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The quantum electrodynamics of the scattering of radiation from an interacting, fully-ionized plasma is 
treated. The theory includes the effects of quantum statistics and is valid to all orders in many-particle 
perturbation theory. The scattering cross section is related to the partial conductivities of the interacting 
system. This reduces the problem of the inclusion of close Coulomb collisions, which lie outside of previous 
random-phase approximation calculations, to the calculation of collision corrected conductivities. The theory 
is applicable to degenerate quantum plasmas as well as to classical plasmas. 

I. INTRODUCTION 

SOME interest has recently arisen in the incoherent 
scattering of electromagnetic radiation from plas­

mas. Experiments have been carried out and more are 
under way in which high-powered radar beams are 
backscattered from the ionosphere.1-3 With the advent 
of high-intensity laser beams the possibility arises for 
measuring the incoherent scattering of light from labora­
tory plasmas. If the frequency of the radiation is such 
that the material is essentially transparent and, in 
addition, the wavelength is much greater than the 
Debye length of the plasma, the theory shows that the 
line shape of the incoherent scattering is an excellent 
measure of the spectrum of collective modes in the 
plasma. 

The classical theory of incoherent scattering from 
plasmas has been given in the random-phase approxi­
mation (RPA) Dougherty and Farley,4 Salpeter,6 

Rostoker and Rosenbluth,6 and others. The theory 
which includes the effects of wave mechanics and quan­
tum statistics has not been given previously to our 
knowledge, nor has a treatment of the effect of close 
Coulomb collisions. 

The purpose of this paper is to present the (non-
relativistic) quantum electrodynamics of scattering of 
radiation from a plasma, quantum or classical. Using 
modern techniques, we develop here a theory which 
includes quantum effects and the effects of close colli­
sions which are not included in previous RPA calcula-

1 K. W. Bowles, Phys. Rev. Letters 1, 454 (1958). The experi­
ments were originally suggested by W. E. Gordon, Proc. Inst. 
Radio Engrs. 46, 1824 (1955). 

2 V. C. Pineo, L. G. Craft, and H. W. Briscoe, J. Geophys. Res. 
65, 2629 (1960). 

3 H. Carru and M. Petit, Note Technique Projet C.D.S. 2, 
Centre National d'Etudes des Telecommunications, Issy-les-
Moulineaux, 1962 (unpublished). 

4 J. P. Dougherty and D. T. Farley, Proc. Roy. Soc. (London) 
A259, 79 (1960). 

8 E . E. Salpeter, Phys. Rev. 120, 1528 (1960). 
6 M. N. Rostoker and N. Rosenbluth, Phys. Fluids 5, 776 

(1962). 
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tions. In a second paper we apply these results to the 
classical plasma and calculate the effects of short-
range collisions on the scattered line shape. Later, we 
hope to study the applicability of this phenomena to 
determine the spectrum of collective excitations in 
solid-state systems. 

We employ a form of many-particle perturbation 
theory introduced in Ref. 7 in which various inter­
action processes are represented by Feynman diagrams 
with an accompanying set of rules for evaluating the 
contribution of each diagram. These techniques, which 
are very similar to the Feynman techniques of vacuum 
electrodynamics, were used in Ref. 7 to compute the 
high-frequency conductivity of a plasma. They have 
the advantage of expressing in a very explicit way the 
basic microscopic processes involved. In the present 
paper, the coupling of the radiation to the ions via the 
excitation by the electrons of the acoustic plasma reso­
nance in the screening cloud of the ion is very explicitly 
shown in the method of calculation. 

In Sec. II we present the formalism and perform the 
calculation of the line shape in the RPA in order to 
show how the standard results are obtained by our 
method. In Sec. I l l a general formula for the scattering 
rate is developed for a two-component plasma and an 
electron gas with uniform background. Finally, in Sec. 
IV we briefly comment on the applicability of these 
results to experimental situations. 

Previous classical calculations relate the scattering 
cross section to the electron density correlation function 
(see the Appendix) and then proceed to calculate this 
quantity directly from the plasma hierarchy6 or first 
relate the correlation function to the external con­
ductivity via the fluctuation-dissipation theorem and 
then calculate the conductivity from the Vlasov equa­
tion.4'5 Our procedure uses the techniques of quantum 
electrodynamics to derive from the microscopic theory 
what is essentially the fluctuation-dissipation theorem. 

7 D. F. DuBois, V. Gilinsky, and M. G. Kivelson, Phys. Rev. 
129, 2376 (1963). 
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For cases in which the scattered frequency co=co&—coa 

is large enough so the ions cannot respond, and for a 
fixed value of the wave-number shift |k | = |k&— ka | 
the cross section can be related to the total local con­
ductivity. For o) small enough for the ions to respond 
(as is the case near the acoustic ion plasma wave fre­
quency) to evaluate the cross section, it is necessary to 
know separately the response of the electrons keeping 
the ions in equilibrium and vice versa. This effect arises 
because the ions scatter the radiation only m/M times 
as effectively as the electrons. 

Since the cross section is exactly related to complete 
conductivities, the problem of including the effect of 
close collisions is reduced to a conductivity calculation. 
In a second paper we make use of some recently derived 
expressions for the collisional conductivities in a classical 
plasma as an application of the formulas in the present 
paper. 

II. FORMULATION 

The description of individual electromagnetic proc­
esses in terms of Feynman diagrams is at once the 
clearest, most elegant, and the most convenient for the 
purpose of calculation. We shall utilize this method for 
the problem at hand: the incoherent scattering of pho­
tons from a many-electron system in thermodynamic 
equilibrium. 

The total scattering rate r tot is given by the familiar 
Golden Rule 

r dzh h2c* 
hT total=J E / E £ pi 

eb,eaJ (2T)Z f i 2w&2cOa 

X\{f;Kh\M\i;kaA)\ 
X (27r&)353(P/- ?i+hkb-hka) 

X2Trd(Ef-Ei+hm-ho)a). (2.1) 

The subscripts i and / refer to the initial and final states 
of the matter. The subscripts a and b refer to the initial 
and final states of the radiation (ka is the initial wave 
number, ta is the initial polarization). The photons are 
normalized in a unit volume. In Eq. (2.1) we sum over 
all final states and average over all initial states. The 
correct average over the initial particles states is ob­
tained by using a suitable Gibbs factor, 

p .==e/3^-/?(^-^)> (2.2) 

where @~1=kT, ix is the chemical potential, Ni is the 
number of particles in the state i, and exp(/50) is the 
normalizing factor fixed by Trp4= 1. We are considering 
a unit volume so that we can denote by n the number 
density and the total particle number. 

We are, however, interested not in the total transi­
tion rate but in the rate to all particle states with the 
final photon state (k&,co&) fixed. We denote this by 
T(k,w). The experimentally observable partial cross 

section dor(ku>)/do)bd&b which is independent of the nor­
malization volume is obtained by dividing T (kco) by the 
photon speed c. From Eq. (2.1) one has 

dcr(kya)) h o)b 
=2 E E £ P——" 

dtObd&b eb,ea f i 4 ( 2 7 r ) 3 0 ) a 

XK/;k6 ,^ |M|i ;k^ a) |2(27r^)353(P,-P /+^k) 

X2Trd(Ef-Ei-ho)). (2.3) 
To obtain the amplitude M we simply draw all pos­

sible modes for scattering a photon in state (ka,ea) to a 
state (k&,e&). We can make a number of approximations: 
First, we will consider only the coupling of the incoming 
and outgoing radiation to matter arising from the 
(e2n/mc2)A2 term in the nonrelativistic Hamiltonian 
which is represented by the double photon vertex in 
Fig. 1. In the Appendix this approximation is seen to 
lead to the well-known expression relating the cross sec­
tion to the density-density correlation function derived 
classically as, for example, by Rostoker and Rosenbluth.6 

The single photon vertex, arising from the p • A term in 
the coupling Hamiltonian, contributes in second-order 
perturbation theory. These terms can be neglected when 
ka<£kD (kD the Debye momentum) and coa is much 
greater than the collision frequencies of the system as 
can be seen from the following argument. The optical 
theorem states that the total cross section for scattering 
and absorbing a photon (ka,e0) is proportional to the 
imaginary part of the forward scattering amplitude. The 
imaginary part of the forward scattering amplitude is 
easily seen to be proportional to the real part of the 
polarization self-energy part for transverse photons dis­
cussed in Ref. 7. In the notation of that reference the 
total cross section is then cop

2c~2— ReQT(o>a,ka)c~2. The 
term o)p

2c~2=nrQ2 is the sole contribution from the A2 

interaction of the radiation with matter while KeQr 
contains all the terms arising from the p-A coupling. 
The leading term in QT arising from the RPA gives a 
contribution k2ve

2/3c2=k2o)p
2/(3kD

2c2) and can be neg­
lected if k<KkD- The term arising from electron-ion colli­
sion corrections, however, is of order (o)p

2/c2)(Tei/o)) 
where Tei is of the order of the electron-ion collision fre­
quency. Likewise, from electron-electron collisions there 
is a contribution of order (cop

2/c2)(k2/kD2)(oop
2Tee/u>z) 

where Tee is of the order of the electron-electron collision 
frequency. These estimates are somewhat crude and a 
more complete discussion will be given elsewhere. The 
result is that if ka<&kD and a)<^>Tei, Yee, the contributions 
to the total cross section from the p • A coupling can be 
neglected relative to the A2 coupling. This implies that 
the same is true for the partial scattering cross sections 
provided the A2 coupling produces a cross section which 
is not vanishingly small at any angle which we shall see 
is the case at least near the important resonances. 
Furthermore, we shall neglect terms of order a2=m/M, 
the ratio of the electron and ion masses, so it is not 
necessary to consider the interaction of the radiation 
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FIG. 1. Lowest order scattering process. The heavy line 
denotes ions. 

with the ions. In Fig. 1(a) we show the simplest inter­
action of interest here. Other possible processes in a 
plasma are shown in Figs. 1, 3, and 4. The braided line 
represents a screened Coulomb interaction. 

The amplitude for any process is readily computed 
from the corresponding diagram by use of the calculat­
ing rules presented in Ref. 7. For example, the ampli­
tude for the double photon-electron vertex shown in 
Fig. 1(a) is given in Ref. 7 to be i{^w^/mc2)h'h^ The 
rate for this process is then 

d<r(k,a>)_i r dzp% r dzpx h m 

dW% 2 eb,eaJ (2wh)ZJ (2wh)Z * 4 ( 2 T T ) 3 « a 

I4?re2 I2 

X h'ta (27T^)363(p2-pi+^k) 
i mc2 I 

X2ir/—pi pi2+ho>\ (2.4) 
\2m 2m / 

where k=k6—ka, a>=wa—m, and f(%p) is the one par­
ticle distribution function with ^p=p2/2m—fjL, fx the 
chemical potential. 

We shall deal only with unpolarized radiation, so we 
sum and average over the polarizations. 

i Z(4-4)2=Mi+cos20), 
eb,ea 

where k&-k0=W« cos0. The integration in Eq. (2.4) is 
simple and yields the expression 

da 03b M 1 
— = 2>*r£\ (l+cos20) — 
do)dQ Ua k {2w%)z 

x[ dppf(Q, (2.5) 

where ro=$/tnc2 is the classical electron radius. 

In the limit of Boltzmann statistics this becomes 
(with /(£„) = n(27r0/m)**h* exp{ -f/2m}) 

da tin2 1 m 
= |(l+cos2(9)--e- (1/2^^+^^2, (2.5a) 

do>dQ (2ir)l^k o)a 

where we have gone over to plasma units7 k= (k&—ka)/kn 
and <a= (m—&a)/o)p with £6

2=47re%$, ojp
2==4?re2 nm""1. 

In these units h is in units of jGwp. For most cases of 
interest in classical plasmas we can neglect the term 
proportional to h in the exponential, 

The scattering due to the process in Fig. 1 (a) pro­
duces a line of width proportional to the electron rms 
velocity Ve=o>P/kD, as we see from Eq. (2.5a). This is 
in disagreement with the experiments of Bowles1 who 
found a linewidth proportional to the ion rms velocity. 
We look to diagrams involving the interparticle inter­
actions to correct this discrepancy. 

Likewise, in the case of degenerate electrons at T=Q 
where the distribution is just a step function, f(£p) 
— r\{pF—p) (pF is the Fermi momentum), we find 

da (l+cos2$)mS m pF
2-~\mw/k+hk/2\2 

= nr0
2 , 

da)d£l 2 0)a 4-7T kpF 2pF2 

if pF>\nua/k+hk/2\', (2.5b) 

= 0, otherwise. 

The width of the scattered line is of the order kpF/m or 
again k(ve). 

A narrow line would result if we could replace the 
electrons by ions in Fig. 1(a), but since the direct inter­
action of the photons with ions is of order a2=m/M 
smaller, this would not account for the observed cross 
section. However, there is a way of coupling w, k into 
the ion motion as shown in Fig. 1(c). In this diagram 
the a?, k are transmitted to an ion via the dynamically 
screened interaction (braided line). That is, an electron 
in the polarization cloud which accompanies each ion 
(heavy line) scatters the radiation and then interacts 
with the ion via the screened interaction transferring o) 
and k directly to the ion. The amplitude for this process 
(using the notation of Ref. 7) is given by (amplitude for 
photon-electron vertex) X (amplitude for electron den­
sity fluctuation bubble) X (amplitude for screened in­
teraction), or, 

M R P A ^ ( i &• ta )(-e.°(k,«)( •• • / • x ) 
\mc2 ) \k2+Q(k,o>)/ 

(4^2) Q*. 
— _, th'ta. (2.6) 

mc2 k2+Q° 
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The function Q(k,cu) is the proper polarization part7 this function is 
which in the lowest order or RPA is the sum of simple ,wv w -w* 
electron plus ion loops Qe°l ~ J = 1—e-

mo>lk)2 / dtellu2 

Q(k^)^Qo(c,/k)^QHWk)+QHWk), (2.7) _ ^ - l / 2 < « / * > » . (2.9) 
\ 2 / 6 

where 
T h e general expressions for Q°(o)/k) can be found 

Qi0(a>/k) = Qe°(o>/cxk), c?=m/M. (2.8) elsewhere.7 

T h e cross section is then given b y subs t i tu t ion of 
I n the classical l imit of Bol tzmann statist ics with h=0 M R P A * into E q . (2.3) 

da* "I r d*px /27rj3\8/2 

= i (l+cos20) / nhH en 
dc*»JRPA J (27rA)3 \M / 4 ( 2 T T ) 2 C O 0 

W Qe° i2 

X 
mc2 k2+Q 

0)6 

i2 / 1 1 \ 
-I (27rft)353(p2- Vi+hk) ( 2 T ) 8 [ £2

2 £ i 2 +#a>) (2.10) 
101 \ 2 M 2M / 

\Qe°\2 1 

| & 2 + < 2 ° | 2 V l 7 r a & co, 

We have taken the limit of Boltzmann statistics with 
fi=0. Here we have used the units of Eq. (2.5a). 

This is the part of the well-known formula4-6 in the 
RPA which is significant near the center of the scattered 
line. In distinction to Eq. (2.5a) the exponential factor 
here produces a narrow line with a width proportional 
to the ion thermal velocity Vi~aVe— (m/ikf)1/2(cop/^D). 
The same width but a magnitude reduced by a factor 
of a2 arises from the direct coupling of the ion to the 
radiation. The intermediate coupling of the screening 
cloud causes an additional enhancement of the scatter­
ing rate due to the denominator |&2+()0I2 which is 
proportional to the absolute square of the longitudinal 
dielectric function ez, of the plasma (see Sec. I I ) . This 
becomes small a t the collective resonances of the sys­
tem. Since the exponential in Eq. (2.11) cuts off fre­
quencies a)>ak, the electron plasma resonance at o>=l 
does not contribute to this formula. However, the very 
broad ion acoustic resonance (for equal electron and ion 
temperatures) contributes two humps in the curves 
shown in Fig. 2. 

In the model case of a degenerate electron gas with 
uniform positive background there is, strictly speaking, 
no such contribution. In solid-state cases the ions should 
be replaced by lattice phonons and impurity ions. In 
addition, the screened interaction should also contain 
the interaction via phonons. The formulas in this case 
will have additional resonances for given k correspond­
ing to possible phonon modes which can be excited. We 
will not treat these cases explicitly in the present paper, 
however, it is clear that in all these cases the line given 
by Eq. (2.11) or its analogs is considerably narrower 
than in the Doppler broadened scattering from free 
electrons [Eq. (2.5a)]. 

(2.11) 

I t is clear that an analogous process is possible in 
which the radiation interacts with the screening cloud 
surrounding an electron transferring co and k to the 
electron as in Fig. 1(d). The amplitude for this process 
should be added to the amplitude for the direct scatter­
ing by an electron since both processes have the same 
final state. The total amplitude in this case is 

M R P A 

4TT2 r Qe° 1 
= i-—ib'tA 1 (2. 

mc2 L k2+Q°J 
.12) 

a n d the corresponding par t ia l cross section in the 

K2=0.l 

FIG. 2. Line shape of scattered radiation in the random-phase 
approximation for several values of k. The scale is arbitrary. The 
diagram does not extend far enough to show the high-frequency 
electron resonances on both sides. 
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+ 

is plotted in Fig. 2 for various values of k2 for a classical 
electron-ion plasma. The curves do not extend far 
enough to show the satellite plasma resonances. The 
expression for this total rate is easily shown to be ex­
actly that derived by previous authors by other methods. 

FIG. 3. Nonresonant scattering processes. 

III. GENERAL FORMULAS 

We will now generalize the arguments of Sec. I l l to 
derive a general formula for da/dudQ. We will carry 
through the discussion for the electron-ion plasma and 
comment at the end on the modifications necessary in 
treating other systems. Near the resonances, this ex­
pression is determined by the local conductivity of the 
plasma which is already known in certain limiting cases. 

It is convenient to separate the diagrams into two 
classes as in Figs. 3 and 4. The first class are those dia­
grams in which the w and k transferred to the matter 
at the scattering vertex is immediately dissipated along 
several routes as in the diagrams in Fig. 3. These terms 
correspond to direct scattering of the radiation from 
the electrons in the plasma. (The corresponding terms 
from direct ion scattering are, of course, m/M times 
smaller because of the mass dependence of the scattering 
vertex.) 

The second class of diagrams are those in which co 
and k are carried by a single screened interaction line 
to a second vertex at which co and k are dissipated along 
several routes as in the diagrams in Fig. 4. These dia­
grams correspond to the (virtual) excitation of a col-

classical limit: 

r—l -nr<f 
Qe° 

k2+Qo ^J2irk 
_e-l/2(<o/fc)2 

m Xi( l+cos 2 0)- . (2.13) 

This contribution has a width [like Eq. (2.5a)] pro­
portional to kve but is of order a= (m/M)112 smaller 
than TRPA* at w=0 and so is unimportant near the 
central line. However, because of the broad exponential 
the sharp plasma resonance at co«l can contribute 
through this term giving the so-called plasma satellite 
lines. 

The cross section da6/dud® as given by Eq. (2.13) is 
the only RPA contribution to the scattering in an elec­
tron gas. The case of degenerate electrons can be found 
by noting that the factor p*-)-^^1 '2 <"'*>" in Eq. (2.13) 
is replaced by (3m/STpF^)tp^~ (mu/k+hk/iy] as was 
the case in Eqs. (2.5a) and (2.5b). In addition, the 
appropriate expression for Q(k,a)) in the quantum limit 
must be used. 

The total RPA scattering rate 

da da* 

dudQ RPA doidQ, + 
da 

RPA da)dti] 
(2.14) 

'RPA FIG. 4. Resonant scattering processes. 
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lective longitudinal field (or wave) by 
radiation which ultimately is damped by 
ing and collision damping. 

The original scattering vertex factor 
to ms~

lnSi where m8 is the mass and 
operator for species s. Thus, ions do 
appreciably to the scattering vertex. 
vertex which damps the collective wave 
to the total density operator n and ions 
appreciably to this vertex (at low co). 

( / ,k & ,4 |M| i ,ka ,4) 

the scattering 
Landau damp-
is proportional 
n& the density 
not contribute 
However, the 
is proportional 
can contribute 

with a current vertex which arise in the general expres­
sion for the conductivity. In the case of co much greater 
than the collision frequencies of the system, only a 
finite number of the diagrams in the series for Vi/e need 
be included. For co much less than the collision fre­
quencies, an infinite series of terms must be summed, 
since it can be shown that the expansion involves 
powers of A/co2. In any case, the formal statements 
which we derive are valid to infinite order in perturba­
tion theory. 

If we drop terms proportional to m/M and substitute 
Eq. (3.1) into Eq. (2.3) we have 

[ m r m "] 

vit'+-Vif*-\ ge(M+-&(M 
[ M L M J 

= i Vif'+—Vif 
mc2 [ M 

do-(k,co) rffi co& 
= J ( l + c o s V ) -

dcObdQb (2w) C0a 

XF.(k,w)[T,/W]}, (3.1) X^/\Hl-^)-Vifi 
e.(M 

where F ; / e (F ; / ) is the sum of the amplitudes for all 
diagrams leading from a given initial state i to a given 
final state / via an electron (ion) density fluctuation 
vertex.8 The factor Fs(k,co) is as usual the complete 
propagator for the screened interaction. Thus, ()e(k,co) 
(Qt(k,co)) is determined to be the sum of all ampli­
tudes of all proper polarization diagrams leading from 
an electron (ion) vertex and ending in an arbitrary 
(electron or ion) vertex. The complete polarization part 
Q(k,a>) is the sum 

Q<M = Q.(M+Qifa*). (3.2) 

However, we see that a different combination arises in 
Eq. (3.1) because of the mass dependence of the scat­
tering vertex. 

The amplitudes Vif* and Vi/e which are represented 
in Fig. 4 are intimately related to the dissipative part 
of the local longitudinal conductivity by the formula 

4Tlm(ri(k,a)) 

= -ImQ(k,co) = (4we2) E Pi\ F , / + F , / | 2 

k2 2 k2 if 

x ( 1 - . ^ * - ) ( 2 T ) 8 ( « O > + £ < - Ef)(2irhy 

X « » ( » k + P r - P / ) . (3.3) 

This expression follows directly from the arguments in 
Ref. 7 and we will not discuss it further here, except to 
say that it makes use of the gauge invariance of the 
theory to relate diagrams with a density vertex to those 

k2eL(k,a>)\ 

X (27r#)3S3(&k+ P — P/) (2T)8(ha>+Ei-Ef). 
(3.4) 

This expression simplifies in several cases: 
i. Near resonance. In this case ez, is nearly zero if the 

resonances are sharp so that the terms proportional to 
€iTl dominate the amplitude. Using Eq. (3.3) we can 
write 

dcr(k,a>) nrQ
2h 

dutfltib TtfWOOp2 
Kl+cos20) 

X-
0)b 

0)a 

G.(M 
£2€L(k,a>) 

k2 47rlmcrz,(k,a>) 

co (1-e-W") 
(3.5) 

Since €L=l+(47T(ri,/co) we have expressed everything 
except Qe in terms of the local conductivity. We will 
return to Qe below. 

ii. co/fc>M>e= (kT/rn)1'2. In this case I V « I V . This 
is seen as follows. Each term in the expansion Vif8 has 
an energy denominator 

1 1 k -p 

co—k• p/Ms+ie co co2M* 
(3.6) 

arising from the initial vertex. The terms proportional 
to 1/co can be shown to vanish by gauge invariance so 
that the leading term is (m/M)112 times smaller for 
ions than electrons. By the same argument (Mk,co) 
<3C@e(k,co) so we have Q(k,co)^^Qe(k,co). Thus we can 
write 

Jcr(k,co) nr0
2h co& 

= H l + c o s 2 0 ) -
daibdtib TTfncop2 co0 

1 — 
QM 

k2eL(k,a>) 

2&247rImcrL(k,co) 

co l—e-Ph<a 
(3.7) 

8 Throughout the body of this paper the functions Q, Qe, Qi, Vs, and ez, are retarded propagators as defined for example in Ref. 7. 
In the Appendix the superscripts + and — are used explicitly to'denote retarded and advanced functions, 
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or 

and 

</<r(k,co) nr0
2h k2 co& 

= - %(l+co$26) 
da)bdfib irmwp2 co coa 

1+ 
47TO"L(k,0)) "2 47r Imcrz,(k,co) 

l-e-w» 

Jcr(k,co) ftr0
2# cot &2 I m e ^ H ^ j w ) 

—• - i ( l + COS20)-
doibdtib irmcop2 

0)a CO2 1 — * - * * « 

(3.8) 

(3.9) 

Thus, we can relate the cross section directly to the 
complete local conductivity in this case. This is because 
in this limit the conductivity is determined only by the 
electrons (to order m/M) so that Qe can be replaced 
by Q. This formula is not valid if a>/k<^ve which is the 
case near the ion resonance. However, Eq. (3.5) is 
valid here. The high-frequency plasma resonance satis­
fies o)/k^>ve and the two formulas, Eqs. (3.9) and (3.5), 
give identical results here. (Note that Qe=Q=— &2 at 
this resonance.) For the ion acoustic resonance (see 
following paper) it is found that 

so that Eq. (3.5), which is correct, predicts a cross 
section 1/k2 times larger than Eq. (3.7). 

The quantity Qe(k,a>) measures the fluctuating po­
larization induced by the scattered radiation. The total 
polarization Q(k,co) is related to the total local con­
ductivity (which is proportional to the total current) by 

4 w L ( k , c o ) = ( W A 2 ) ( 3 ( M , (3.10) 

which merely expresses the charge conservation relation 
between the induced current and the induced fluctuating 
charge. We can discuss the separate electron and ion 
currents and their related conductivities 

and by conservation of electrons it follows that 

bjraL^=(a>/k2)Qe. (3.11) 

The quantity a ^ can be interpreted as the total longi­

tudinal current (divided by E£) induced when only the 
electrons are perturbed by the field E L . Thus crL

{e) (and 
therefore Qe) can be easily obtained from any calcula­
tion of the complete conductivity. 

The general expression can be reduced to a form 
involving conductivities by observing that <XL has the 
following structure: 

aL(Ku) = «Lee+<rLie+<TLei+<TLU, (3.12) 

where we define (s, s'=i, e) 

47rIm(TL"/(k,co) 

=-~(^e2)T,Pi(Vif°)*(Vifn 
2 k2 if 

X(l-e-^)(2w)8(hG>+Ei-Ef) 

X (27rft)353(ftk+P t- P/) • (3.13) 

In physical terms <TL98' is proportional to the current of 
species s induced if only species s' interacts with the 
perturbing field. I t follows from this definition that9 

Imo-^(k,co) = [Im(7ei(k,co)]*. (3.14) 

In this notation aL
(e) and <rL

{i) defined above are given 

(TL(l) = CTLlt+<rLei. 

Using these definitions we can write the completely 
general Eq. (3.4) in the form 

do-(k,co) nrffi co& k2 

= i( l+cos 20) ( l - e - ^ ) " ^ ] Imcrz,ee(k,<o) 
da)bd£lb wmojp2 o)a co 

« Q<M | 2 , T ..„ l Q e ( M | 2 

k2eL(k,a))\ lfc2eL(Ml 

&(k,co) \ * Q.(k,«) 
-Imori/"(k,co) ( 1 J - c . c . 

L \ £2€L(k,co)/ &2eL(k,co)J J 
(3.16) 

In applying this derivation to an electron gas in a purities, Eqs. (3.7) to (3.9) are still valid for high-fre-
uniform background one simply sets F»-/=0 through­
out. Then it follows that Eqs. (3.7) and (3.9) are correct 
for all frequencies for this model. 

For electrons interacting with phonons or fixed im-

quency shifts near the electron plasma frequency where 
only electrons can respond appreciably. The low-fre-

9 Note that lino-** and Imaei are not necessarily real functions 
but that Im(<rie+aei) is real. 
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quency portions of the scattered line must be handled 
separately in each case. The results should be essen­
tially as described in Sec. I I , except that Q is replaced 
by the complete electron polarization part. A more 
detailed discussion of these cases is outside of the main 
area of the present paper. 

Near the resonances, at least if they are sharp, 
Eq. (3.5) is dominated by the small denominator 
|1+47T(TL/CO|2= |€z,(k,w)|2. If the resonance is at fre­
quency O)L and the damping rate JL is small, we can 
approximately write the dispersion relation for O)L 

4twRe<TL(k,o>L) 
1 + = 0 . 

Then, for w near COL we have 

1 ZL 
: 2«ZT 

€z,(k,«) w—UL+UJL 

where (see Ref. 7) 

O)L d r47r RecrL(k,w)" 

2 dcoL oo 

(3.17) 

(3.18) 

(3.19) 

and the damping factor is given by 

7 L ( * ) = Z L 4 i r ImaL(k,coL). (3.20) 

Combining these equations, we have near resonance 

d<r(k,<a) nr0
2h 1 (l+cos20) oob |^e(k,caL) |2 

do)bdQh 4^rmo)p
2 2 ( 1 - e~ph<aL) o>a 

OOLZI/YL 

k2 

The expressions derived in this paper are applicable 
to both classical and quantum plasmas. In the following 
paper an application of these results to classical plasmas 
will be made. These results have a bearing on the ex­
periments under way of scattering of radar beams from 
the ionosphere. 

A perhaps more interesting application would be to 
the scattering of intense laser light from dense semi­
conductor plasmas. Because of the intrinsic smallness 
of the (Thompson) cross section per electron, it appears 
necessary to use degenerate or nearly degenerate semi­
conductors with a high density of carriers. A detailed 
study of the feasibility of such experiments is now under 
way. For such experiments to be feasible it is necessary, 
of course, to find materials which are highly transparent 
at existing laser frequencies. 

APPENDIX: GENERAL FORMULA FOR 
THE SCATTERING RATE 

The particle-field coupling Hamiltonian which is sig­
nificant for this problem is 

Hi(t) = — E — fd*xn9(x,t)\(x,t) • A(x,0 . (Al) 
2c2 s mj 

The electromagnetic field is described by the (time-
dependent) operator k(x,t), and ns(x,t) is the number 
density operator for particles of species s with charge 
ez8 and mass ms. 

The complete amplitude for the transition i —» / is 
then proportional to 

X-
(co-W L) 2+i 7L 2 

If TL/O?I,<3C1J the resonance is very sharp. The area 
under the resonance as obtained from this expression is 

nrQ
2hojL 1 (l+cos20) w6 |Qe(k,coL)|2 

ZL(k) — - , (3.22) 
2up

2 2(1-*-**•*) Wo k2 

which is independent of y^ 

IV. REMARKS 

These formulas are, of course, examples of the general 
fluctuation-dissipation theorem. They relate the spec­
trum of electron density fluctuations to the dissipative 
part of the longitudinal conductivity. This is discussed 
more fully in the Appendix where we present a more 
formal derivation of these results. The treatment given 
above has the advantage of exhibiting very clearly the 
basic microscopic processes involved. Namely, the scat­
tering of the radiation by an electron in the screening 
cloud of an ion or another electron which excites a 
collective oscillation of this cloud which is ultimately 
damped by various processes. 

/ : 
fO(7L2M,2) . (3.21) / dt(f;kh$b\Hi(t)\i;kaA) 

e2 4whc2 %9 

= 2(fc-* . )E—</ |»(0 ,0) | i> 

2c2 (2coh2o)a)
112 * m8 

X(2T)«««(P,-Prf-ftk*-»k«) 

X2w8(Er-Ei+ho)b-hQ)a). (A2) 
One obtains for the partial scattering cross section 

da(k,a>) fo a>b I 1 

-——=*-o2 E E pr-—(&• i*)2 E *.—</l»(o,o) |*> 
doobdtib / » 2 T W 0 I s m8 

X(2**)W(P, - -PH-*I0 

X2wd(E2-E1+ho>). (A3) 

I t is clear that we can neglect the ion contribution be­
cause of the mass dependence. On averaging over po­
larizations, we have then (8) 

dcr(k7a)) nr0
2h m ImUe

+(ko)) 
- | ( l+cos 20)— _ , (A4) 

dmdQb wfmop2 ooa l-<r 
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where 

D . F . D U B O I S A N D V . G I L I N S K Y 

ImH +(k,co) = E £ Pi I </l *.(0,0) \ i) \ * 
f i 

X (27r)35(P/-Pi+^k)(27r)5(E/-Ei+feo) 

•(l-e-e*") (A5) 
is the imaginary part of 

n.+(k,«)= j d(h-h) jd*(xl-x2) 

Xn+(l ,2)^( { H 2 )6- i k^x l-X 2 ) , (A6) 
where 

nfl+(l,2)= (MMh-t2)(£ne(l)M2)J> (A7) 

is the retarded averaged electron density commutator. 
The combination which occurs in Eq. (A4), namely, 

n + ( M / ( i - e ^ « ) , 

is easily seen to be the transform of the usual electron 
density correlation function 

(ne(l)ne(2)) 

thus establishing the relation of our approach to that 
of Salpeter,5 and Rostoker and Rosenbluth.6 

An analysis of functions such as II e
+( 1,2) in the frame 

which begin and end with electron density vertices and 
Qe

+ is denned in Sec. III. Using the isotropy of the 
system and the time reversal invariance it is easy to 
show that 

<?<r(-k, - w )=<2r(k , -co) = [&+(k,-co)]* (A9) 

so 

n e+(M=C«+(M-

Imnee+(k,w) 

[Q+(MQ,-(k,-a,)3z>(k) 

l+*(k)e(M ' 
(A10) 

[<2 +(M<2.-(k,-a,)] ImQ+(M 

\»+.Q*(M\* 
(All) 

The resonant part clearly arises from the second term 
in this expression with the resonance denominator. Sub­
stitution into Eq. (A4) gives 

da(k,co) nr0
2h m 1 (l+cos20) 

-Im<2,+(k,co) 
do)hdQ,h irniup2 o)a 2 (1 — e~^h<a) 

[e.+(WGr(k,-o))]Im^-(k,W) 
(A12) 

^ | € L + ( k , C 0 | ) 2 

work of many-particle perturbation theory was carried I n t h e c l a s s k a l K m i t ! _ e - ^ ^ ^ a n d u s i n g Q-
out in Ref. 7 (There we analyzed the current correla- ^^(/u-k2/^)^ Ckv) 
tion n,7+ (l,2.) = 77(/1-/2)(C^(l),/y(2)]>which has the k ' J LK ' J 

same formal structure as|ne
+.) Without repeating the d<r(k,co) nr<? w& (l+cos20) ( ImQee

+(kyoi) 
details, it can be shown by the same methods of re 

. (A13) 

ordering and summing the elementary perturbation dwtfKli, irkD w0 2 i w 
series that He+ can be represented in the form iQe+iK^QfiK-^)! Im<7L(k,w) 

n e + ( M = Qe +(k,co) - Q e + ( M 
£V|ez+(k,w)|2 

l-rv{K)<Kr~(K,w) rpne j a s t t e r m j n t n j g eXpj-essjon clearly contains the 
XQW—-It —w) (A8) resonant part of Eq. (3.4) as given by Eq. (3.5). Eq. 

(A13) can in fact be shown to be completely equivalent 
where Qee

+ is the sum of proper polarizations diagrams to Eq. (3.17). 


