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Doppler-Shifted Cyclotron Resonance and Alfven Wave Damping in Bismuth 
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At large magnetic fields the transmission of microwaves through bismuth is essentially undamped and can 
be regarded as Alfven waves in a solid-state plasma. A large kink has been observed in the 9-Gc/sec micro­
wave absorption of bismuth as a perpendicularly applied magnetic field was varied through 1500 G. These 
experiments have been performed at 2 °K with a field parallel to the binary axis. The kink has been identified 
as a Doppler-shifted cyclotron resonance whose position is approximately given by the formula a> ~coc—fl0a;&yi 
where VQX is the maximum Fermi velocity along the field and kA is the wave number of the microwaves in the 
metal. The kink marks the onset of Alfven wave behavior where the surface resistance is proportional to 
magnetic field. A calculation of the surface resistance using a nonlocal theory applied to a three-carrier 
model yields a variation with field which shows both the Doppler-shifted peak and the high-field linear 
region which can be extrapolated back through the origin. The frequency dependence of the peak derived 
from this calculation has been verified experimentally. By tilting the field slightly away from the perpendicu­
lar it was shown that the peak was a Doppler shift in the cyclotron resonance of the holes rather than of the 
electrons. This experiment provides a very accurate measure of the ratio of the Fermi velocity to the Alfven 
velocity and, thus, knowing one, the other may be determined. For this reason, the Alfven velocity in the 
same crystals was independently measured using an interference technique. Oscillations with a constant 
period in 1/H were observed in the reflected power as the applied magnetic field was varied. From the 
period of oscillation and the thickness of the crystal, the velocity was deduced. The work also provides a 
graphic measure of the sharpness of the Fermi surface. 

I. INTRODUCTION 

IT is well known that cyclotron resonance experiments 
in metals and semimetals yield results which are 

considerably different from those which are performed 
in semiconductors. In the latter case, the absorption 
demonstrates the usual resonance shape, whereas in 
metals it takes the form of an absorption edge which, 
in the limit of infinite mean free path, extrapolates to 
zero at the cyclotron resonance field of the heaviest 
carrier present. 

If the metal can be characterized by a complex di­
electric constant or conductivity, then the power 
absorbed by a surface of the metal in a microwave 
cavity is given by the expression: 

where 

Abs. coeff. = 4Re€-1/2, 

€=€lattice+47ri<r/o>. 

(1) 

These two equations are consequences of Maxwell's 
equations and Ohm's Law. In metals the first term on 
the right is negligible with respect to the second. The rf 
conductivity in the presence of a dc magnetic field is 
given by 

(7==<r0/[l+i(co—O>C)T3, (2) 

where o-0=ne2r/w* is the classical dc conductivity, T is 
the mean free time, coc—eH/m^c is the cyclotron fre­
quency, n is the number of carriers per cm3, and w* is 
the effective mass of the carriers. Equation (2) applies 
in the case of a single type of carrier. Substituting in 
Eq. (1) we can plot the dielectric constant (Fig. 1) as a 
function of magnetic field. Except near resonance the 

•Present address for 1963-64: CEN Saclay, Gif-sur-Yvette 
(S. et O.) France. 

dielectric constant is real. At low fields it is negative 
and large, and there is nearly complete external reflec­
tion from the surface. At high fields the dielectric 
constant is positive, real, and large and therefore €1/2 is 
real and absorption takes place. Thus the absorption 
at constant frequency has the form of Fig. 1, rather 
than the characteristic resonant form observed in 
semiconductors. 

At larger magnetic fields the transmission of micro­
waves through bismuth is essentially undamped and 
can be regarded as Alfven waves in a solid-state plasma.1 

For an isotropic plasma the Alfven wave vector is 
given by 

^==(a>/#) 4TTX; ( 4TT E njmA , (3) 

where % is the density of the Jth plasma carrier, mj its 
mass, and the summation extends over all carriers. The 
anisotropic case will be treated later. It will also be 
shown that this equation is a direct consequence of the 
equality of electrons and holes. 

From this equation together with Eq. (1) one obtains 
the result that, in the high-field region, the absorption 
is proportional to H, as illustrated in Fig. 1. 

This qualitative picture can readily be extended to 
the nonlocal case by including the effect of particle drift 
motion. A carrier moving toward the surface experiences 
a microwave field Doppler-shifted to a higher frequency. 
Thus the absorption edge will occur not merely at the 
cyclotron frequency but over a range of frequencies 
depending on the range of carrier velocities; in this case 

1 S. J. Buchsbaum and J. K. Gait, Phys. Fluids 4, 1514 (1961). 
When the total number of positive and negative carriers are 
unequal as in the case of ordinary metals, this mode of propagation 
is called the helicon wave. 
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determined by the Fermi velocity. The highest field at 
which damping can occur will be given by the condition 

= 0)0~-VdxkA, (4) 

where v0x is the maximum velocity component along 
the propagation direction of the microwaves of a carrier 
at the Fermi surface, JZA is the Alfven wave vector of 
the microwave field in the metal, and o)c is the cyclotron 
frequency. 

This result was suggested by the work of Haering 
and Miller2 who solved the Boltzmann equation 
assuming specular reflection from the surface. We have 
applied their theory to an idealized model of bismuth.3 

The calculation will be discussed in Sec. III. A simplified 
plot of the results of this calculation is shown in Fig. 2. 
The broken line gives the absorption calculated using 
a local theory with a small amount of scattering. In 
the absence of this scattering the broken line would 
intersect the x axis at about 700 G, the unshifted 
cyclotron field. The tails of both the local and nonlocal 
plots have been exaggerated for clarity. Except in the 
region between —200 and +1500 G the local and the 
nonlocal curves are coincident. 

Thus the nonlocal theory can be thought of as a 
Doppler-spreading of the classical resonance at 700 G. 
The carriers have a distribution in the average x 
component of drift velocity which varies from +vQx to 
— v0x. One should expect a distribution of Doppler-
shifted resonances varying from —200 to +1500 G. 
However, it is only those carriers with a nearly vanish­
ing vx which return to the skin depth every orbit. The 
others, due to their finite value of vx, drift away from 
the skin depth before multiple orbits can be made. In 
Sec. II we show that a small inflection point at the 
point corresponding to the unshifted cyclotron reso­
nance is, in fact, observed. 

FIG. 1. Classical 
cyclotron absorption 
and dielectric con­
stant in metals and 
semimetals as a func­
tion of perpendic­
ularly applied mag­
netic field. 
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FIG. 2. Simplified theoretical plot of absorption 
according to local and nonlocal theories. 

The large singularity at 1500 G occurs at the field 
satisfying Eq. (4). At this point the skin depth suddenly 
increases by nearly 4 orders of magnitude. To under­
stand this, one must go back to the fundamental reason 
for the absorption. 

There are two major mechanisms leading to damping 
of electromagnetic waves in a metal. The first is the 
dissipative effect of collisions. In materials as pure as 
those used in this experiment (i.e., when the mean free 
path is long) this effect is of secondary importance. 
Here the significant damping mechanism is due to 
energy-conserving processes in which the electrons in 
the metal continuously absorb both energy and momen­
tum from the electromagnetic field. 

In the presence of a dc magnetic field the momentum 
states of the electrons become quantized into Landau 
levels. As the field is increased, the spacings increase 
until the point is reached where the energy splitting of 
the levels is just equal to a quantum of the Doppler-
shifted microwave field. Beyond this point the selection 
rules forbid any further damping due to energy-
conserving processes. This point marks the onset of the 
nearly undamped Alfven waves. It is at this point that 
the peak in Fig. 2 appears. The peak then is due to the 
sudden rise by several orders of magnitude of the skin 
depth at this point. It is a significant result of the 
theory that, although no assumptions about Alfven 
waves were made in deriving the equations of the curve 
in Fig. 2, the position of the peak satisfies Eq. (4), 
where IZA is the wave vector of an Alfven wave. I t has 
previously been shown experimentally4 that trans­
mission of electromagnetic radiation through bismuth 
can be treated as Alfv6n waves. The present work 
experimentally establishes the fact that the onset of 
the Alfv&i region occurs precisely at the field corre­
sponding to the Doppler-shifted cyclotron resonance 
of the heaviest carrier. 

The use of Eq. (4) enables one to deduce directly the 
Fermi velocity of the carriers without employing any 

* P. B. Miller and R. R. Haering, Phys. Rev. 128, 126 (1962). 
3J. Kirsch and P. B. Miller, Phys. Rev. Letters 9, 421 (1962). * G. A. Williams, Bull. Am. Phys. Soc. 7, 409 (1962). 



A1392 J O R D A N K I R S C H 

model of the Fermi surface. I t is however, necessary to 
know the Alfven velocity. This was found by measuring 
the oscillations in the reflection of microwaves from the 
surface of the crystal in a magnetic field as the field 
strength was varied.5 These oscillations were due to the 
standing waves in the thickness of the crystal. The 
method is similar to the interferometric technique of 
Williams.4'6 

II. EXPERIMENTAL RESULTS 

A. Doppler-Shifted Cyclotron Resonance 

Figure 3 shows an experimental plot of absorption 
versus magnetic field. The dc field was parallel to the 
binary axis of the crystal and perpendicular to the 
surface. The temperature was 2°K and the frequency 
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FIG. 3. Experi­
mental plot of 
absorption versus H. 
The field was applied 
parallel to the binary 
axis and perpendic­
ular to the surface. 

9 Gc/sec. The figure shows good qualitative agreement 
with the calculated absorption discussed in the last 
section. In particular, the value of the field (1500 G) 
at which the peak occurs is in excellent agreement with 
the solution of Eq. (4). The use of field modulation and 
lock-in detection yields a derivative trace which, of 
course, exhibits far more of the structure of this plot. 
Figure 4 is a low-field plot of the absorption taken with 
the field parallel to a binary axis and perpendicular to 
the surface. If the experiment were performed in the 
usual AzbeP-Kaner geometry, three independent sub-
harmonic series would be obtained corresponding to two 
different values of electron effective mass and one 
value of hole mass. It has been shown7,8 that sub-
harmonics can also be observed with the field normal 
as long as the plane of the orbit in real space is tilted 
with respect to the surface. For two of these masses, 
however, the field direction is parallel to a principal axis 

«J.Kirsch, Bull. Am. Phys* Soc. 8, 205 (1963). 
•G. A. Williams, Bull. Am. Phys. Soc. 8, 205 (1963). 
7 J. F. Koch and A. F. Kip, Phys. Rev.jLetters 8, 473 (1962). 
8 G. E. Everett, Phys. Rev. 128, 2564 (1962). 
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FIG. 4. Azbel'-Kaner oscillations obtained at low fields 
with H || binary axis ± surface. 

of the corresponding ellipsoid and therefore, only one 
subharmonic series is obtained. In this trace, some of 
the peaks have been identified as arising from spin 
transitions and others from combinations spin and 
Landau transitions/The values of cyclotron mass for 
this series agrees with that obtained by Kao9 at 24 
Gc/sec. 

The most interesting derivative plot is that taken 
with the field parallel to the binary axis and perpen­
dicular to the surface (Fig. 5). The large peak at 125 G 
is the dielectric anomaly discussed by Gait10 and others. 
Below this field, the beginning of a good AzbeP-Kaner 
series for the light electron is discernible. The latter was 
identified on earlier runs in which the low-field region 
was swept through much more slowly. At 450 and 707 G 
there are two small peaks which we believe correspond 
to the unshifted heavy electron and hole, respectively, 
as explained in Sec. I. The most significant feature of 
this curve, however, is the very large resonance at 
1500 G corresponding to the peak in Fig. 1. This peak 
represents the Doppler-shifted cyclotron resonance of 
the holes in the binary direction and occurs at the point 
at which there is a sudden enormous increase in the 
skin depth. 

DOPPLER-SHIFTED RESONANCE 

500 1000 
MAGNETIC FIELD , GAUSS 

FIG. 5. Derivation of absorption versus H. 
H || binary axis ± surface. 

1500 

• Y. H. Kao, Phys. Rev. 129, 1122 (1963). 
10 J. K. Gait, W. A. Yager, F. RJMerritt, B. B. Cetlin, and 

A. D. Brailsford, Phys. Rev. 114, 1396 (1959). 
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Of course, the possibility that the high-field peak is 
actually due to a ''simple" or unshifted cyclotron reso­
nance of a heavier, previously unreported, carrier must 
be considered. If this were the case the resonant field 
Hc would be proportional to the applied frequency. The 
two straight lines in Fig. 6 show the expected frequency 
dependence for two carriers: the well-known hole of 
mass approximately 0.225m0 and a heavier hypothetical 
carrier of mass sufficient to explain the 1500 G peak as 
a simple resonance. The cross marks the observed point 
at 1500 G and 9 Gc/sec. Also plotted is Eq. (4). 

03 — 0)c — VoxkA 

/ e \ wo(47r]C,-%?%)1/2 

= ( )H -, (4) 
\m*c/ H 

where m* has been chosen = 0.225ra0. It was impossible 
to check this dependence except in the limited region 
between 8 and 10 Gc/sec. Within this narrow range the 

FIG. 6. Theoretical plots of resonant fields versus frequency. 
Cross marks region of this experiment. 

frequency dependence is approximately linear and, 
therefore, it is best checked by comparing slopes. 
Figure 7 is an expanded picture of the experimental 
region. It appears that the experimental curve does not 
extrapolate through the origin and, therefore, cannot 
correspond to a simple unshifted cyclotron resonance. 

The frequency dependence also helps to explain why 
this effect has not been reported before. Most cyclotron 
resonance experiments in bismuth have been performed 
at higher frequencies (generally 24, 36, or 72 Gc/sec) 
for which the effect is predicted to decrease. Then too, 
one would not expect to observe this effect while per­
forming an experiment with H parallel to the surface 
since the average drift velocity in this case is parallel 
to the surface. 

Since circularly polarized radiation cannot easily 
distinguish holes and electrons when they are anisot­
ropic, linear polarization was used in this experiment. 
However, a field-tilting experiment was used to help to 

f (KMC) 

FIG. 7. Expanded plot of the region around the cross in Fig. 6. 

identify the kink at Hc as due to holes. Tilting the field 
away from the normal to the surface toward the bi­
sectrix direction produced virtually no change in He. 
Tilting toward the trigonal axis produced a fairly large 
variation in Hc. The results of both of these experiments 
are plotted in Fig. 8. 

The hole ellipsoid has rotational symmetry about the 
trigonal axis and hence neither its effective mass nor 
its component of the Fermi velocity along H varies as 
H is tilted toward the bisectrix. On the other hand, as 
the field is tilted toward the trigonal direction both m* 
and vF vary strongly since the latter direction is a major 
axis of a long thin ellipsoid. If the resonance were due 
to the heavy electrons, the two cases would be reversed 
since the electron ellipsoid is also long and thin with a 
major axis nearly perpendicular to that of the hole 
ellipsoid. 

Although the theory correctly predicts the stronger 
angular dependence of Hc for tilts in the trigonal 
direction than for tilts in the bisectrix, the almost 
complete absence of variation of Hc in the latter case 
is somewhat surprising. It will be shown in the next 
section that the Alfven wave number kA decreases as 
the tilt angle is increased in either direction. Like the 
other quantities in Eq. (4), kA varies more strongly as 
the field is tilted toward the trigonal than as it is tilted 

H 
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1 I 1 1 1 1 1 1 1 

H TILTED TOWARD TRIGONAL 
1 . 
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* * * • 

1 1 1 1 1 1 1 i 1 

FIG. 8. Resonant field Hc as a function of tilt angle. 
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ABSORPTION 
1 (ARBITRARY UNITS) 

5 0 0 0 6 0 0 0 
H(GAUSS) 

7 0 0 0 

FIG. 9. X-Y recorder trace of absorption versus H. Angles refer 
to tilt angle between H and surface normal. 

the heaviest carrier occurs at about 700 G, the shifted 
resonance at about 1500 G, and the point at which the 
oscillations are lost in the noise is about 1900 G. If the 
reciprocal of the fields at which peaks occurred is 
plotted against successive integers, a straight line is 
obtained. 

Equation (3) may be written as 

kA=(o)/B)(4immo)ll2Ay (5) 

where mo is the free electron mass and A depends not 
only upon the elements of the effective mass tensor, but 
also upon the relative orientation of the normal to the 
surface, the dc magnetic field, the rf polarization, and 
the crystallographic axes. If this equation is substituted 
into the standing-wave maxima condition 

the period in 1/H is obtained: 

A(l/F) = [ 2 / J ( 4 T T ^ 0 ) 1 / M ] -

(6) 

(7) 

toward the bisectrix. All of this tends to support the 
argument that the resonance is due to holes and not 
electrons, but leaves unanswered the question of very 
small angular variation in the bisectrix direction. 

B. Alfven Wave Velocity 

When the dc magnetic field was swept through values 
several times larger than the cyclotron field, oscillations 
in the absorption were observed. Figure 9 shows a 
typical x-y recorder trace of absorption versus dc 
magnetic field. The angles refer to the tilt angles 
described below. In these runs the fields were swept up 
to about 7500 G. The oscillations help to verify a 
theoretical result of an earlier paper3 which stated that 
the onset of Alfven wave propagation should occur at 
the Doppler-shifted cyclotron resonance of the heaviest 
carrier present. The unshifted cyclotron resonance of 

Y.H.KAO PARAMETERS 

SMITH, HEBEL, 
BUCHSBAUM PARAMETERS 

k = (ab£SL)( A ) 

H tilted in the Trigonal Plane 
rf E II Trigonal 

J i L 

BINARY BISECTRIX BINARY 

, 1 , i 1 i , 1 

FIG. 10. The quantity A in Eq. (5) versus the angle $ between 
H and the normal (binary) direction. The field is tilted toward 
the bisectrix axis. The dots are experimental points. 

, 6 r 
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J I . I . 1 i I i I I L_ 

FIG. 11. The quantity A in Eq. (5) versus the angle 6 between 
H and the normal (binary) direction. The field is tilted toward the 
trigonal axis. The dots are experimental points. 

where / is the microwave frequency and d is the thick­
ness of the sample. The inverse frequency dependence 
was verified by constructing three cavities, two of which 
resonated at the extremes of the X band, and the third 
at the center of the band. The thickness of the sample 
was varied from 0.1 to 1 cm. 

Most of the work in this experiment was performed on 
crystals in which the binary axis was normal to the 
surface. A series of experiments was performed in which 
the dc magnetic field was tilted away from the normal 
by amounts varying from 0° to 90°. The results for the 
case where the field is tilted toward the bisectrix axis 
are shown in Fig. 10. In Fig. 11 the field was tilted 
toward the trigonal axis. In both cases the ordinate is 
the quantity A in Eq. (5) and the abscissa is the tilt 
angle away from the binary axis. The solid lines give 
the computed variation according to various models 
and will be discussed in the next section. 
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III. THEORY 

In the anomalous skin effect region, a local relation 
such as Ohm's law is no longer valid. The current 
density at a point is not simply related to the conduc­
tivity and electrical field strength at that same point 
but to some suitable integral of <r and E over all points 
in space. One can convert from the space domain to the 
frequency domain by Fourier-analyzing, denning the 
wave-number dependent conductivity by 

J(ft)«tr(*)E(*). (8) 

Miller and Haering2 have considered cyclotron reso­
nance of a single isotropic carrier with the field perpen­
dicular to the surface. We have extended their calcula­
tion to the case of three carriers (a light electron, a 
heavy electron, and a hole) appropriate to the case of 
bismuth with the field along the binary direction. They 
considered an incident wave circularly polarized in 
the yz plane and the semi-infinite metal occupying the 
space #<0. (The choice of circular polarization simpli-

T ABSORPTION 
(ARBITRARY UNITS) 

DOPPLER-SHIFTED 
HEAVY ELECTRON 

DOPPLER-SHIFTED/ 
HOLE 

DIELECTRIC 
ANOMALY 

JL 
4000 2000 0 - 2 0 0 0 - 4 0 0 0 

FIG. 12. Theoretical plot of absorption versus magnetic field. 

fies the calculation without essentially changing the 
results.) The surface impedance which is defined as 

Z=(4irA)[^(0)/£r.(0)] (9) 

may be expressed in terms of the components of the 
conductivity tensor as 

Sio) rw dk 
Z = — / . (10) 

c* Jo #+(4artoA») !>+<>>(*) 

The conductivity tensor for a single species of carrier 
in a magnetic field may be found from the Boltzmann 
equation: 

<r+w = <rvu-~io'yg 

du(l~u2) 
(11) 

i(<u>+ueM+kv09U>u)T 

The model used in our calculation was a very idealized 

1.0 x I0 ,wh 

.5 

47TW 

Im0> 

. Re<T 

H - - I 2 5 0 

,-,Tt„ 
1000 2 0 0 0 3000 

k—#-

JL 
4000 5000 

FIG. 13. The three terms in the denominator~offEq. (14) 
are plotted versus h The field is 1250 G. 

one. No attempt was made to include the effects of 
anisotropy. The masses used to determine the cyclotron 
frequencies were those measured in this experiment and 
were in agreement with similar data in the literature. 
They are functions only of those components of the 
(diagonalized) effective mass tensor in a plane perpen­
dicular to the magnetic field. The components of the 
Fermi velocity in the % direction were obtained from 

1.0x10 

1000 2000 3000 
k -** 

4000 

FIG. 14. Im<rr and c2F/47rw are plotted versus k for a field 
He~ 1500 G. Imiri is explained in the text. 
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formulas derived below. Here, it is only the mass 
component in the direction of the magnetic field which 
enters. 

Thus, the model used is equivalent to replacing the 
three electron and one hole ellipsoids by three spheroids 
with axes all in the binary direction. For each carrier 
the diameter is related to the cyclotron mass of that 
particular carrier while the height is related to the 
maximum Fermi velocity component in the binary 
direction. 

Since the binary axis is a principal axis of both the 
hole and heavy electron ellipsoids the maximum Fermi 
velocities in this direction are simply: vQx= ( 2 E F / ^ H ) 1 / 2 , 
where EF and ntu for the holes and for the electrons 
were taken from the paper by Jain and Koenig.11 

The light-electron cyclotron resonances arise from 
orbits on the two ellipsoids whose axes are rotated 
±120° about the trigonal axis. All the ellipses formed 
by the intersection of planes perpendicular to H and 
the ellipsoids give rise to identical values of cyclotron 
mass but, of course, different values of Fermi velocity. 
The maximum value of Fermi velocity in the x direction 
comes from the vanishingly small orbit at the point at 
which a yz plane is just tangent to the ellipsoid. 

The velocity of the electrons at this point on the 
Fermi surface is easily calculated for this orientation: 

L m0 V 
« i 

l+3ai'/a,' 
-«2 

«/ . . YJ I /2 

l + W / 0 2 
(12) 

where the primed coordinated denote the elements of 
the diagonalized reciprocal mass tensor. The final 
parameter to be put into Eq. (11) is the mean free time. 
This has been chosen somewhat arbitrarily to be 

r=0.3X10-9sec. (13) 

The mean free path affects only the sharpness of the 
peak, not its position nor the general form of the curve 
away from resonance. The numerical integration was 
done on an IBM 7090. The results are shown in Fig. 12. 
Before going on to a physical discussion of this plot it 
might be useful to consider the mathematical origin of 
one of its major characteristics, the peak at 1500 G. 
The imaginary part of the rationalized integrand of 
Eq. (10) may be written as 

Re<r 
I m j = #. (14) 

(Im<r-c2k2/4na>)2+ (Re*)2 

The three terms in the denominator are plotted in 
Fig. 13 for a field of 1250 G. As k approaches zero the 
real and imaginary parts approach their classical values: 

Re<7=-
0"0 

Im<r= 

1+(C0-WC)2T2' 

<ro(w—o)c)r 

~l+(o>-a>e)
2T2' 

(15) 

(16) 

The integrand is sharply peaked about the point where 
Imor crosses c2k2/4wu. The width of this peak increases 
as the angle of intersection decreases. Figure 14 contains 
plots of Imo- (labeled ImaT) and c2k2/4aro) for a field 
of 1500 G, corresponding to the peak in the curve in 
Fig. 12. (For simplicity, the plot of Re<r has been 
omitted. The plot labeled Imcri, will be explained below.) 
One immediately sees the reason for the peak in Fig. 12. 
It corresponds to the field for which the two functions 
are nearly tangent over a fairly large range of k values. 
Thus the integrand is a broad peak, having a contribu­
tion over this whole range and the integral is a 
maximum. 

Imoi has been computed from Eq. (11) assuming only 
one carrier, the hole. One need only change the magnetic 
field a small amount to get c2k2/4wa) to be tangent to 
Imo-i. In fact, the entire calculation has been repeated 
for a one-carrier theory and a very similar peak occurs 
at 1580 G. This is the simplified curve (Fig. 2) discussed 
in the first section. 

Nonetheless, even though the resonant field is not 
strongly dependent upon the number of carriers that 
goes into the theory, the charge cancellation resulting 
from the three carriers is an essential part of the theory 
in the high-field region. 

The local theory neglects the Doppler effect. That 
this is the only difference between the two theories is 
seen by referring to Eq. (11). The classical, or local, 
conductivity is obtained evaluating the integral when 
&=0 but one easily sees that this is completely equiva­
lent to evaluating the integral with ?;F=0 or in other 
words, neglecting the Doppler effect. 

The sharper peak at +1600 G is due to the Doppler-
shifted heavy electron. This has not been observed. 
The small peak at a low field is the previously mentioned 
dielectric anomaly. 

We turn now to a calculation of the Alfv£n wave 
velocity for an anisotropic effective mass. From 
Maxwell's equations (neglecting displacement currents) 
one obtains 

V*B=(4iw/^)*B, (17) 

where ir is the conductivity tensor and includes the 
effect of magnetic field. Strictly speaking, of course, for 
a complete nonlocal theory, the conductivity tensor 
should be written cr(£) but we have replaced <r(k) by 
the local limit «r(0). At high fields this has been shown 
to be a good approximation. Using the definition 

K=(4ww/c2)v, (18) 

» A. L. Jain and S. H. Koenig, Phys. Rev. 127, 442 (1962). 

we get, for a field in the x direction and the surface in 
the y-z plane, 

0=Ku£,+K1 2£,+K1 3E*, 

d2Ev/dx2=K2iEx+K22jE:y+K^zEZf (19) 

d2Ez/dx2= Ks iJSa+Ks^+KsA. 

By substituting Ey(x) = Ev($)e-ikx and Eg(x)=EM(0) 
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Xe~ikx, we can solve the secular equation for two values 
of k corresponding to the two normal modes: 

fa,: 
3 r /K 2 2 -K 3 3 \ 2 -|1/2 

-=fc f ) +K23K32 . 
2 L \ 2 

Making use of Eq. (18), we can rewrite this as 

(20) 

* 1 , 2 2 = 
i r/<r22-<m\ -|1/21 , , 

-±| I J + ^ a J J. (21) 
4r7ricO f — 0"22 — 0"33 T / ^ 2 2 — ^ 3 3 \ 

We see that the problem is reduced to that of finding 
the elements of the conductivity tensor. These can be 
derived from the equation: 

d\ eH. mv eE 
m—+—Xv+—=—, 

dt MQC T mo 
(22) 

Consider the case of bismuth with a large magnetic field 
parallel to the binary axis and infinite r. One obtains, 
for the electrons,12 

an 1 8 

(Toe 3f»i 3 ( ^ 1 + 3 ^ 2 ) 

c22 i r 2^4
2 

= — f»8 — 
(Toe b2L (Wi+3W 2 ) . 

0̂ 33 1 f ^ 2 Smim2 

• ] . 

(23) 

52L 3 3(mi+3m2) 

0*23 0*32 1 

0~oe &oe b 

where the m's are elements of the electron effective mass 
tensor expressed in units of the free electron mass mo, 
<roe=nee

2/iumo, and b—i\e\H/moCco=i(o)c)o/o). Here, 
we have already applied the high-field condition: V2>mi. 
For the holes, one obtains 

<W<^=(1/62)(M3), 

*iz/<r*k=(l/V)(Md, (24) 

023/vOh— — 0'32AoA= — 1/b , 

where aoh
:==nhe2/io)mo and the M's are elements of the 

hole mass tensor. ne and fih are the densities of electrons 
and holes, respectively. 

It is interesting to consider first the case of electrons 
only, which is typical of most metals. Then, of the four 
conductivity terms in Eq. (21), two are proportional 
to b"1 and two to b~2. Thus in the high-field case the 
latter terms will be negligible with respect to the former 
and one obtains 

k2=4wnea)/cH. 
12 B. Lax, K. J. Button, H. J. Zeiger, and L. Roth, Phys. Rev. 

102,715(1956). 

Waves of this form are called helicons13 and have the 
property that the velocity is proportional to Hlf2. 

Let us return to the actual case of bismuth. Here, 
although 

and 
(^23)electron^ (<*"22)electron , (^"33) electron 

(o"23)hole^ (<J"22)hole, (o"33)hole 

the total number of electrons equals the total number 
of holes and thus, 

(o -23)total= (cr23)electron+ (o"23)hole= 0 . 

Consequently it is only the diagonal elements which 
enter into Eq. (21) and we have a very different physical 
case. The two normal modes are given by 

a? f 2 ^ 4 2 } 
&i=--(47rawo)1/2| mz+M 3 -

H [ mi+3m2 
and 

co f m2 Smim2 ) 
k2=—(47mw0)

1/2 | j f i + — + . 
E I 3 3(mi+3w2)J 

These modes are Alfven modes and are the ones ob­
served in this experiment. Here, ki corresponds to a 
linearly polarized mode with the rf E field parallel to 
the bisectrix axis and k2 corresponds to the rf E field 
parallel to the trigonal axis. The quantities in the 
brackets are the dimensionless proportionality con­
stants represented by A in Eq. (5). 

Alfven waves do not necessarily propagate only along 
the field direction. As the field direction is tilted away 
from the direction of propagation (the latter remaining 
perpendicular to the surface) the velocities of the two 
modes change. The expressions for A become increas­
ingly complex. Finally when H is parallel to the surface, 
the quantity A for one of the modes becomes infinite 
(the velocity vanishes) and there remains only one 
propagating mode. The remaining mode is polarized 
perpendicular to the magnetic field. 

The results of a numerical calculation of A as H is 
tilted away from the binary toward the bisectrix are 
plotted in Fig. 10. Only the mode which remains finite 
at 8=90° is plotted. The broken line gives the angular 
dependence of A using the parameters published by 
Kao,9 the solid line using the parameter of Smith, 
Hebel, and Buchsbaum.14 The points are the values of 
A measured in this experiment assuming a density of 
carriers6 equal to 3.0X1017 cm-3. 

The results of the same calculations and measure­
ments for the case of H tilted toward the trigonal axis 
are plotted in Fig. 11. 

The fit to both of these models is quite good and it 

13 P. Aigrain, in Proceedings of the International Conference on 
Semiconductor Physics, Prague, 1960 (Czechoslovak Academy of 
Sciences, Prague, 1961). 

14 G. E. Smith, L. C. Hebel, and S. T. Buchsbaum, Phys. Rev. 
129, 154 (1963). 
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might be difficult to use an experiment of this type to 
distinguish between them. However, there is one 
characteristic of Fig. 11 which fits Kao's model much 
better than that of Smith, Hebel, and Buchsbaum. That 
is the dip when H is near the trigonal axis. The experi­
mental points clearly show this dip and so does the 
broken theoretical curve. The maxima are separated 
from the minimum by about 5°, equal to the tilt angle 
of the electron ellipsoids. There is an extremely small 
dip predicted for the solid curve at 90°, but it is less 
than the thickness of the line and has not been plotted. 

IV. EXPERIMENTAL METHOD 

The absorption was studied in single crystals of 
bismuth that formed part of the walls of X-band 
cavities. Both cylindrical T E m and rectangular TE102 
cavities were used. In the former case the dc magnetic 
field was provided by a solenoid wound coaxial with the 
cavity. For the tilted-field experiment a Helmholtz pair 
was added in series with the solenoid permitting the 
field to be tilted up to a maximum of 20 deg. The 
rectangular cavity was used in conjunction with a 
Varian magnet. By rotating the cavity within the 
Dewar it was possible to tilt the field a full ±90° from 
the normal. The absorption was detected with the use 
of a microwave bridge employing a magic tee. For some 
of the runs, field modulation and lock-in detection were 
used. The temperature was reduced below the lambda 
point by pumping in order to reduce the noise due to 
bubbling. The crystals were grown in air, x-ray oriented, 
spark-cut and spark-planed, and finally either chemic­
ally polished or electropolished. 

V. CONCLUSIONS 

The most significant result of this work is the experi­
mental verification of the necessity of using a nonlocal 
theory to describe completely the phenomenon of 
cyclotron resonance. Equation (4) provides the connec­
tion between cyclotron resonance and Alfv6n wave 
propagation. The measured Doppler shift is directly 
related to the ratio of the Fermi velocity of the holes to 
the Alfv6n velocity. The latter was measured directly 
at fields which varied from approximately 30% larger 
than the resonance field to those about five times greater 
than the resonance field. Experimental values of the 
Alfv6n wave number &A, the hole effective mass, and 
the applied frequency were combined with the Fermi 

velocity of the hole in the binary direction derived from 
the expression vF- (2£F/WH) 1 / 2 using published param­
eters.11 The results are a predicted Doppler-shifted 
resonant field of 1380 G for the case where the rf field is 
polarized along the trigonal direction and 1320 G when 
the rf is polarized along the bisectrix direction. The 
observed resonant fields corresponding to these two 
cases were 1530 and 1465 G, respectively. 

The quantitative accuracy of Eq. (4) can be estimated 
by substituting in it the same effective masses and 
Fermi energy which were used in the nonlocal integral 
illustrated in Fig. 12. With these values Eq. (4) predicts 
a Doppler-shifted resonance at 1225 G, approximately 
250 G below that predicted by the more complete 
theory. Thus the discrepancy is in the same direction 
and about the same size as that between the field 
predicted by substitution of an independently measured 
value of UA into Eq. (4) and the experimentally observed 
resonant field. The use of UA in Eq. (4) is equivalent to 
extrapolating the linear absorption region in Fig. 12 all 
the way back to the peak at 1500 G. Presumably, the 
discrepancy is due to the fact that this extrapolation is 
not completely valid. 

An original objective of this work had been the 
independent measurement of the Fermi velocity. If 
Eq. (4) is solved for VQX with experimental values 
substituted for all other quantities, one obtains for 
the Fermi velocity of the holes in the binary direction 

t?F=3.4X107 cm/sec. 

The fractional difference between this number and 
the velocity given by the ellipsoidal model, 

vF= (2£Jp/mn)1/2=2.5X107 cm/sec, 

is considerably greater than the fractional discrepancy 
between predicted and observed resonant fields. Because 
of the above argument it is not surprising that this 
somewhat limits the usefulness of this method for 
determining vF. 
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