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A theoretical analysis of the symmetry properties of crystalline rutile is made, leading to the conclusion 
that the isotropic solution of the local field equations for this material is correct. I t is shown that this con­
clusion is supported by the experimentally determined isotropic nature of the magnetic susceptibility of 
rutile. The isotropic solution of the local field equations yields a value for the electronic polarizability of the 
titanium ion in rutile of <*j> = 2.2 A3, an order of magnitude greater than the free-ion values usually assigned 
to the Ti4+ ion. This result is supported by a correlation of the ionic sizes as obtained from an electron-
density map of rutile determined by x-ray analysis with the polarizabilities in a manner described previously. 
In addition, this conclusion is in reasonably good quantitative agreement with a theoretical prediction made 
previously of the effect of the crystalline potential on the cation polarizability. The results of this study 
give a specific example of a conclusion arrived at in an earlier work to the effect that a cation polarizability in 
a crystal may be many times its free-ion value. Moreover, it demonstrates the unreliability of the usually ac­
cepted additivity rule for the ionic radii. 

I. INTRODUCTION 

RUTILE is a crystalline material whose unusual 
properties have attracted the attention of numer­

ous investigators. Although the large body of informa­
tion available regarding this substance facilitates its 
theoretical study, it would appear, at least at first 
glance, that its strongly anisotropic properties would 
make such a study extremely difficult. However, it will 
be shown in this work that this very anisotropic nature 
of rutile can be utilized in reaching certain conclusions 
regarding its properties which have much wider signifi­
cance with regard to other crystalline materials. 

In a previous study,1 the electronic polarizabilities of 
ionic crystals were analyzed by means of the product 
approximation, which distinguishes groups of electrons 
in the crystal, but allows for their overlap and mutual 
interaction. From this procedure, relations were derived 
which yielded numerical values for the polarizabilities 
of the ionic constituents of the alkali halide crystals in 
good agreement with experimentally determined values. 
Moreover, the results of this study indicated that large 
fluctuations in the polarizabilities of ions can occur when 
they are placed in different crystalline environments. 

In this work, which in many ways is an extension of 
the previous study from a somewhat different point of 
view, the rutile crystal will be analyzed within the ap­
proximate framework used previously. In particular, it 
will be viewed as an ionic crystal, and its properties 
studied by means of a single configuration generalized 
antisymmetric product wave function. A theoretical 
study of the directional properties of ionic constituents 
in crystals will be applied to an analysis of the observed 
directional properties of the magnetic susceptibility of 
rutile. This information added to that obtainable from 
the anisotropic optical properties of this material will 
enable an assignment of values to the polarizabilities of 
the constituent ions. The results achieved in this manner 
will be shown to confirm the conclusions reached earlier 

1 A. R. Ruffa, Phys. Rev. 130,1412 (1963). In the following dis­
cussion, this work will be referred to as I. 

in that the value of the polarizability of the Ti4+ ion in 
rutile is found to be an order of magnitude greater than 
the value usually assigned. Moreover, this conclusion is 
substantiated by an analysis of the extension of the ions 
in a manner discussed previously in I. It is hoped that 
this work will prove valuable not only with regard to its 
conclusion, which departs greatly from the usually held 
notions having to do with ions in crystals, but also with 
regard to the method of analysis, which is applicable to 
the study of other crystalline materials as well. 

II. ANALYSIS OF THE MAGNETIC PROPERTIES OF 
IONIC CRYSTALS WITH APPLICATION 

TO RUTILE 

General Analysis 

In general, the contributions to the magnetic sus­
ceptibility of a crystalline system which does not 
undergo a ferro- or antiferromagnetic transition may be 
grouped into three categories. The first contribution is 
paramagnetic and obeys the Curie law (oc 1/T) temper­
ature dependence. This contribution arises from the 
permanent magnetic moments resulting from the spatial 
and/or spin degeneracy of the ground state and low-
lying excited states (states energetically separated from 
the ground state by an amount comparable to kT) or, 
more generally, from the statistical average of the mean 
square moments of the ground and low-lying excited 
states. The second contribution is also paramagnetic, 
but not temperature dependent, and is a second-order 
effect resulting from the induced magnetic polarization 
of the ground state by the external magnetic field. The 
diamagnetic contribution falls into the third and final 
category.2 

The ionic crystals of the type under consideration 
here do not exhibit the Curie-law paramagnetism be­
cause their electronic ground states are nondegenerate 
and energetically separated from the lowest lying ex-

2 See, for example, J. H. Van Vleck, The Theory of Electric and 
Magnetic Susceptibilities (Oxford University Press, New York, 
1932) for a detailed discussion. 
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cited states by an amount of the order of several electron 
volts. Parenthetically, then, it may be seen that the 
temperature at which such a crystalline material begins 
to display a magnetic susceptibility component that in­
creases with decreasing temperature is a measure of the 
concentration of impurity ions in the crystal having 
permanent magnetic moments.3 It is apparent, then, 
that the magnetic susceptibility of the intrinsic ionic 
crystal is independent of temperature and has a sign de­
pendent upon whether the paramagnetic or diamagnetic 
contribution is greater in magnitude. At this.point, it is 
necessary to examine these two contributions in greater 
detail in order to gain some insight into their analytic 
behavior. 

The paramagnetic contribution is obtained from 
second-order perturbation theory and, if the magnetic 
field is in the z direction, is given by2 

xpara= («*/2«V) E I (yIU | y') | V-EVT , (1) 

where Eyry~Ey'—Ey and 
N 

LH is the z component of the orbital angular momentum 
operator for the ith electron and N is the number of 
electrons.4 This expression is similar to that for the 
electronic polarizability discussed in I, and may be ana­
lyzed in a similar fashion. Expression (1) may be 
rewritten 

Xpara= («»/2*V) (l/tiU) E I <7 I L . | V) | 2 , (2) 

where the quantity EM is a magnetic mean excitation 
energy which is to be distinguished from those discussed 
in I associated with the electronic polarizability. Ap­
plying the principle of spectroscopic stability5 in the 
same manner as in I, one may note that 

E | (T|U|T ' )!2= E l<7iU|7')l2= E KTIL.IV)!2-
7V7 Y'^Y Y V Y 

3 From a localistic point of view, the wave function of a close-
shell ion cannot be induced to acquire any spatial degeneracy by a 
crystalline potential, regardless of its degree of symmetry, for the 
following reason. The crystalline potential acting upon the given 
ion must have contributions each of which transform according to 
the irreducible representations of the point group of the lattice 
points surrounding the ion. The resulting perturbed ionic wave 
function, however, will only have, to first order, a contribution 
which transforms according to the identity representation, which 
is one dimensional. As a result, the perturbed wave function is 
nondegenerate to first order. If it happens that higher-order de­
generate contributions are nonnegligible, then a local Jahn-Teller 
distortion of the lattice points surrounding the ion in question 
takes place of a magnitude sufficient to remove the degeneracy. 

4 There is no spin contribution since the ground state is a singlet 
state. 

6 A detailed discussion of the validity of the directional inde­
pendence arguments used here is given in the Appendix. 

Consequently, (2) may be written 

Xpara=(eV6mV)(l/JM)<7|L2|7), (3) 

where advantage has been made of the fact that 

<7|L,|7>=(7|W|7)=<7|U|7)=0 

for the nondegenerate ground state,2 and where L2= L*2 

+ L/+LA 
In a discussion in I, it was shown that within the 

framework of the product approximation, the expression 

M 

<7|X2 |7>=E<7|X/|7>, 
i—1 

and similar expressions for the y and z coordinates are 
valid for a material having no net electric dipole mo­
ment. Here X is the sum of the x coordinates of all N 
electrons of the system, Xi is the sum of the x coordi­
nates of the fii electrons of the ith ion, and M is the 
number of lattice points. Similarly, it is shown in the 
Appendix that, for such a material, the relation 

M 

(7 |L2 i7)=E<7|L i
2 |7) 

is valid, where 

and LixJ L,y, and L^-are the sum of the x, y, and z com­
ponents, respectively, of the orbital angular momentum 
operators for the electrons of the ith. ion. 

Making use of the fact that these materials under 
consideration are magnetically dilute so that the effec­
tive local magnetic field acting upon a given ion is 
essentially the same as the external applied field, Eq. (3) 
becomes 

M 

XPara= (e2/6mV) (1/ EM) E <71U17>. (4) 

In terms of the contributions of the ionic constituents, 
(4) becomes 

M M 

Xpara= £ X W = (eV6mV) E <71U | y)/EMi, (5) 
i==l *—1 

where, in analogy with the discussion in I, 

M M 

^ = E x w J W E * w (6) 

Written in the manner of (5), it may be seen that the 
paramagnetic contribution to the susceptibility arises 
from the fact that the crystalline interaction makes it 
impossible to choose spherically symmetric probability 
amplitudes for the ionic electron groups which would 
render the (y | L? \ y) equal to zero. 

The diamagnetic contribution arises from the term of 
second order in the magnetic field in the Hamilton, and 
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if the field is in the z direction, is given by 

Xdia= (e 2 /4^ 2 ) f (y | xf+y* \ y), (7) 
1-1 

where %j and y3- are the coordinates of the individual 
electrons. Making use of the matrix sum rule, 

<7|*/l7>= £ \(y\xAy')n\(y\xj\y)\K (8) 
yt^y 

With similar expressions for the y3- and zj, one may again 
utilize the principle of spectroscopic stability which 
indicates that 

£ KYW7'>I2= £ \(y\yj\y')\2= £ KTNT')!2-
yljty yl^y 7>;*£,y 

It may be seen that expression (7) for the diamagnetic 
susceptibility then reduces to the directionally invariant 
one 

X d i a = ( ^ / 6 ^ 2 ) E < 7 k / | 7 } , (9) 
j==i 

where <7k/|7>= =<7|*/+y/+2/|7>, if the material in 
question displays no net electric dipole moment, i.e., if 

<7 |X|T)=iV<T|^|7) = 0=(7 |Yl7) = <7|Z|7). 

Expression (9) is, of course, directly separable into the 
sum of the contributions of the ionic constituents by the 
use of a double sum: 

M M ni 

Xdia= £ Xidia= (?V(>mc*) £ £ <7 \rf 17) • (10) 

It is apparent from the above discussion that both 
contributions to the magnetic susceptibility are inde­
pendent of direction if the crystal as a whole possesses 
inversion symmetry. Consequently, one may conclude 
that the absence of an electric dipole moment in an ionic 
crystal is a sufficient condition for the directional in-
variance of its magnetic susceptibility. As a corollary to 
this statement, one may infer that, in general, the con­
ditions of internal symmetry of an ionic crystal are 
usually such that the directional invariance of its mag­
netic susceptibility is direct evidence of the fact that it 
does not possess an electric dipole moment. 

Application to Rutile 

The above discussion of the magnetic properties of 
ionic crystals may be used in the analysis of the careful 
measurement of the magnetic susceptibility of rutile 
made recently by Senftle, Pankey, and Grant.6 The 
temperature independence of the susceptibility above 
55°K measured by these workers is an excellent indi­
cation of the high purity of the specimens used. Al-

8 F. E. Senftle, T. Pankey, and F. A. Grant, Phys. Rev. 120, 820 
(1960). 

though the increase in the susceptibility at liquid-helium 
temperature was explained on the basis of the possible 
existence of Ti3+ sites resulting from oxygen loss in too 
small a concentration to be detectable, the admittedly 
large experimental error in this region probably was 
responsible for most of the increase. 

The positive sign of the susceptibility found by these 
investigators indicates the dominance of the paramag­
netic term from which one may infer the existence of a 
large distortion of the ionic probability amplitudes from 
spherical symmetry. More important from the stand­
point of this study, however, is the fact that the sus­
ceptibility of single-crystal rutile was found to be inde­
pendent of the orientation of the crystal axis with 
respect to the magnetic field. This finding, although 
surprising to these investigators because of the strongly 
anisotropic dielectric constant of rutile, is nevertheless a 
direct indication of the absence of a net electric dipole 
moment in this material, since its crystal structure does 
not admit the possibility of nonzero but equal electric 
dipole moments in the x, y, and z directions. This con­
clusion is in accord with the fact that rutile is not ob­
served to undergo a ferroelectric transition down 
to 1.6°K.7 

III. DETERMINATION OF THE POLARIZABILITIES 
OF THE IONIC CONSTITUENTS IN RUTILE 

By making full use of a detailed analysis of the in­
ternal symmetry of crystalline rutile, it is possible, with 
only the simplest of assumptions and the use of the 
information discussed above, to arrive at unique values 
for the electronic polarizabilities of its ionic constituents. 
The polarizabilities of the oxygen and titanium ions 
parallel and perpendicular to the c axis constitute the 
four unknown quantities. The optical birefringence of 
rutile provides two of the four conditions necessary to 
obtain unique values for these four unknowns. It is 
shown below that the other two conditions are given by 
the effective directional invariance of the electronic 
polarizabilities of the ions. 

In the notation of I, the polarization of the crystalline 
system is given by 

M 

p = ( 2 e y J 3 s ) E ^ ( 7 l ^ | 7 ) , (ii) 

where Si is the effective local field acting upon the ith. 
ion, and E3s is the mean excitation energy of the third 
kind for the system defined in I. The quantity (71 X?\ 7) 
may be set equal to the sum of | (-y | JT̂  | T) 12 and the 
directionally independent quantity 

E !<7l W>!2-

In a material possessing over-all inversion symmetry, 
the (71 Xi 17) are either all zero, or cancel pairwise. It is 

7 R. A. Parker, Phys. Rev. 124, 1719 (1961). 
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evident that, in the first case, the ionic polarizabilities 
are directionally invariant. In the second case, there is 
an effective directional independence of the ionic 
polarizabilities if the local fields at the ions having oppo­
site transformation properties under the inversion 
operation are equal. In this case, the effects of the dipole 
moments cancel, and the total polarization is the same 
as if no dipole moments existed, and is equal to the sum 
of the directionally invariant contributions. 

In the case of rutile, the titanium sites are at Wyckoff 
positions a with point symmetry mmm. This position 
has a center of symmetry so that the titanium ions do 
not acquire an electric dipole moment from the lattice 
environment. On the other hand, the oxygen ion sites 
are at Wyckoff positions / with point symmetry mm, 
which does not have a center of symmetry. However, 
these sites can be taken in pairs in which the environ­
ment of one is the mirror image of the other.8 Conse­
quently, any electric dipole moment acquired by the 
ions of these pairs as a result of the effect of the lattice 
environment cancel. 

Detailed analyses of the local field at the lattice sites 
of rutile have been carried out independently and almost 
simultaneously by Parker9 and by Bolton, Fawcett, and 
Gurney (BFG).10 In each of these two studies, the local 
field acting on a given ion was expressed as a sum of the 
resultant field due to dipoles inside a cavity and a 
continuum region outside the cavity. In the first study, 
the dipole sum was calculated by the Ewald-Kornfeld 
method, which is equivalent to performing a sum inside 
a spherical cavity of dimension large enough to insure 
the convergence of the sum. The second study, in con­
trast, noted that finite sums performed inside spherical 
cavities do not converge uniformly to a fixed value, but 
instead oscillate about the point of ultimate conver­
gence. In order to obtain uniform convergence, they 
chose cavities of successively larger sizes having the 
shape of the crystalline unit cell. The components of the 
Lorentz factor were then obtained by extrapolation of 
these results to a cavity of dimension large enough to 
Insure convergence. It would appear that these two 
procedures should yield the same results, but as is dis­
cussed below, they do not. Since the Ewald-Kornfeld 
method used by Parker should yield the correct value of 
convergence of the dipole sum, it is possible that the 
extrapolation procedure which was used by BFG was 
not completely accurate. 

In both of these studies, the local-field equations were 
solved by assuming a small value for the titanium ion 
polarizability, and values for the oxygen ion polariza-
bility in the direction of the c axis and in the [110] 
direction were obtained. Parker chose the Pauling value 
0.187 A3 while BFG chose the value 0.20±05 A8 for the 

8 International Tables for X-ray Crystallography (Kynoch Press, 
Birmingham, England, 1952), Vol. I, p. 236. 

9 R. A. Parker, Phys. Rev. 124, 1713 (1961). 
10 H. C. Bolton, W. Fawcett, and I. D. C. Gurney, Proc. Phys. 

Soc. (London) 80, 199 (1962). 

titanium ion polarizability. The values which they ob­
tained for the oxygen ion polarizability in the c direction 
for X=5893 A are almost identical, but Parker's value 
is somewhat larger for the value of the polarizability in 
the [110] direction. It is interesting to note that BFG 
solve the local-field equations for the isotropic case, i.e., 
the case in which the oxygen and titanium polariza­
bilities are independent of direction, but rejected the 
result because of the large value of the titanium 
polarizability obtained. The solution for X= oo which 
they obtained was ay=2.73 A3 and a0=0.59 A3 for the 
titanium and oxygen ion polarizabilities, respectively. 
Parker's local-field equations have been solved by the 
author for the isotropic case11 for X= oo, and the values 
a ^ 2.20 A3 and a0=0.86 A3 have been obtained. The 
two sets of results are not as inconsistent as they may 
appear since small differences in the calculated values of 
the components of the Lorentz factor can result in 
relatively large differences in the polarizabilities calcu­
lated from the isotropic solution of the local-field equa­
tions. Since Parker's calculation seems more reliable, the 
values ay=2.20 A8 and QJ0=0.86 A3 are used in the dis­
cussion from here on. 

On the basis of the analysis in Sec. II, the isotropic 
solution is in fact the correct one, in spite of the fact 
that this value of OLT is an order of magnitude greater 
than the usually quoted free-ion values. As was pointed 
out previously,9 the crystalline symmetry of rutile is 
such that when the electric field is applied in the direc­
tion of the c axis, the polarizations of the titanium ions 
equal each other as do those of all the oxygen ions. When 
the field is applied perpendicular to the c axis, the 
polarizations of the titanium ions as well as those of the 
oxygen ions are again equal in the direction of the field, 
while the cross polarizations cancel. In the special case 
when the field is applied in the [110] or [110] direc­
tions, the cross polarizations vanish. Consequently, one 
may conclude from this that any localized electric dipole 
contributions to the total polarization cancel in rutile, 
and, therefore, the macroscopic electronic polarization 
of rutile is uniquely determined by the directionally 
independent contributions to the polarizabilities of the 
ions. 

While the electric dipole moments of the oxygen ions 
in the absence of an external field cannot be determined 
from the macroscopic properties of the rutile crystal, the 
isotropic solution of the local-field equations gives the 
magnitude of the oxygen polarization induced by the 
applied field, which is also independent of direction. It 
is evident that this conclusion is in strong disagreement 
with the usual view that the polarization in oxide ma-

11 I t is important to note that three of the four equations (12) of 
Ref. 9 concerning the local fields when the applied field is in the 
* direction contain misprints. In particular, the first equation 
should contain as a contribution P3x2 (Jizxx+fnxx) rather than 
Pzx2(fizxx+fuxx); the third equation should contain Pzxifuxz 
•i-fzixx+fzbxx+fzbyy) rather than PZx (fuxx+fuxx+fibxx+fnxy); 
and the fourth equation should contain Pzx(Jiixx-hfuxx—fisyy 
—fzBxx) rather than Pzxifiixx+fuxx—fmxx—fuxV). 
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terials such as rutile is due mostly to the contribution of 
the oxygen ions, while the cations are assigned their 
nominal free-ion polarizabilities, which are usually com­
paratively small in magnitude. That the polarizability 
of the titanium ion in rutile is an order of magnitude 
larger than its free-ion value may seem to be a re­
markable conclusion, but it is shown in the next two 
sections that this result is in agreement with the analysis 
and conclusions reached in I. 

IV. CORRELATION OF THE IONIC 
SIZES AND POLARIZABILITIES 

By application of the Thomas-Kuhn sum rule, it was 
demonstrated in I that a simple approximate relation­
ship exists between the quantity 

R*=Z\(y\x+Y+z\y')\2 

for an ion, where X, F, and Z are the sum of its elec­
tronic x, y, and z coordinates, and its electronic polariza­
bility a. In particular, the relationship between the 
polarizabilities of two different ions, ai and a2, and the 
quantities Ri and R% is given by 

ai/a2^Ri4n2/^
4ni, (12) 

where n% and n% are the number of electrons in these 
two different ions. If an ion has no electric dipole mo­
ment, i.e., if 

< T |X | 7 )=(7 |F |7)=<7 |^ |T)=0, 
then 

so that the quantity R may be used as a convenient 
measure of the extension of the ion. 

As discussed previously, the titanium ion occupies a 
position possessing inversion symmetry in rutile, while 
the oxygen ion does not. Equation (12) may still be 
applied to a discussion of these two ions, however, if the 
induced polarization in the oxygen ion resulting from its 
lattice environment is not excessively large, and its 
contribution to the extension of the ion can be estimated. 

Some information regarding the relative extensions of 
ions in a crystal may be obtained from a Fourier pro­
jection of its electron density determined for x-ray 
analysis. Determination of the shapes and, to a lesser 
extent, the sizes of ions lie near or possibly beyond the 
limit of accuracy of x-ray techniques at the present 
time. In particular, the truncation effect, caused by the 
fact that only a limited number of reflections are ob­
servable, limits the number of terms which can be 
determined in a Fourier expansion of the electron 
density.12 This can result in pronounced distortions in 
the calculated electron density. Moreover, it is apparent 
that Eq. (12) gives the ratio of the ionic radii as a very 

12 See, for example, H. Lipson and W. Cochran, The Determina­
tion of Crystal Structures (G. Bell and Sons Ltd., London, 1955) 
for a detailed discussion of the inaccuracies involved, 

slowly varying function of the ratio of the polariza­
bilities, so that the radii are insensitive to large varia­
tions in the estimates of these quantities. In spite of 
these difficulties, it is believed that analysis of an 
electron density map for rutile can distinguish between 
two estimates for the polarizability of the titanium ion 
which differ by an order of magnitude. In particular, if 
one estimates that ar=0.20 A3, then both the equations 
of Parker and BFG yield a value for «o in the c direction 
of approximately 2.4 A3. Noting thatnr= 18 and m= 10, 
one finds that this estimate yields an RQ almost twice as 
great as i?r. On the other hand, the correctness of the 
estimate «r=2.2 A3 and a0=0.86A3 results in an RT 
which is actually larger than R0 by some 45%—a result 
quite contrary to the usually accepted picture. 

A Fourier projection of the electron density of rutile 
on the (001) plane has recently been published by 
Baur.13 While it is difficult to estimate the accuracy of 
such a map, it is of interest to examine its main features 
in an attempt to obtain the type of information dis­
cussed above. First, it is evident that the electron 
density of the oxygen ion is more extended toward the 
titanium ion than at right angles to this direction. This 
is entirely plausible in view of the anisotropic distorting 
influence which the lattice environment has on the 
oxygen ion. More important, however, is the fact that 
the extension of the titanium ion on this map is equal to 
or somewhat greater than that of the oxygen ion. 

With specific reference to the two estimates of the 
polarizability discussed earlier, the titanium-oxygen 
separation of 1.96 A means that if the estimate 
<XT=0.20 A3 is correct, then according to (12) the ex­
tension of the titanium ion is only 0.75 A, a value 
slightly greater than the Pauling ionic radius. If the 
value a^ =2.2 A3 is correct, however, the extension is 
instead about 1.15 A. Figure 1 shows a reproduction of 
Baur's Fourier projection with the relevant titanium 
radii marked off on it. The 0.75-A radius lies wholly 
beneath the solid 2.0 ek~2 contour on the map. It is evi­
dent that this radius is well within the region in which 
the titanium ion is well defined. On the other hand, the 
dotted arc of 1.15-A radius traverses a region of mini­
mum electron density and consequently seems to be 
more representative of the extension of the titanium ion. 
The only exception to this is in the small region along 
the line joining the titanium and oxygen nuclei in which 
the oxygen electron density is appreciable. As concluded 
previously, this is a result of the induced electric dipole 
moment in the oxygen ion resulting from its anisotropic 
lattice environment. Since the quantity R can be used 
as a measure of the extensions of the ions only if the 
effect of any such dipole moment is discounted, it is 
evident that this rise in the oxygen electron density does 
not in itself place any doubt on the value of 1.15 A for 
the extension of the titanium ion. 

One may conclude then that, within the limitations 

13 W. H. Baur, Acta Cryst. 9, 515 (1956). 
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FIG. 1. Fourier projection of the electron density of rutile on 
the (001) plane (after W. H. Baur12). The dotted arc of radius 
0.75 A would be the radius for the Ti4+ ion if its polarizability were 
0.2 A3. I t may be seen that the circular arc of 1.15-A radius corre­
sponding to a polarizability of 2.2 A3 is much more representative 
of the extention of the titanium ion. 

of the accuracy of electron-density determinations men­
tioned above, the analysis of the electron-density map of 
rutile strongly confirms the conclusion reached in the 
study of the local-field equations, namely, that the 
titanium ion does have a very large polarizability of 
2.2 A3 in the rutile crystal. 

V. ORIGIN OF THE LARGE TITANIUM 
ION POLARIZABILITY 

The conclusion that the polarizability of the titanium 
ion is an order of magnitude greater than the free-ion 
value is in qualitative agreement with the conclusion of 
I, namely, that the effect of the Madelung potential can 
greatly increase the polarizability of a cation in a 
crystal. This is demonstrated by the theoretical re­
lationship derived in I between the free-cation polar­
izability af

+ and its value in the crystal ac
+ 

af+/a+= (Ef+-eVM)2/(Ef+y, (13) 

which gave favorable agreement with empirically de­
termined cation polarizabilities in the alkali halides. 
Here VM is the Madelung potential at the cation site 
and E/+ is the meanex citation energy of the first kind 
for the free ion defined in I and given by the relation 

(£f+y= e2h2n/4w2maf
+, (14) 

where n is the number of electrons in the ion. It is 
apparent that, according to (13), the cation polariza­
bility can be profoundly influenced by a large Madelung 
potential. 

At this point, it is of interest to apply Eq. (13) to a 
quantitative estimate of the effect upon the titanium 

polarizability of the Madelung potential in rutile. The 
Madelung energy of rutile was calculated by means of 
the Ewald procedure by Bollnow,14 who expressed the 
result as a sum of six parameters associated with the six 
different lattice sites in the unit cell. Each of these 
parameters is in turn a sum of two infinite summations. 
The Madelung energy as well as the electrostatic po­
tentials at the cation and anion sites are proportional to 
linear combinations of these six parameters. Unfortu­
nately, Bollnow in giving the result for the Madelung 
energy listed the values of only two of these six parame­
ters. Because of this, the infinite summations for the 
other four parameters had to be reevaluated.15 

The magnitude of the Madelung potentials at the 
cation and anion sites in rutile were found to be greatly 
different. This difference may be summarized in the 
following way. The molar Madelung energy of a crystal 
is given by 

M 

Uu=h £ ' eiej/rii=0VNAh/8o, (15) 

where e* and e, are the net charges of the ith and yth 
ions, fa is their separation, p is the least common factor 
in the valences of the ions, Ah is the Madelung constant 
associated with a characteristic equilibrium separation 
$o, and N is Avogadro's number. The left side of Eq. 
(15) may be rewritten 

M MM M 
\ Y! eiej/fij^ \ E ej E et/r^=\ E ejVj, (16) 

i,j J * i 

where Vj is the Madelung potential at the jth lattice 
site. For rutile, this expression becomes 

M N Ne 
I £ ^y=-(«r iF T i+2*>J r o) = — ( 4 F T i - 4 F 0 ) 

3 2 2 

(yTi-Vo) 
= Nep , (17) 

2 
where FTI and Vo are the Madelung potentials at 
titanium and oxygen ion sites, respectively. Comparison 
of the right-hand sides of (15) and (17) indicates that 
the mean Madelung potential at a lattice site in rutile is 
given by 

i(VTi-Vo) = Vav=eA8o/8o. (18) 

The nearest-neighbor distance in rutile is 1.96 A, while 
the corresponding Madelung constant is 4.816. There­
fore, the quantity eVav is equal to 35.4 eV. It was found 
that FT i= 1.264 Fav while Fo= -0.736 Fav. Conse-

" O. F. Bollnow, Z. Physik 33, 741 (1925). 
15 The following misprints were found in the equations for these 

sums printed on p. 750 of Bollnow's paper. The sum Z>2 should 
contain G(8Rd) rather than G(dRc); the sum E2 should contain 
G(&Re) rather than G(8RC); and the sum Fi should contain the 
factor COS2TT7(/I—h) rather than cos27r(/i—/2). 
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quently, the value of eV^i is 44.8 eV while that of eVo is 
-26.1 eV. 

Since the magnitude of the Madelung potential in 
rutile is much greater at a cation site than at an anion 
site, its effect upon the cation polarizability is quite 
pronounced. The value of the free-cation polarizability 
a/+ necessary to produce the value of 2.2 A3 in the 
crystal is, according to (13), equal to 0.32 A3 when VM 
is 44.8 eV. This is somewhat larger than the values 
usually given for the Ti4+ ion which approximately 
range between 0.2 and 0.3 A3. However, the agreement 
is good enough to indicate that the analysis of I, 
which is based on a purely ionic model, is quantitatively 
consistent with the result obtained from the analysis of 
the local-field equations, particularly in view of the 
simplifying approximations used in arriving at the 
theoretical relationship (13). 

VI. CONCLUSIONS 

The theoretical analysis developed in I for the study 
of ionic crystals coupled with a detailed study of the 
crystal symmetry of rutile has led to the conclusion that 
the isotropic solution of the local-field equations for 
rutile is the correct solution. This conclusion is sup­
ported experimentally by the isotropic nature of the 
magnetic susceptibility of rutile. The isotropic solution 
gives a value for the titanium ion polarizability an order 
of magnitude larger than the free-ion values usually 
assigned to this ion in crystals. This result is supported 
by a correlation of the ionic sizes as obtained from an 
electron density map with their polarizabilities in a 
manner described in I. Moreover, this result is in 
reasonably good quantitative agreement with a theo­
retical prediction of the effect of the crystalline inter­
action on the cation polarizability discussed in I. 

This study gives a specific example of a situation 
which, as was inferred in I, can result in a cation 
polarizability becoming many times its free-ion value in 
a crystal. It is believed that studies of other materials 
can give similarly startling examples of the invalidity of 
the additivity rule for electronic polarizabilities of ions 
in crystals. Moreover, it is also apparent that the 
additivity rule for ionic sizes is also invalid, although not 
in such an obvious manner. In general, the ionic size is a 
slowly varying function of the magnitude of the crystal­
line potential, although in this case the size of the 
titanium ion is more than 50% greater than the usually 
accepted Pauling radius. Moreover, the oxygen ion, 
because of its relative instability, is highly susceptible to 
the magnitude of the distorting influence acting upon it, 
and is obviously a poor choice for a standard upon which 
to base the radii of ions according to the additivity rule. 

These conclusions are, of course, greatly different 
from the usually held concepts regarding ions in crys­
tals. It is hoped that this work will be of value in lending 
further understanding to the nature of ionic properties 
in crystals. 

APPENDIX A. RELATIONSHIP BETWEEN <rlL2]y) 
AND THE <YIWIY> FOR IONIC CRYSTALS 

HAVING INVERSION SYMMETRY 
It is convenient in this discussion to proceed as in I 

and consider an orthogonalized basis set of ionic wave 
functions. This is because of the fact that the demon­
stration for a set of overlapping natural ionic wave 
functions, though similar to that for an orthogonalized 
set, is considerably more involved because of the much 
greater number of integrals which must be considered. 

As was discussed in I, the one- and two-particle 
density matrices for a system described by a generalized 
antisymmetric product of orthogonalized ionic wave 
functions are given by 

M 

Y ( X I / | X 1 ) = E ^ ^ ( X I , | X 1 ) , (Al) 

r(xi;x2'|xix2) 

= Er,{^}(x1
,x2

/|x1x2) 

M 

+ E ' ^ ^ ( x i l x x h / ^ ' K x / l x s ) 

M 

- Z ' yiW(x/1x2)y^\(x,;|xx). (A2) 

The expectation value of L^2 is given by 

<7|L*2|Y>= E ( T | ^ 2 | 7 > + £ ' < 7 | i - i ^ | 7 > , (A3) 

which, making use of (Al) and (A2), may be written 
<Y|L*2|Y> 

M r 

M r 

M r 

+ £ ' LxlLX27il*i 
i , /-l J 

M r 

' | Xi) dxi 

^Xi'x2 ' |XiX2)i 

KxilxOYi**1' 

\(x1
f\xi)yiW 

X\dx2 

K*.'l 

»(*'! 

| x2) dxidx2 

Xi)dxidx2. (A4) 

The first two terms of (A4) comprise X ^ - I ^ Y I L ^ I Y ) -
The third term is a double sum of terms of the form 

/ Lstfii**) (x/1xt)dxi j L^y^n (x2'1x2)dx2, 

which is a product of the net orbital moments of the ith 
and yth ionic constituents. By the argument of footnote 
3, the probability amplitudes of all the ionic constitu­
ents are nondegenerate, so that their orbital moments 
vanish. Consequently, the third term vanishes. The final 
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term involves a sum of integral products of the type 

/ LxlSij(xi)dx! / LX2Sij(x2)dx2, 

where Sij(xi) is an overlap integral for the ionic wave 
functions ^ and \f/j in which the integration is over all 
electronic coordinates except the only common one, xx. 
If one notes that LXl= —ift[xi(d/dyi)—yi(d/dxi)~], then 
it is evident that the integrals J*Xi(d/ dyi)Sij(xi)dxi and 
fyi(d/dxi)Sij(xi)dxi vanish because of the inversion 
symmetry of the system, since for every contribution to 
the integrals at the points +#i and +yi, there is a 
contribution of equal magnitude to a similar integral at 
—Xi and — y\. As a result, the final term also vanishes. 

When one carries through this argument for the y 
and z components also, one concludes that 

M 

{y\U\i)=Y.{y\U\t) 

for an ionic crystalline system having inversion sym­
metry, which is the desired result. 

APPENDIX B. THE DIRECTIONAL INDEPENDENCE 
OF THE ELECTRONIC SUSCEPTIBILITIES OF 

IONIC CRYSTALS 

According to the previous discussion, the directional 
independence of the electronic susceptibilities rests upon 
the directional independence of infinite sums of the form 

and 

E<7M.iy>is 

7 ^ 7 

E \(y\AqW)\>/Ey>y, 
7 ^ 7 

where Aq is the operator associated with the suscepti­
bility in question and q pertains to its directional com­
ponent. It is demonstrated below that the directional 
independence of both of these sums is assured by the 
directional independence of a sum of the type 

Z{y\Aq\y')(y'\Fa\y). 
7 V 7 

In addition, the validity of the assumptions necessary 
to prove that this sum is independent of direction is 
discussed. 

The relationship between two directional components 
of an operator A is given by the unitary transformation 

i ^ = U-*4flU, (Bl) 

where U 1== Uf is a unitary operator. The proof of the 
directional independence of the sum 

£ (y\At\y')(y'\Fq\y) 
yfy£y 

the system may be placed into groups such that the 
matrix formulation of any transformation of the type 
(Bl), namely, 

(nm\Aq>\n'm') — Y, (nm| U|nm")(nm"\Aq\rim'") 

X(rim'"\\]\rim') (B2) 

is valid. Here m is the index of a particular state in the 
group of states labeled by the index n. The validity of 
this assumption is discussed further on. 

The proof of the directional independence of the sum 
in question is identical to that discussed in Ref. 2 for the 
special case in which Fq=Aq. In particular, since 

X) (nm \Aq*\ n'm')(rim' | Fq> \ nm) 
m,m' 

= ]£ (nmI UInm")(nm"\Aq\n'm'") 

X (n'm!" IU | n'm') X (n'm1 \ U | rim?) 

X (rimv I Fq I nmiv) X (nmiy | U | nm), (B3) 

and applying the properties of the unitary matrices 

Y<(nm I UI nm")(nmiY \ U | nm) = 8 (m",miY), (B4) 
m 

Yj(rim' I UI rim7)(rim"' \ U | rim')=b Ov ,w'") , (B5) 

we then find that 

Yi (nm \Aq*\ n'mf)(rim' \ Fq> \ nm) 

= L (nm"\Aq\rim"')(rim"'\Fq\nm"). (B6) 
m"%m'" 

Summing both sides of (B6) over all ri^n, we conclude 
that 

£<T|^l7'XV|J?«'l7> 

= E<TM,|yxy|Fe|7>. (B7) 
7 ^ 7 

The ground state has been excluded from the sum since, 
in the case of the ionic crystals, it is nondegenerate and 
the unitary transformation matrix reduces to a trivial 
phase factor. The exclusion is therefore necessitated by 
the fact that the ground-state matrix elements will not 
be the same in general. 

For the special case Fq~Aqy the validity of the above 
proof assures the directional independence of the sum 

Z KTM9|T')I2. 

7 V 7 

However, it is evident that the sum 

E \(y\Aq\y')WEry 
yfy£y 

is based upon the assumption that the excited states of needs further consideration since, for example, if it is 
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rewritten as 
(l/E)-£\{y\At\y')\\ 

the quantity (1/E) may be dependent upon the 
direction. 

It is easily demonstrated, given (B7), that the 
directional independence of the sum 

E (y\Aq\y')\*/EYy 
yf^y 

is assured by the existence of an operator Fq having the 
property 

Aq\y)=(EFq-FqW)\y), (B8) 

where H is the Hamiltonian of the system not under the 
influence of an external field. It follows from (B8) that 

(Y\Aq\y)=Ey,y(yf\Fq\y). (B9) 

Consequently, 

E \(y\Aa\y')\*/EYy= £ (TMJT 'XY'KIT) , (BIO) 
y>=*y y'j£y 

so that the directional independence of the left-hand 
side of (BIO) is assured. 

The existence of Fq is demonstrated by noting that 
(y'\y")=8(yf,y") and rewriting the sums in the follow­
ing manner: 

(y\Aq\y')(y'\At\y) 

7f Ey' Ey 

-Uy\Aq\y
f)(yf\Fq\y) 

y' 

f (y\Aq\y') 1 
- I X Y I ^ I V X V I +^o|7)+E-: |y> 

Jf I y" EyU-Ey J 

=-E<7M«iy><yi7(i)>, 

where ao is an arbitrary constant and |Y(1)) is just the ex­
pression for the first-order wave function obtained from 
perturbation theory. It is evident that Fq \ y)= — \ y&).u 

Consequently, the existence of Fq is guaranteed by the 
validity of the expansion used for the susceptibility 
associated with Aq obtained from perturbation theory. 
It is evident that Fq may be written explicitly as 

h\AqW) 
F^aQ+(\y))^Z- —IV). (BID 

y' Eyt Ey 
16 This discussion parallels that of A. Dalgarno in Quantum 

Theory, edited by D. R. Bates (Academic Press Inc., New York, 
1961), Vol. I. Dalgarno exhibits Fq as the solution of a differential 
equation which is used to evaluate the energy to various orders 
according to perturbation theory. 

There now remains the task of analyzing the condi­
tions under which the assumption embodied in (B2) is 
valid. The matrix element of the transformed operator 
{nm| X$~lAq\J| film') may be rewritten (Vnm\Aq\ \}nfmf) 
so that, in the evaluation of the matrix element, the 
transformation of the operator is equivalent to the use 
of a different linear combination of wave functions 
assigned to the group of excited states under considera­
tion. It is apparent that the set of wave functions as­
signed to each group of states must be complete enough 
so that it is always possible to find a linear combination 
of the set which will correspond to the transformation 
desired. 

An example of such a situation occurs when the 
system has spherical symmetry, in which case the ex­
cited states transform according to the irreducible 
representations of the full rotation group. In this case, 
the unitary transformation corresponds to taking a 
different linear combination of the /-fold degenerate 
wave functions associated with a given energy level. If 
the system has lower symmetry, such a grouping of wave 
functions allowing any possible unitary transformation 
may not be possible. However, if the Hamiltonian for 
the system can be written in the form 

H=Ho+H' , (B12) 

where the eigenfunctions of Ho allow such a grouping 
and the effect of H' on these states is small, then the 
eigenfunctions of H also may be grouped in such a 
manner. In this case, the effect of H' is to split the 
degeneracies and to specify the linear combination of 
functions to be assigned to each state. Neither of these 
processes destroys the possibility of performing any 
possible transformation of the type (B2). 

In the crystalline solid, the zero-order excited-state 
wave functions may be constructed from atomic func­
tions ̂ (r— r(^)) localized about the lattice points in the 
form 

^ k = (l/i\01/2 E e^^Kx-x{n)), (B13) 
n 

where ^k now has the translational symmetry of the 
lattice. The atomic functions, of course, may be grouped 
in the manner required by (B2) and are nonlocalized 
enough so that they will be subject to a periodic po­
tential whose symmetry is determined by the crystal 
structure. Since, in general, the effect of the periodic 
potential is small enough so that it only determines 
which linear combinations of the atomic functions are 
consistent with the crystal symmetry and, in the one-
electron approximation, broadens the associated levels 
into quasicontinuous bands, then a grouping of the 
states exists such that the transformation (B2) is 
always possible. 


