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The curvature of the free surface of a thin layer of liquid helium II resting on the horizontal bottom of a 
rotating cylindrical container (radius=1.26 cm) was measured by a sensitive optical method. For a liquid 
depth of ^ = 5.0X10~3 cm and r = l . l l ° K , the steady-state curvature was found to be indistinguishable 
from that of an ordinary viscous liquid for rotational speeds down to &?=0.29 rad/sec. Transient effects 
were observed which differ qualitatively from those of a normal viscous liquid. These results are discussed 
in relation to various theories of rotating helium and are compared with other measurements. 

INTRODUCTION 

WHEN we rotate a container of liquid helium II, 
does the superfluid component rotate? To answer 

this question, Osborne1 observed the contour of the free 
surface of helium II in a rotating container and con
cluded that, at the rotational speeds used, the super-
fluid came to a steady rotational state indistinguishable 
from that of an ordinary viscous liquid. Although rota
tion of the superfluid was not anticipated, perhaps, from 
the hydrodynamic theories of Tisza2 and Landau,3 the 
experimental result was interpreted by London4 in the 
following way: Adopting a suggestion of Onsager5 that 
the circulation was quantized in concentric cylindrical 
regions separated by vortex sheets, London minimized 
the free energy and concluded that in equilibrium the 
superfluid should rotate practically as a solid body at 
high velocities, but should not rotate at all below a 
certain critical velocity. This critical angular velocity 
is G)^ft/2 tna, where m is the mass of the helium atom 
and a is the radius of the cylindrical container, so that 
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for a= 1 cm, the critical angular velocity has the very 
small value of about 10~4 rad/sec. Landau and Lif-
shitz,6 on the other hand, considered the energy of the 
vortex sheets separating cylindrical regions of quantized 
circulation and concluded that the superfluid velocity 
field would approximate that of a rotating solid body 
only at much higher angular velocities. Hall and Vinen7 

have given a revised version of London's calculation, 
assuming a regular array of vortex lines as suggested by 
Onsager5 and Feynman.8 In this vortex-line model the 
energy associated with the velocity singularities is 
assumed small, and the final result as given by Hall is 
not greatly different from the London theory. In con
trast to the above models, all of which predict a finite 
critical velocity, Lin9 has suggested that the superfluid 
might have nonzero viscosity and would thus reach a 
steady state of uniform rotation in which boundary slip 
would cause the superfluid to rotate more slowly than 
the normal fluid at low velocities. 

Experimentally, no definite and reproducible critical 
velocities have been observed in steady rotation. On the 
one hand, Reppy and Lane10 have shown that a con
tainer of helium II can be rotated at a rather high speed 
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(0.3 rad/sec for a 1.25 cm radius container) without the 
superfluid always coming into rotation. This result is 
difficult to explain on the basis of Lin's theory, and it 
can only be explained in terms of the models of London 
or Feynman as a metastability. On the other hand, the 
fact that the superfluid usually comes into rotation, 
even at much lower speeds, does not agree with the 
prediction of Landau and Lifshitz. 

Thus none of these theories appears to be completely 
adequate, and we must seek what empirical evidence 
there is in the results of other types of flow experiments 
exhibiting critical velocities at which the flow of the 
superfluid apparently becomes rotational. Atkins11 has 
shown that for flow in channels larger than 10~3 cm 
many flow experiments can be correlated with a 
critical superfluid velocity given by the relation 

(7<0c«0.01 cm/sec, (1) 

where d is the characteristic lateral dimension of the 
channel. A phenomenological theory by the author 
correlates various kinds of critical velocities and their 
temperature dependence but does not differ in order of 
magnitude from Eq. (1). This equation can perhaps be 
derived from vortex mechanics, but here it is used 
simply as an empirical relation which is approximately 
valid for many experiments. In Osborne's experiment 
the value of the product of the lowest peripheral 
velocity and the container raduis was 24.5 cm2/sec. In 
Andronikashvili and Kaverkin's12 experiment the value 
of this parameter was 5.7 cm2/sec. Donnelly et al.13 

reached a value of 8.4 cm2/sec, and Donnelly,14 using a 
small capillary to reduce the characteristic distance, 
achieved a value of 0.216 cm2/sec which, although much 
smaller, still exceeded the value of the above critical 
velocity criterion. Recently, Turkington, Brown, and 
Osborne15 reached about 0.3 cm2/sec. In all of these 
experiments it was found that the superfluid was 
entrained into rotation as would be predicted by Eq. (1). 

The present experiment was designed to measure the 
surface contour under conditions in which this critical 
velocity parameter would not be exceeded. To achieve 
this, a sensitive optical method was used to measure the 
curvature of a thin layer of helium I I on a horizontal 
rotating substrate. 

STEADY ROTATION OF LIQUID HELIUM II 

Using the hydrodynamic equations essentially as 
given by Landau3 and also by Zilsel,16 we derive the 
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pressure and temperature fields and the surface contour 
of liquid helium I I in a cylinder which is closed at its 
bottom and rotates about its (vertical) axis with an 
angular velocity co. The resulting surface contour is well 
known, but the derivation is given since it shows ex
plicitly how the second-order velocity terms allow two 
different steady-state solutions without entropy pro
duction. The following equations of motion are assumed: 

P*[dV,/d/+V(V s
2/2)] 

= - (ps/p)Vp-psV®+psSvT 

+ ( P W 2 ^ ) V | V , - V S | 2 , (2) 

PnLd V»/3H- V (Vn2/2) - VnX (V X V.)] 
= ~ (pn/p)Vp-pnV®-psSVT 

-(psPn/2P)V\Vn-V&\2 

- WX VX Vn+ (4/3)wV • V». (3) 

The gravitational potential U will be taken as 
£2—gz where z, the vertical coordinate, is measured 
from a horizontal plane. We consider the following 
special case. 

(a) Steady state; no explicit dependence on time. 
(b) V 8 = 0 ; (this can be considered as the consequence 

of a simply-connected container and the condition 
VXV5 = 0, inherent in the assumed equations of 
motion). 

(c) V7l=€>ia;r, where <I>i is the unit vector in the 
azimuthal direction. 
Adding Eqs. (2) and (3) and using the above assump
tions we have 

V ^ + p V ^ = - P w [ v ( V n 2 / 2 ) - V , X V X V w ] . (4) 

Along the surface of the liquid V ^ = 0 and the slope of 
the liquid surface is 

dh pn o?r 
- = . (5) 
dz p g 

After integrating, we obtain a parabolic surface, 

Pn coV2 

h= +h, (6) 
P 2g 

whose maximum curvature is less than that of a normal 
viscous liquid by the factor pn/p. 

From Eqs. (2) and (4) we have 

PJSVT= - Wp)[p*V(Vn2/2) 
-p ,V n XVXV w ] - (pW2p)v |V w -V s | 2 , 

which in this special case yields 

vr=o. (7) 
This result of uniform temperature is dependent on 

the inclusion of the terms in the square of the relative 
velocity and demonstrates that the solution with 
V s = 0 is a possible one in thermodynamic equilibrium. 
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I t is also apparent that these terms explain how the 
superfluid, although motionless, is held up in a para
bolic shape, a point which has troubled the intuition 
of many. 

Another solution in which there is no entropy pro
duction can be obtained if we assume that ( v X V s ) a v ^ 0 
and if we add to the left side of Eq. (2) and acceleration 
term — p sV sX(VXV s)a v . The average vorticity desig
nates the circulation around a small but macroscopic 
region divided by the area of the region and does not 
necessarily imply that the flow must be microscopically 
rotational. Thus, hollow vortex discontinuities could 
make the region multiply connected and give large-
scale rotation of the superfluid without violating the 
microscopic condition V X V S = 0 implicit in Eq. (2). 
When we have (V^)av= V»=«&i ur ((V,)av again being an 
average over a small, but macroscopic, region), the 
steady state has the same surface as a viscous liquid and 
Eq. (7) is again valid; 

T 

FIG. 1. Schematic 
diagram of the ap
paratus used to 
measure the curva
ture of the liquid 
surface. 
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i= (a>V/2g)+ho. (8) 

EXPERIMENTAL METHOD 

Figure 1 shows the equipment schematically. The 
thin layer of liquid helium to be studied was condensed 
on a lightly ground flat glass plate F, which formed the 
bottom of the sealed chamber C. This chamber, which 
had brass walls and a glass top, was filled with helium 
gas under pressure at room temperature to give the 
desired liquid depth. The glass top and bottom were 
retained with brass flanges and sealed with indium wire 
O rings. Chamber C rested on a rotating platform G and 
was wrapped with a thin layer of soft iron, which, 
coupling with rotating magnets outside the Dewars, 
served to rotate the chamber. The top surface of the 
rotating platform could be moved relative to its bottom 
by adjusting screws, thereby allowing the axis of the 
container C to be moved horizontally and tilted until it 
coincided with the axis of rotation of the platform. 

Parallel light from a collimator (after passing through 
a heat-absorbing glass filter) was projected vertically 
into the Dewar, and the beam reflected by the surface of 
the liquid layer E was directed by beam splitter B into 
an objective lens (focal length 26.2 cm) which formed 
an image at P of the pinhole light source A. Since the 
reflection from a liquid helium surface is about 0.5% 
of that from glass, the glass substrate was lightly 
ground until most of the light was scattered, just 
enough of the original optical surface being left to give 
an image in the focal plane equal in brightness to that 
from the liquid surface. This substrate reflection pro
vided a reference image at the principal focus corres
ponding to zero curvature and allowed adjustment of 
the substrate and liquid film until they were parallel 
and their normals aligned with the axis of rotation. 

The position of the image was determined by its 
coincidence with the illuminated crosshair of a filar 

eyepiece whose position was read on an optical-bench 
scale. The curvature of the surface was calculated by 
using the measured displacement of the focal point from 
the principal focus of the objective lens. 

The main difficulty in determining the focus was the 
eye's power of accommodation. The standard parallax 
method of eliminating this difficulty was not useful in 
rotation because the focal spot usually described a 
small circular orbit in the focal plane corresponding to 
a residual angle (of about 10~4 rad) between the axis of 
rotation and the optical axis of the liquid surface. A 
useful technique was to increase the illumination of 
the crosshair until it was brighter than the focal spot, 
thus tending to fix the focus of the eye at the crosshair. 
I t was also found that by placing a mask consisting of 
three rather thick radial spokes over the aperture of the 
collimator, the off-focus setting gave three small sector-
shaped light areas, which at focus merged into a single 
spot. These techniques, plus the procudure of approach
ing the focus from opposite directions on alternate 
readings, made the determination of the focus reason
ably objective. 

The effect of the viewing light on the behavior of the 
liquid helium was investigated in a number of ways. 
The total power in the light beam incident on the cell 
was between 4X10~5 W and 4X10~7 W, depending on 
the size and intensity of the source used, and it is 
estimated that perhaps one third of this was absorbed 
in the cell. Since the light was uniform over the sub
strate, the temperature difference between the center 
and the edge was calculated to be at most, 2X10~6 deg. 
From other measurements on the flow of heat in thin 
layers of helium I I (to be published) it was known that 
this temperature difference would not lead to flow 
velocities exceeding the critical velocity. Actually, the 
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effect of the light was never observed to change the 
results in rotation, even when the beam intensity was 
increased from the weakest one used to one 1000 times 
as strong. Tests were also made by opening a shutter 
on the light beam only after the steady rotational state 
had been reached. No difference in the results were 
found even though the liquid could not have changed 
its contour in the time of observation. 

An attempt was also made to measure the surface 
contour by means of Fizeau fringes formed by the 
interference of the reflections from the liquid surface 
and the lightly ground substrate. With proper grinding 
these reflections were of equal amplitude and resulted in 
continuous saturated fringes by which a depth change of 
about 5X10-6 cm could be detected. Unfortunately 
these fringes could only be obtained in the nonrotating 
state since surface ripples introduced by rotation were 
large enough (about 1 ^ in height at low rotational 
speeds) to blur the fringes and render them useless. 

SURFACE CURVATURE IN STEADY ROTATION 

It follows from Eq. (6) that, if the superfluid velocity 
is zero, the maximum surface curvature (at r=0) is 

y=(pn/p)(o?/g). (9) 

When both fluids rotate together at a common angular 
velocity co, Eq. (8) gives the curvature 

(10) ^/ft 

which is the same as that of an ordinary liquid. 
Figure 2 shows the measured curvature in steady 

rotation as a function of angular velocity. The result is 
that the surface curvature of the helium II in this thin 
layer (average depth 5.0X10~3 cm) is very nearly given 
by Eq. (10) and is certainly not that of Eq. (9); in 
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FIG. 2. The maximum measured curvature of liquid helium II 
in steady rotation. The line a>2/g is the curvature expected of a 
normal viscous liquid; the line (p«/p)(«2/g) is the curvature ex
pected if the superfluid remains at rest. 

short, heluim II behaved in steady rotation like a 
viscous liquid. 

The lowest angular velocity at which measurements 
were practical was 0.29 rad/sec. Actually, the best fit 
to the measured points is somewhat less than predicted 
by Eq. (10); but since this divergence varies little with 
the angular velocity, it cannot be explained on the basis 
of a theory such as Landau's, in which the curvature is 
velocity dependent, and it is probably a systematic 
error in the curvature determination not connected with 
the superfluid properties of helium II. 

TRANSIENT EFFECTS 

For comparison with helium II, we first consider the 
angular acceleration of a thin layer of ordinary viscous 
liquid. The liquid rests on the horizontal bottom of a 
circular cylindrical container, and both the liquid and 
the container are initially at rest. The container is then 
rapidly accelerated to a constant angular velocity about 
its vertical axis, and motion is transmitted to the liquid, 
whose surface eventually reaches the parabolic shape of 
steady-state rotation. The time required to approach 
the steady state is determined, in a thin layer, by two 
nearly independent processes. First, the velocity field 
in the liquid is set up by the diffusion of vorticity from 
the solid bottom upward in the liquid; and second, the 
centrifugal force acting on the rotating liquid causes 
radial flow until the required equilibrium contour in the 
gravitational field is reached. 

For a very thin liquid layer, the first process will be 
completed before the second fairly begins. In this first 
process the velocity field is determined by the diffusion 
equation 

dV/dt=v(dW/dz2), 

where v=rj/p is the kinematic viscosity and z is the 
vertical coordinate. For impulsive acceleration from 
rest, Carslaw and Jaeger17 give a series solution. When 
we have vt/h2>l (where h is the liquid depth), the 
series converges rapidly, and we can write the character
istic time to set up the velocity field as 

r1=(4/7r2)(pA2A). 

We define n as the time to reach one-half the final 
centrifugal pressure. 

Assuming that the velocity field discussed above 
reaches its final value very rapidly, a measure of the 
time for the liquid surface to deform to its final parabolic 
shape is found, from a result given by Emslie et al.,1* 
to be 

T2=t(tfVp*A8). 

Here, g is the acceleration of gravity, h is the average 
depth, and r is the radius of the container. If we con-

17 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids 
(Clarendon Press, Oxford, 1947), 1st ed., p. 83. 

18 A. G. Emslie, F. T. Bonner, and L. G. Peck, J. Appl. Phys. 
29, 858 (1958). 
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sider both of these processes, a reasonably upper bound 
for the time for the liquid surface to approach its final 
parabolic contour is 

r = T i + r 2 . 

For liquid helium in a layer 5X10~~3 cm deep, the 
time calculated for the curvature to reach 0.7 of its 
final value is about one second, if we use the total fluid 
density and the normal fluid viscosity. Although the 
time resolution and the precision of these curvature 
measurements were not very good, it was found that the 
time to accelerate the liquid was of the order of 10 
sec, and that at the lowest speeds the steady-state 
curvature was reached only after about 40 sec. Thus, 
we can conclude that for speeds up to 1 rad/sec, liquid 
helium accelerates considerably slower than an ordinary 
viscous liquid. In stopping, the characteristic time to 
reach one-half of the steady-state curvature was 2 sec 
or less, a time not far from that expected for a viscous 
liquid with kinematic viscosity rj/p. This slow accelera
tion and rapid deceleration have previously been re
ported by Hall.19 

DISCUSSION 

For a value of peripheral velocity times liquid depth 
greater than Vh~1.8XlQ~3 cm2/sec, the superfluid 
rotates with the container. Previous measurements of 
other types can be interpreted as predicting a critical 
velocity condition Vd=10~2 cm2/sec, below which the 
superfluid should remain stationary, d being the char
acteristic lateral dimension. Are these two results 
incompatible? 

Certainly, on the basis of a simple vortex theory we 
might expect the pertinent characteristic dimension to 
be the radius of the container rather than the liquid 
depth (that is, essentially the longest distance per
pendicular to the superfluid flow). In the present case 
this would lead to a critical velocity perhaps 50 times 
smaller than the lowest velocity attained, and is con
sistent with the experimental result. 

However, such a simple vortex model does not predict 
the measured critical velocities in other experiments. In 
flow through slits, it has been shown that the pertinent 
characteristic distance is the shortest distance perpendi
cular to the flow, not the longest. In oscillating boundary 
experiments, the pertinent distance is the viscous pene-

19 H. E. Hall, Phil. Trans. Roy. Soc. London A250, 359 (1957). 

tration depth, not the radius of the containing vessel. 
Even in steady rotation the superfluid can apparently 
remain at rest in a container rotating at about 3000 
times the velocity corresponding to one vortex line.10 

Thus, neither a simple vortex model nor Eq. (1) is 
adequate to explain all these results. 

I t seems probable that the metastable nonrotating 
state sometimes observed by Reppy and Lane was not 
observed in the present experiment because of the 
roughness of the boundaries in the present case as 
compared with the microscopically smooth blown-glass 
container used in their experiment. In this regard one is 
reminded that the metastability reported by Brewer, 
Edwards, and Mendelssohn20,21 in heat conduction was 
observed in a smooth glass capillary. I t is also possible 
that the free surface is of primary importance since 
surface ripples, which were always present to some 
extent, would presumably be unfavorable to the occur
ence of metastability. 

We may conclude that a stable rotating state of the 
superfluid with the present boundary conditions exists 
down to co=0.29 rad/sec. A question, which is still 
unanswered, is to what minimum velocity this will 
remain true. Is it necessary to go to the very low 
rotational speeds predicted by a simple vortex-line 
theory, or does a surface energy associated with velocity 
discontinuities, as suggested by Landau and Lifshitz6 

and by Mott,22 lead to a stable nonrotating state at 
higher speeds? Such a surface energy could perhaps 
exclude vorticity from the bulk of the superfluid in a 
manner analogous to the Meissner effect in which the 
exclusion of the magnetic field from a superconductor 
can be attributed to a surface energy. The present 
technique could, with more attention to vibration 
isolation, be used to investigate this question to rota
tional speeds down to about 0.1 rad/sec. 
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