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The relativistic energy associated with the closed-shell ground states of the atoms of the first three rows 
of the periodic table is computed by perturbation methods for recently obtained Hartree-Fock functions. 
The computations are extended to the isoelectronic series of the 2, 4, 10, 12, and 18 electron atoms with 
closed-shell configurations. The analysis of the data obtained reveals that, (1) different Hartree-Fock func­
tions for a given atom give about the same relativistic energy provided the number of basis functions are 
about the same, (2) the contribution to the relativistic energy from electrons of a given subshell is approxi­
mately a constant, independent of the number of electrons in the outer shells, (3) the empirical estimate of 
the relativistic energy agrees with our theoretical computation within a few percent except for low Z where 
the disagreement is only slightly larger. 

I. INTRODUCTION 

SINCE the correlation problem for a many electron 
system is difficult to treat directly in terms of the 

Coulomb repulsion between electrons, other methods 
of estimating the correlation energy are important. One 
of these methods1 of calculating correlation energies is, 
the use of the following relationship: 

-Scorr — Eexp—-^HF—E} •rel, (1 ) 

where JEHF=Hartree-Fock energy of the system, 
£rei=relativistic correction to the Hartree-Fock energy, 
and £eXp= experimental value of the energy. With 
Eq. (1) it is seen that good estimates of correlation 
energies depend upon accurate calculations of Hartree-
Fock energy and the relativistic corrections.2 

Hartree-Fock wave functions have been computed for 
a long time and the usual criteria for their "goodness" 
is that they produce the minimum energy. This paper 
shall discuss the effect of the form and number of the 
Hartree-Fock basis functions on the relativistic correc­
tions to closed-shell atomic systems in their gound state. 
In addition, we shall compute Erei for the 2, 4, 10, 12, 
and 18 electrons isolectronic series. 

The relativistic energy has been defined in the litera­
ture in a number of different ways and for the purpose 
of this paper the formulation and notation given by 
Bethe and Salpeter3 of the relativistic energy of a two 
electron system based on the Breit equation is extended 
to the iV-electron system. The Breit equation describes 
the interaction of two relativistic electrons with each 
other and with an external electromagnetic field. The 
Hamiltonian of this system can be expanded in powers 
of (Za) (Pauli's approximation, where Z is the nu­
clear charge and a is the fine structure constant) and 
consists of both one particle and two particle operators. 
We assume that the Hamiltonian for an N electron 

* Present address: New York University, University Heights, 
New York 53, New York. 

1 A. Froman, Phys. Rev. 112, 807 (1958); Rev. Mod. Phys. 32, 
317 (1960). 

2 E . Clementi, J. Chem. Phys. 38, 2248 (1963); 39, 175 (1963). 
3 H. A. Bethe and E. E. Salpeter, Handbuch der Physik, edited 

by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 35. 

system can be obtained by summing all one-particle 
operators over all N electrons and summing all two-
particle operators over all pairs of electrons in the 
system. A great simplification occurs for closed-shell 
atomic systems. Up to and including the order of a2, 
the relativistic correction for such a system depends 
on three terms: 

(2) 

(3a) 

(3b) 

where 

Hi=-

# 4 = " 

- 1 

Smzc2 *-i 

eW 

and 
(2mc)2 *-i 

Y,(V2Vi+WrVi), 

#5=4( H E SrSA )*•(*«) 
\2mc/ i^j \ 3 / 

= ( — jESrSyJ'faM ). (3c) 
\mc/ i>5 \ 3 / 

Here e is the absolute value of the electronic charge. 
The Hartree-Fock orbital functions are taken in the 

form of4 

*(*)=£< W , (4) 

where Ui(x)'s are the single-particle wave functions of 
the type 

Ui(x)=£ d,, Ylm($J>)r,(fi (5) 
j r 

and 77 is the spin wave function a or /?. i runs from 1 to 
N= the number of electrons. Yim~normalized spherical 
harmonics. fni(r)/r is the radial part of the exponential 
function in the form proposed by Slater.4 Citj is the 
coefficient of the expansion of the Slater-type basis set, 
and is determined by the self-consistent field technique. 

4 J. C. Slater, Quantum Theory of Atomic Structures (McGraw-
Hill Book Company, Inc., New York, 1962), Vol. 2. 
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The energies Ei, Ei, E6 can be written as follows1: 

£ i = -

£ 4 = -

4mh2 m 
•£ (21+0 jdr\jn ,"*-2l(l+l) 

fmfm" ni+iy 
-/.i1], 

and 
4(mc): ZU-) -E(2/+D(«+l) / — E 4(2H-1)(2*'+1) / ——-<&• , 

L n \ r / r=o nl J f2 nl>n'V J f2 J 

(6) 

(7) 

2 - - * 2(2/+l)2(2/+l)/!/!(2/-J)lCq+J/2)l]2 /• /.,< 

(2;+/+l)![(//2)!K(/-//2)Q2 ./ r 
=(-)iE£ 

' • ! 

dr 

w'4(2i+i)(2i'+i)(2j+m'+j-i)Ki+j-nKi+i'-JV-m+i'+j)/2)\y r uu^ 
+ E £ ' " — ' - " ' " "~ I dr. (8) 

(l+l'+J+1)![((/'+J- /)/2) !((/+/_|')/2)!((/+/'- J)/2) r nl>n'V J 

The angular part Yim and the spin part are integrated 
out in Eqs. (6), (7), and (8). The / ' and / " designate the 
first and second derivatives of / , respectively. In the 
/ summations of Eq. (8), the first sum is for 7=0 , 2, 
4, • • • 21, the second sum is for those / ' s in the series 
J=\l-l'\, | / - Z ' + 1 | , •••, \l+lf\ for which J+l+V 
is even. 

As indicated in Eq. (6), the term (U{nl)\Hi\U{nfV)) 
is proportional to 8u>5nn>, while Eqs. (7) and (8) show 
that (U(nt)\Hi\U(n'l')) and (U(nl)\Hh\U(n7)) are 
not equal to zero for tiT^n' and IJ&V . However, 
(U(nl)\H4r\-Hh\U{n,lr)) is proportional to dw8nn

f
7 

making it possible to analyze the total relativistic energy 
E=Ei+Ei+Ez in terms of contributions from the 
different subshells of electrons (as designated by the 
quantum numbers n and I). 

If we define 

•J)/2)lf f Jnfjn'l'* 

! ] 2 J r2 

h{nl)= ffJ'Hr, 

h(nl)= / —fnNr, 
J r2 

I»(nf)= / —fj'fnidr, 
J r2 

Ii(nl)= \ —fnMr, 
J r* 

h(nl) = z\-fnA 

(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

and 

Eqs. (6) and (7), plus (8) take the form 

£ i = i E(2/+l)[/ i(«0-2/(/+l)/8(«/) 
nl 

+l2(l+l)2I4(nl)l, (10a) 

and 
Et+Eb=i E /s(«0)+l T,(2l+l)I*(nt) (10b) 

n nl 

and, in general, 

Er^E^Et+E^-l £ dniMnt), 
n,l,i 

i= 1,2, 3,4, 5. (11) 

The coefficients dnu that are needed for the computation 
of the relativistic energies of closed shell states of 2, 4, 
10, 12, and 18 electron systems are given in Table I. 

TABLE I. The dn\% coefficients for closed-shell 
configurations up to Kr. 

nl=n'V 

U 
2s 
3s 
4s 

2p 
3p 
4p 
3d 

dnll 

0 
0 
0 
0 

12 
12 
12 

180 

dnll 

1 
1 
1 
1 
3 
3 
3 
5 

dnU 

0 
0 
0 
0 

12 
12 
12 
60 

dnU 

3 
3 
5 

dnlb 

1 
1 
1 
1 
0 
0 
0 
0 

In order to estimate the accuracy of the correlation 
energy obtained from Eq. (1), one must know the errors 
in the energies on the right-hand side of the equation. 
The error in the relativistic energy can be estimated by 
computing the next higher-order correction, that is the 
Lamb shift of order Z V and Zaz lna, For a two-electron 
atom in its ground state, the lowest order Lamb shift 
is given by5 

4Z r k0 19-1 
EL,2+ELl2> = —a3<5(ri)+5(r2))0o 2 l n ( l / a ) - l n - + — 

3 L ry 30J 

14 
i8<«(fi2)>ooln(l/a)au, (12) 

where ko is the average excitation energy. 

« P. K. Kabir and E. E. Salpeter, Phys. Rev. 108, 1257 (1957). 
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TABLE II. Comparison of relativistic energies obtained from different analytical Hartree-Fock functions (in a.u.). 

Atom 

Hea 

Heb 

Hec 

Bea 

Beb 

Bed 

Nea 

Neb 

Ned . 
Nee 

Mga 

Mgb 

Mgd 

Mgd 

Mgf 

Ara 

Arb 

Ard 

Ard 

Arf 

Are 

E(ls) 

0.000004 
-0.000071 
-0.000070 
-0.001269 
-0.002033 
-0.002033 
-0.091114 
-0.106581 
-0.106628 
-0.106581 
-0.196680 
-0.228309 
-0.228050 
-0.228050 
-0.228179 
-1.064433 
-1.225599 
-1.220565 
-1.220578 
-1.221091 
-1.217671 

E(2s) 

a 
0. 
0. 

-0.000209 
-0.000167 
-0.000165 
-^0.017796 
-0.013974 
-0.013845 
-0.013832 
-0.047166 
-0.034600 
-0.034385 
-0.034385 
-0.034491 
-0.343563 
-0.235280 
-0.235286 
-0.235288 
-0.234993 
-0.235696 

E(2p) 

0. 
0. 
0. 
0. 
0. 
0. 

-0.006330 
-0.010737 
-0.010737 
-0.010720 
-0.021659 
-0.031100 
-0.031241 
-0.031252 
-0.031174 
-0.217982 
-0.257362 
-0.257391 
-0.257411 
-0.257323 
-0.256764 

E(3s) 

a 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

-0.001603 
-0.001369 
-0.001363 
-0.001363 
-0.001370 
-0.039579 
-0.025456 
-0.025308 
-0.025311 
-0.025295 
-0.025331 

E(3p) 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

-0.016647 
-0.022433 
-0.022395 
-0.022393 
-0.022410 
-0.022606 

£(rel) 

0.000004 
-0.000071 
-0.000070 
-0.001478 
-0.002200 
-0.002198 
-0.115239 
-0.131292 
-0.131210 
-0.131133 
-0.267108 
-0.295379 
-0.295038 
-0.295049 
-0.295214 
-1.682205 
-1.766130 
-1.760944 
-1.760981 
-1.761113 
-1.758069 

Basis set 
No. 
of s 

func­
tions 

1 
4 
5 
2 
5 
6 
2 
5 
6 
7 
3 
7 
8 
8 
8 
3 
7 
8 
8 
7 
9 

No. 
oip 
func­
tions 

1 
4 
4 
6 
1 
3 
5 
5 
5 
2 
5 
8 
8 
8 
7 

Total 
Hartree-Fock 

energy 

-2.8476563 
-2.8616785 
-2.8616800 

-14.556740 
-14.573014 
-14.573021 

-127.81219 
-128.54698 
-128.54701 
-128.54700 
-198.85779 
-199.61432 
-199.61458 
-199.61458 
-199.61461 
-525.76526 
-526.81705 
-526.81731 
-526.81730 
-526.81733 
-526.81400 

a E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963). These computations are done with the smallest possible basis set. 
b E. Clementi, J. Chem. Phys. 38, 996 U963); 38, 1001 (1963). 
« E. Clementi, (unpublished functions). 
d E. Clementi, (unpublished functions). These functions are characterized by an exact value of the cusp [see C. C. J. Roothaan and P. S. Kelly, Phys. 

Rev. 131, 1177 (1963)]. 
• L. Sachs, Phys. Rev. 124, 1283 (1961). 
f G. Malli, Department of Physics, University of Chicago (private communications). 
e R. E. Watson and A. J. Freeman, Phys. Rev. 123, 521 (1961). 

Estimates of the Lamb shift can be obtained by using5 

k0= 80.5 Ry for Z = 2 , 

= 191.6 Ry for Z=3, 

= 19.77Z2 for Z > 4 , 

and 

2Z3r 
(5(n)+5(f2))oo= 1 -

7T L 

<5(r12))oo=—I 1 — 
87TL Z 

II. RESULTS 

0.653 0.138 

+ 
z z2 

1.877 1.189' 

• ] . 

z2 

(13a) 

(13b) 

The relativistic energy corrections for different sets of 
Hartree-Fock functions for He, Be, Ne, Mg, and Ar 
atoms are presented in Table I I . The wave functions 
differ in the number and type of basis functions as 
indicated in the table, but give about the same value of 
the total Hartree-Fock energy. The relativistic energy 
corrections are computed for each subshell of electrons 
E(ls), E(2s), etc., and then summed to give the total 
relativistic energy Erei. 

In Table I I I the contributions to the relativistic 
energy from the different subshells of electrons E(nl) 
are given for the ground state of neutral argon and 
argon ions with closed electron shells. The wave func­
tions used in this calculation are those of Clementi.6-7 

The total relativistic energy for the isoelectronic series 
of 2, 4, 10, 12, and 18 electrons is given in Table IV. 
Energies are computed for the relevant ions up to the 
atomic number of 36. The wave functions used in this 
calculation are those of Clementi.6-8 

The lowest order Lamb shifts are computed, using 
Eqs. (12) and (13), for the two electron isoelectronic 
series and tabulated in Table V. 

III. DISCUSSION 

In Table I I we have investigated the sensitivity of the 
relativistic energy in changes in "good" Hartree-Fock 
wave functions. I t is found that although the relativistic 
energy depends on the number and type of basis func­
tions, the energies computed are essentially the same 

6 E. Clementi, J. Chem. Phys. 38, 996 (1963). 
7 E. Clementi, J. Chem. Phys. 38, 1001 (1963). 
8 E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev. 

127, 1618 (1962). 
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TABLE III . The contribution to the relativistic energy corrections from the 
different subshells of electrons in argon and its ions.a 

Number of 
electrons E(ls) E(2s) E(2p) E(3s) E(3p) £(rel) 

2 
4 
10 
12 
18 

-1.255705 
-1.248403 
-1.229899 
-1.221075 
-1.225599 

-0.319488 
-0.239205 
-0.239976 
-0.235280 

-0.264833 
-0.261252 
-0.257362 

-0.037670 
-0.025456 -0.022433 

-1.255705 
-1.567891 
-1.733937 
-1.759973 
-1.766130 

a The Hartree-Fock functions for these computations are given by E. Clementi, J. Chem. Phys. 38, 996 (1963); 38, 1001 (1963). 

for Hartree-Fock functions with about the same number 
of basis functions. 

Tables II and III indicate that E(ls) is clearly the 
dominant term in the value of the relativistic energy, 
and that the nth subshell of electrons gives a larger 

contribution to the relativistic energy than the (n+l)th 
subshell.1 Table II also indicates that the Is contribu­
tion from argon atoms is about the same as the Is con­
tribution for the different argon ions. The small differ­
ences are due to the contraction of the electronic wave 

TABLE IV. Relativistic energy for 2, 4, 10, 12, and 18 electron isoelectronic series (in au). 

No. of 
electrons 

Z 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

2 

-0.000071 
-0.000539 
-0.002090 
-0.005654 
-0.012525 
-0.024307 
-0.042918 
-0.070591 
-0.109890 
-0.163676 
-0.235176 
-0.327911 
-0.445684 
-0.592741 
-0.773495 
-0.992841 
-1.255705 
-1.567848 
-1.934638 
-2.362375 
-2.857722 
-3.427091 
-4.077164 
-4.816045 
-5.650950 
-6.590205 
-7.642262 
-8.815288 
-10.117330 
-11.559035 
-13.149186 
-14.898422 
-16.817487 
-18.915338 
-21.202454 

4 

-0.002200 
-0.006165 
-0.014078 
-0.027975 
-0.050296 
-0.083885 
-0.132001 
-0.198315 
-0.286891 
-0,402248 
-0.549291 
-0.733382 
-0.960270 
-1.236271 
-1.567891 
-1.962364 
-2.427211 
-2.970104 
-3.599667 
-4.324861 
-5.154630 
-6.098712 
-7.166913 
-8.370023 
-9.718376 
-11.223415 
-12.897520 
-14.751191 
-16.796344 
-19.048240 
-21.517206 
-24.215525 
-27.160759 

jG(rel) 

10 

-0.131293 
-0.200652 
-0.295056 
-0.419983 
-0.581509 
-0.786226 
-1.041289 
-1.354438 
-1.733937 
-2.188743 
-2.728086 
-3.361975 
-4.100937 
-4.956176 
-5.938689 
-7.061380 
-8.336800 
-9.778175 

-11.398838 
-13.213897 
-15.238800 
-17.487432 
-19.977246 
-22.723469 
-25.744918 
-29.057958 
-32.681561 

12 

-0.295379 
-0.421399 
-0.584802 
-0.792616 
-1.052284 
-1.371852 
-1.759973 
-2.225826 
-2.779538 
-3.431420 
-4.192571 
-5.075201 
-6.091453 
-7.254356 
-8.577999 
-10.076104 
-11.764308 
-13.656258 
-15.768854 
-18.116588 
-20.714927 
-23.579800 
-26.725610 
-30.164510 
-33.906598 

18 

-1.766130 
-2.234961 
-2.794707 
-3.456266 
-4.231744 
-5.133469 
-6.174730 
-7.368651 
-8.729868 
-10.273733 
-12.014691 
-13.969604 
-16.155230 
-18.587743 
-21.285227 
-24.267154 
-27.551138 
-31.155441 
-35.101939 
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function at the nucleus with increasing atomic number. 
This then also verifies the assumption of Scherr et al.9 

that the relativistic contribution of any subshell is 
roughly a constant independent of the number of elec­
trons in the outer shell. Because of this quasiadditivity 
of the E(nl) contributions to the relativistic energy it is 
not difficult to improve the computed values of the 
relativistic energy in the following manner: Instead of 
using the computed values of E(ls) from the Hartree-
Fock functions, we can use the E(ls) obtained from the 
exact functions of Pekeris10 and then use the E(nl) for 
n>\ from our computations. Pekeris' relativistic 
energies are available up to Z—10 and have been extra­
polated by Scherr9 to Z=20. These values have been 
tabulated in Table VI along with our computed values. 
The difference between our values for E(ls) and those 
of Pekeris and Scherr are tabulated in the third column 
of the table and can then be used as a correction to all 
the terms in Table III. It should be noted that if this 

TABLE V. Lowest-order Lamb shifts for 2 
electron atoms (in a.u.). 

Z E'L,iJrEtL,i' Z EL,2~\~EL2/ 

9 C. W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev. 
127, 830 (1962). 

10 C. L. Pekeris, Phys. Rev. 112, 1649 (1958). 

TABLE VI. Relativistic correction for a two-electron system. 

Z b A 

a Our results including E(rel) +EL,2+EL,2'. 
b Pekeris' relativistic energies up to Z = 10 and their extrapolations by 

Scherr et al. for Z> 10. 

correction is used, the results for 4, 10, 12, and 18 elec­
tron systems will include Lamb-shift corrections for the 
Is electrons, but not for the other electrons. This is 
justified because the Lamb-shift corrections are small 
compared with the main relativistic contribution, (com­
pare Tables V and III), and the main contribution to 
the Lamb shift should come from the Is electrons. 
Table VI indicates that the empirical estimates of 
Scherr et al. agree with our theoretical computations 
within a few percent except for low Z where the dis­
crepancy is slightly larger. 

When the relativistic corrections to the ground-
state energy of closed-shell atomic systems are com­
puted, Eq. (1) can be used to obtain the correlation 
energy as has been shown by Clementi.2 
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2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0.000022 
0.000106 
0.000323 
0.000740 
0.001439 
0.002500 
0.004000 
0.006015 
0.008614 
0.011856 
0.015791 
0.020460 
0.025887 
0.032085 
0.039051 
0.046765 
0.055190 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

0.064270 
0.073933 
0.084081 
0.094600 
0.105350 
0.116174 
0.126887 
0.137283 
0.147130 
0.156165 
0.164110 
0.170665 
0.175480 
0.178194 
0.178422 
0.175742 
0.169699 
0.159823 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-0.000049 
-0.000433 
-0.001767 
-0.004914 
-0.011086 
-0.021807 
-0.038918 
-0.064576 
-0.101276 
-0.151820 
-0.219385 
-0.307451 
-0.419797 
-0.560656 
-0.734444 
-0.946076 
-1.200515 
-1.503578 
-1.860704 

-0.000060 
-0.000500 
-0.001878 
-0.005092 
-0.011345 
-0.022166 
-0.039395 
-0.065202 
-0.102075 
-0.152847 
-0.220655 
-0.308996 
-0.421671 
-0.562833 
-0.736965 
-0.948891 
-1.203750 
-1.507060 
-1.864620 

-0.000011 
-0.000067 
-0.000111 
-0.000178 
-0.000259 
-0.000359 
-0.000477 
-0.000626 
-0.000799 
-0.001027 
-0.001270 
-0.001545 
-0.001874 
-0.002177 
-0.002521 
-0.002815 
-0.003235 
-0.003482 
-0.003916 


