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The equations for the statistical matrix p$ and the correlation matrix ptihfc) of a large system subject to 
time-dependent external forces are cast in a new form based on a continuation of SchrSdinger's equation to 
complex times. I t is shown that these equations also apply when the time dependence of the Hamiltonian is 
due to a coupling with another system (heat bath) which is at equilibrium at a temperature 0', but that such 
time dependence must be expressed in terms of random functions of the complex argument z'~t—i/26r. A 
generalization to the case that the external time-dependent fields and the coupling with a heat bath exist 
simultaneously is straightforward and leads to a Schr5dinger-type equation with non-Hermitian Hamil­
tonian which describes the dynamical and statistical aspects of the motion. 

THE long-time behavior of a large system with 
time-independent Hamiltonian 3C is characterized 

by the statistical matrix 

p,=exp(-3e/0>. (1) 

The average of any operator F is given by 

(F)e=TvFp$/Trpe. (2) 

The spontaneous fluctuations of the system are expressed 
by the correlation matrix 

pe(tht2) = TWexpC-X/ff]J**(*0 > (3) 

where W(t) is the unitary time-evolution matrix 
satisfying 

idW/dt=5CW(t), W(0) = l. 

The quantity 

(F(h,h)}e=TrFP>(h,h)/Trpe(li,t2) 

(4) 

(5) 

will be called the correlation function of F. 
As5C is independent of t Eq. (4) gives TF=exp(—i3Ct) 

and therefore 

pd(/^2) = e x p p ( ^ - / i ) - l / f l X . (6) 

It is useful to write this in terms of the complex 
variable 

z=t-i/20: (7) 

pe(k,k) = W(z1)WHz^)J (8) 

idW(z)/dz=WW(z), W(0) = l. (9) 
The Eqs. (8) and (9) can be generalized readily to 

the case that the system is subject to time-dependent 
external forces. Let the Hamiltonian be of the form 

The statistical matrix satisfies 

idpe/dt=[W(t),pe(t)l-, 

p,(O) = e x p ( - - 3 C / 0 ) . 

(10) 

(ID 
(12) 
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Equation (11) is solved by the matrix p$(t,t) obtained 
from Eq. (8) with Eq. (9) being replaced by 

idW(z)/dz=3C,(t)W(z), (13) 

TF(0) = 1. (14) 

The initial condition (14) differs from (12) because the 
intergral of Eq. (13) from z=0 (t=i/2$) to z=-i/26 
(t=0) contains contributions from h(t). We are, how­
ever, interested in Eq. (11) in cases for which, after the 
transients near t=Q have died out, p(t) is quasisteady 
for a long time. (Eventually, h(t) will cause heating to 
indefinite temperatures.) For this purpose, 3C must 
belong to a system which includes a heat bath so large 
that, at the temperature 0, the absorption of energy 
from h (t) during the transcient period causes a negligible 
rise in temperature. In this situation, Eqs. (14) and (12) 
give the same result beyond the transient region. The 
advantage of Eq. (14) will become evident in the 
following. 

The corresponding unequal time operator pe(h,tj) 
will be used as correlation matrix. 

The question is now posed to what extent the exact 
value of quantities such as (F)$ and (F(tht^))e can be 
obtained from a calculation with a decomposed Hamil­
tonian. Let the dynamical variables of the system be 
separated in two groups, p/q/ and pk'qk" (e.g., the 
spin and lattice variables of a magnetic system). A 
decomposition of 3C is here defined as the replacement: 

W(PWY) ->. Kf(ptq'am')+W"(p"q"an") . (15) 

am
f and an

,f are suitably chosen parameters. As a cor­
relation between the single and double primed variables 
is lacking in such a decomposed Hamiltonian, one can 
at most demand a faithful reproduction of operators 
which are likewise separated: 

F(f,q)=F'(p'q')+F"(p"q"). (16) 

The case of a time-independent Hamiltonian will be 
considered first. An equal-time average (Fe) can be 
reproduced after a separation with constant values of 
a' and a". The conditions are that, for all Fr and Fn 

{ F ' + F ' O ^ O M + ^ M (17) 
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where, e.g., 
{FOM-TrFWAW, (18) 

p/=exp(-3C'/0). (19) 

Values of a and d' which satisfy Eq. (17) can be found 
in principle, provided that their number is sufficiently 
large and that 3C' and 3C" are suitably chosen. 

In order to obtain a faithful presentation of the cor­
relation functions (F(ti,t2))e} a and a" must be allowed 
to be random functions of time. In applying Eqs. (17) 
and (18), one has to replace Eq. (19) by an expression 
for p/(/i,/2) valid for a randomly time-dependent 3C'. 
The Eqs. (8) and (13) are not applicable in this case. 
They lead to a correlation matrix which contain t and 
0 separately, whereas the exact averages, according to 
Eq. (6), depend only on the variable zx—s2*. This 
property can be retained after decomposition by making 
a and a" functions of the complex variable z: 

«' = «'(*), a ' W ( s ) . (20) 

This gives, e.g., 

p/(M0 = {^(*0Wr,t(*i*)}.r, (21) 

idW' (*)/<fe=3C' (z)W'(z), W(0) = l. (22) 

"av" indicates the long time average with constant 
h—t2 which is needed on account of the random changes 
of a!(z) and which makes p / a function of Zi—z^ only. 
Equations (17), (21), and (22) give a set of relations 
from which one may hope that the random functions 
a(t) and a"(t) can be determined. 

The appearance of 3C(/) in the coupling with external 
fields, Eq. (13), and of 3C(t—i/2d) in the coupling with 
another system with temperature 0, Eq. (22), in other­
wise identical equations, allows for an interesting in­
terpretation. The application of external fields, e.g., 
of frequency w, is by and large equivalent to coupling 
the system with another system of a very high tempera­
ture, through a filter which, e.g., passes only the 
frequency co, the temperatures being such that the black-
body radiation at frequency w has the same intensity 
as the applied field. Equations (13) and (22) can be 
unified to 

idW(z)/dz=3C(z')W(z), (23) 

z' = z-i/26'+i/29, (24) 

where 0' is the temperature of the system causing the 
time dependence of 3C and 0 is the initial temperature 
of the system described by Eq. (23). 

This interpretation shows how to decompose a system 
in the presence of time-dependent forces, acting, e.g., 
on the primed variables. The Hamiltonian 

3C(0 =K(p'q'p'W')+h'(p'q't) (25) 

is replaced by 

3C(0 ^^'(pW^+h'ip^+^'ipy^'iz)). (26) 

The statistical matrix for the primed system is ob­
tained from Eq. (21) with 

idW'/dz=(W(z)+h'(t))W'(z), (27) 

showing the coupling with the double primed system 
which has the temperature 0, and with a fictitious 
system at 0= oo. But Eq. (27) will be valid only if the 
applied fields do not destroy the thermal equilibrium 
(at temperature 0) of the double primed system. This 
imposes a restriction which, though clear from a physical 
point of view, may be involved mathematically. 

Finally, it is of interest to obtain the high-0 approxi­
mation of Eqs. (21) and (27). One has: 

W'(z) = W'(f)-(i/20)dW'/dt+-- •, (28) 

idW'/dt= (3Q,'(i)+h'(t)+(i/2d)dh'/dt+ • • -)W'(f). (29) 

Therefore, to first order in 1/0 

Xexp{~C5C,(/2)+^(/2)]/20})av. (30) 

Owing to the anti-Hermitian term in Eq. (29), W is 
nonunitary, and the (approximate) equal time value of 
pe obtained from Eq. (30) does not reduce to 
expC— (3C'+/z')/0]. The term idh'/dt corresponds to 
absorption, while the change in the form of pe corre­
sponds to a deviation from equilibrium of the primed 
system. 

In the following paper Eq. (30) is used to derive the 
modified Bloch equations for a spin system. An applica­
tion to the Overhauser effect is in progress. 
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