets of diagrams, represented in Figs. 
1(b) and 1(c), are those diagrams containing a single 
particle at some point in the ,? and t channels, respec
tively, where t=H—r=p—Q. The fourth set, repre
sented by Fig. 1(d), contains all diagrams that cannot 
be so divided by cutting a single line, i.e., that contain 
two or more particles in each of the three channels. 

Our model includes only those diagrams of the first 
set that represent the exchange of a vector or pseudo-
scalar particle. Scalar exchange cannot contribute 
because a scalar and pseudoscalar cannot be coupled 
to form a vector. We have not included the exchange 
of pseudovectors or of particles of spin greater than one, 
because we have not yet seen such particles experi
mentally. Diagrams of the other three sets are not 
included in the model. It is for reasons of mathematical 
convenience and simplicity, however, that these other 
diagrams have been ignored, rather than because of 
any good experimental evidence. 

A more detailed look at the structure of the vertices 
in Fig. 1 (a) will yield information on the form of the 
functions /»-. As seen in Eqs. (4), the functions Fi have 
poles at k2=v2, where v is the physical mass of the 
exchanged particle. Similarly, the form factors /»• have 
singularities corresponding to the physical masses of 
the various intermediate states in the vertices. Those 
vertex diagrams of the form of Fig. 2(a), where there 
is a single intermediate particle, would be expected to 
contribute simple poles. Diagrams of the form of Fig. 
2(b), with two or more intermediate particles, will 
contribute branch cuts. If we use the Cauchy theorem 
and assume the proper convergence at infinity, then 
the branch-cut contribution to fi may be written in the 
form fdzhi(z)/{k2—z), which is merely an integration 
over a continuous distribution of poles. This is only to 
be expected, because a system of two or more particles 
has a mass that ranges continuously from some (posi
tive) minimum up to infinity. Knowing the singularities 
of the form factor fiy we may easily write down the 
form of the functions F^ Note that the Fi have no 
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> c y FIG. 3. This diagram gives a self-
K K */ energy correction to the K propa-

@ 0 gator instead of producing a 
N. second-order pole in the scattering 
K \ amplitude. 

multiple poles. Multiple poles would correspond to a 
diagram such as Fig. 3, which merely gives a self-energy 
correction to the propagator, and does not (after re-
normalization,4 at least) yield a second-order pole. 
Thus, where VQ= vp and ^1,2= Pv, we may write 

Fi(k
2) = + / dz . (27) 

Note that from Eqs. (4) and (27) we have 

G0= In Re*[F0, k
2= ^ ] = / o W ) / i W ) , (28) 

and similarly for the other G* 
Since the form factors, /,-, evaluated on the mass 

shell, are just the corresponding renormalized coupling 
constants, we see that the Gi are merely products of 
the coupling constants at the two vertices. Reactions 
in which more than one vector particle can be exchanged 
(or more than one pseudoscalar) would have additional 
pole terms in Eq. (27), but these Gi would still be 
products of the coupling constants at the two vertices. 

Let us briefly mention the qualitative effects to be 
expected from the other three sets of diagrams. Note 
that the functions Fi7 from the first set of diagrams, are 
functions only of k2 and are independent of s2. Similarly, 
the other diagrams would introduce additional terms 
into the cross section, involving functions of s2 only 
(from the second set of diagrams), of t2 only (third set), 
and of s2 and k2 both (fourth set). (Note, incidentally, 
that there are only two independent^ variables because 
of the identity s2+k2+t2=M2+M2+m2+mK) The 
functions from the second and third sets of diagrams 
would have, except for different variables, the same 
form as for Eq. (27). However, those from the fourth 
set have only the branch-cut term, because, by defini
tion, these diagrams do not have any single-particle 
intermediate states. Now consider those diagrams of 
Fig. 1(d) in which the exchanged system of particles is 
in a Jp—0~ or Jp= 1"~ state. These diagrams will then 
give a scattering amplitude identical to that for the 
exchange of a single pseudoscalar or vector particle, 
except that the functions Fi would have only the 
branch-cut term. The branch point will be the same 
as for single-particle exchange [because the possible 
intermediate states in Fig. 1(d) are the same as those in 
Fig. 2(b)], but the discontinuity across the branch cut 
will now be s2-dependent. Therefore, these diagrams 
can be included in our original calculations merely by 

4 The question of the renormalizability of field theories with 
vector particles does not really arise here. The results in this paper 
are in accord with the S-matrix philosophy, even though some of 
the terminology in the discussions is reminiscent of field theory, 

replacing the functions gi(z) in Eq. (27) by g/(z,s2) 
=gi (z) +g/' (z}$

2), where g/f (z,s2) is the contribution from 
the exchange of the pseudoscalar or vector systems of 
particles. Thus, the only effect of such diagrams is to 
introduce an s2 dependence into the branch-cut terms 
in Eq. (27), and our results will now describe any 
pseudoscalar or vector exchanges, regardless of whether 
these are exchanges of single particles or of multi-
particle systems. 

IV. APPLICATION TO icp -* X«£** 

In this section, we present details of a previous 
analysis1 of the reaction irp —» 2°iT*0, and also extend 
that analysis in order to obtain information about the 
functions Fit As reported earlier,1209 events at incident-
pion lab momenta of 2.17 and 2.25 BeV/£ were at
tributed to T-p->Z,0K*0-*2QK+Tr-, and were found 
to have decay angular distributions 

p(a) = 1+ (1.59±0.55) cos2<*, (29a) 

p(|8) = 1 - (0.11±0.21) cos20, (29b) 
and 

p( 7 )=l-(0 .74±0.11)cosV (29c) 

Here a, fi, and 7 are the angles, in the K* rest frame, 
between the direction of the decay pion and the unit 
vectors $, f, and fXN, respectively, where f is the 
incident-pion direction and $ is the normal to the 
production plane. Because of the small number of 
events, the effects of a non-Z"* background (<30%) 
were ignored, and no attempts were made to determine 
either the 2° decay distribution or the dependence of 
the functions Fi upon k2 and s2 (i.e., upon the w~p cm. 
energy and production angle). 

The appropriate cross section, 

<Tn= I / (TH,nthdQh,H^Ht8 , 

is then found from Eqs. (22) to (24) to be 

<rn= Co cos2p+Ci sin20+C2 cos2a, (30) 
where 

d= fdtxJi, (31) 

Jo , i= l /2C(M-m) 2 ^F] | r | 2 |F 0 f i | 2 |H s |A 2 | r a | , (32a) 

and 

J%= 2[ I Ft-1/2 (1+m/M)F2 \2 

-^ |F 2 | 2 /4 i l f 2 ] |H s | 3 | r s | /M 2 . (32b) 

Here fx is the cosine of the angle between the final K* 
and the incident w in the cm. system, and we have 
used the relation 

|Hxr|2=(l~M2) |H8 |2 | r8 |V/itf2 . 
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An over-all factor of 2 has been included for isotopic-
spin considerations, as discussed in Sec. II. We have 
set rj=2/3, because this is the branching fraction pre
dicted by isotopic-spin conservation, for the K* —•> K+w~ 
mode and because the corrections for the detection 
efficiency of the 2J° will be included in the experimental 
data. 

In our analysis,1 we fitted Eq. (30) to Eqs. (29b) 
and (29c) and treated the errors coherently by solving 

2Co-2Ci-C2= - (0.11+0.21a)(2Ci+C2), 

- e 0 + C i - C 2 = - (0.74+0.116) (C0+Ci+C2), 

where a, 6 = 0 ± 1 . [Note that Co,1,2 corresponds to 
go, 1,4 of Ref. 1, but that Eq. (3d) of that reference is 
written incorrectly.] The solution is then 

C, 

Co" 

and 

4-2(1.89-0.21a) (0.26-0.116) 

(0.89-0.21a)(2.26-0.116) 

«l.S0+0.41a+0.286= 1.50=1=0.50 

d (2.89-0.21a) (0.26-0.116) 

Co (0.89-0.21a) (2.26-0.116) 

^0.37+0.06a-0.146=0.37±0.15. 

Because our total cross section is 

a= I dQn>Q<Tn= (4 /3 )TT(C 0 +2C 1 +C 2 ) , 

we may use the above solution to obtain 

C0~(0.31-0.05a)3cr/47r, 

Ci~(0.115-0.0456)3<r/4x, 

and 
C2~ (0.46+0.0Sa+0.096)3<r/47r. 

The measured total cross section5 for the reaction 
irp -» IPK+TT is 65=1=12 Mb and S3±9 jub for incident-
pion lab momenta of 2.17 and 2.25 BeV/c, respectively. 
This gives a mean value of cr= 59db 11 fib at 2.21 BeV/c, 
resulting in 

C0=4.4±l.l/xb, (33a) 

and 
Ci=1.6±0.7/ib, 

'C2=6,5=fcl.8/ib. 

(33b) 

(33c) 

For convenience, we ignore the errors and use only the 
mean values for the d in the rest of this paper. 

To determine the form factors, fi(k2), we use Eqs. 
(4) and evaluate Eqs. (31) at 5=2.25 BeV (2.21 BeV/c 

5 Gerald A. Smith, University of California, Lawrence Radiation 
Laboratory, Berkeley, California (unpublished). 

incident momentum) to obtain 

(1 -0 .438M) 2 (1 -0 .721M) 
JQ= (11.9/ib) ^ ^ 1/0/3j2, (34a) 

/ i=(5.92|ib> 

(1-0.619J*)1 

( 1 - 0 . 4 3 8 M ) 2 ( 1 - 0 . 7 2 1 M ) 

(1-0.435M)2 

X | ( / I + / 2 ) / 4 | 2 , (34b) 

and 

/ * = -
1-

(1-0 .435M) 2 
C(22.4Mb)|/1/4l

2 

+ (5.10Mb)(l-0.76SM)|/2/4|2], (34c) 

where k2= (-1.032+0.790) BeV2. By using Eqs. (31), 
(33), and (34), we find that average values for the form 
factors in the region of this experiment are I/0/3I2 

-0.19, | ( / i+/ 2) /4 | 2-0.14, and | / i / 4 | 2+0.20 | / 2 / 4 | 2 

«0.20, the latter two of which yield roughly I/1/4I2 

-0 .1 to 0.2 and | /2 /4 |2<0.2. 
These average values give us very little information 

about the values of the form factors on the mass shell, 
however, unless we can determine the k2 dependence 
of the fi from the production angular distribution. In 
this reaction, the form factors have no single-particle 
poles, but only the branch cut from the multiparticle 
intermediate states, so that fi(k2) = fdzhi(z)/(k2—z). 
We will make the approximation fi(k2) oc \/(&—&%) in 
the physical region for this experiment, which gives 

F0(k
2) « (Go+Ho) (vp

2-Ao2) (vp
2~-A3

2)/ 
(k2-vp

2)(k2-A0
2)(k2-As

2), (35) 

and similarly for the other F* The parameters At may 
be interpreted as average masses of the intermediate 
states of the form factors. Note that G0+HQ is the 
value of fofz on the mass shell (k2=- vp

2) in this approxi
mation, which is to be distinguished from the true 
value Go in Eqs. (27) and (28). By rewriting Eq. (35) 
as a sum of poles, we see that this approximation is 
equivalent to approximating the branch-cut integral 
of Eq. (28) by a sum of three poles with mutually 
related residues, 

/ 

go(g) _ Ho (Go+Ho) (A32- vp
2) 

(A0
2-A3

2)(&2-Ao2) 

(GQ+HQ) (AQ2~VP
2) 

(A 3
2 -Ao 2 ) (£ 2 -A3 2 ) 

(36) 

The branch cut in F0 begins at (mK+2mT)2=0.59 BeV2 

(because K+w cannot be in a 0~ state), which is well 
above the pole at vp

2=0M BeV2. Thus in F0 the 
Ho/(k2—vp

2) term has no direct physical meaning, and 
is introduced merely to improve the approximation 
in the physical region. It is expected that # Q « G 0 , 
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which means that GQ+HO is a good approximation to 
G0. For Fif2, however, the branch cut begins at 
(wx+wT)2=0.40 BeV2, which is below the pole at 
y„2=0.78 BeV2. The corresponding Hlt2/(k

2-vv
2) term 

thus approximates the lower part of the branch cut, so 
that #1,2 is a measure of the coupling to the low-mass 
multiparticle intermediate states in Fi,2, just as Gi,2 

gives the coupling to the K*. In view of the small 
number of events in this experiment, let us make the 
further simplification of setting A0=A3=X and Ai=A2 

=A4=A. Thus our final approximation is 

/o/3/go=(^2-X)V(^2-X2)2 (37a) 
and 

hh/gi=hh/g2= (»<,2-A2)2/6fc2- A2)2, (37b) 

where g0=Go+#o, and similarly for gi,2. 
When we combine Eqs. (31), (34), and (37) and 

compare the results with the experimental values in 
Eqs. (33), we obtain equations of the form 

| |o | 2=^(X), (38a) 

| | i+g 2 | 2 =£(A) , (38b) 
and 

C(A)| |1 |2+Z>(A)| |2 |2=1. (38c) 

Since the relative phase of | i and | 2 is unknown, Eqs. 
(38) do not determine the magnitudes of | i and g2, but 
only yield the restriction 

\CB^-(C-\-D-BCD)^\ 

CBW+iC+D-BCD)1!2 

with a similar restriction on | gi\ due to Eq. (38c). The 
production angular distribution, p(ju)= (J0+2J1+J2)/ 
(C0+2C1+C2), therefore involves the three parameters 
X, A, and |g2|2. A maximum-likelihood fit to the 
experimental1 P(M) yields X= 00, A=1.19_0.33+0,27 BeV, 
and | | 2 | 2 = 0.1_o+85, with a x2 °f 6.2 for six degrees of 
freedom. The upper and lower values for A are those 
for which the likelihood function L falls to 1/e of its 
maximum value jLmax. All values of | g21

2 in the region 
0.1<|g2|2<85, as allowed by Eq. (39) for A=1.19 
BeV, correspond to values L>Lm&x/e. The values for 
the other gi are |g0|2=0.185, |g i+ | 2 | 2 =30, and 
27^ |£ i | 2 ^14 for A=1.19 BeV and 0.1^ |g2 |2^85. 
The range of values for X with this fit may be seen by 

noting that the values X = 2.06(0.95) BeV, A= 1.46(3.3) 
BeV, | |o | 2 = 0.56(9.4), | | 1 + | 2 ( 2 = 4.3(0.28), | | i | 2 =4.2 
(0.35), and |g2|2 = 0.001 (0.004) correspond to 
L=Lm^/e ( Z ^ L ^ / e 2 ) , with x

2=8.5(10.2). The 
variations about the mean values in Eqs. (33) do not 
significantly alter these results. 

Note that K and Z* exchanges do not contribute to 
the related reaction irp —> 2~J£*+ , SO that one would 
expect a considerably smaller cross section for this 
reaction than for r ^ - > 2°j£*° is the K- and #*-
exchange model is valid. Experimentally, at 1.90 and 
2.05 BeV/c incident-pion lab momenta, we have5 

a(T-p^2~K*+)~30%<T(<ir-p-*2°K*0). This indicates 
that other mechanisms are present, but the results are 
still consistent with the assumption that K and K* 
exchange is the dominant mechanism for irp —> 2°K*°. 

The above values for | | 0 | 2 will yield values for 
I fo(vp2) 12, since the experimental K* width can be used 
to determine \fz{vp)\2. In this section, we have used 
the Feynman matrix element 

WL(TKK*) = VK^VKi^y^r^iQ). 

The total i£"*° —» Kir decay rate is then 

M 
r= x | E \WL(TKK*)\*, 

SWVP
2 K*,K,r 

where r is the decay-pion momentum in the K* rest 
frame, and the summation is over the K* polarization 
and the K and T isotopic-spin indices. Thus, 

r= | / 3W) | 2 | r | 3 / 2^ 2 =(14 .4MeV) | / 3 W)| 2 . 

By setting this decay rate equal to the experimental 
value of 50 MeV for the full width at half-maximum 
for the i£*, we obtain | /3(^2) |2=3.5. We thus obtain 
| / oW) | 2 = |go | 2 / | / 3 W)| 2 =0 .053 , 0.16, and 2.7 for 
X= 00? 2.06, and 0.95 BeV, respectively. These values 
correspond to values 0.47, 0.45, and 0.29 (or alterna
tively to 0.53, 0.55, and 0.71) for the / parameter of 
Martin and Wali.6 
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