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The influence of partial coherence in a laser beam on nonlinear optical interactions is discussed. The 
presence of several different modes with random amplitude and phases is shown to lead to fluctuations in 
second-harmonic production and to an error in the measurement of the corresponding nonlinear constant. 
Experiments have been carried out with a "Q-switched" ruby, which demonstrate the role of partial spatial 
coherence in creating fluctuations in second-harmonic production. Mixing and higher harmonics generation 
are also considered. Limitations in momentum space necessitate a separate discussion of the creation of 
light beats at small difference frequencies. 

I. INTRODUCTION 

SINCE the first observation of optical harmonics by 
Franken et at.,1 there has been much interest in 

nonlinear interactions involving optical waves.2 Theo
retical treatments have been given3-5 providing a quan
titative analysis of experimental situations. Unfortu
nately, these treatments fail to account for some 
disturbing experimental features, among which one can 
single out: the lack of one-to-one correspondence be
tween the amplitude of fundamental and harmonic 
pulses,6-7 the discrepancies between various measured 
values of the same nonlinear constants, and the null 
result of some down conversion experiments. The dis
crepancy between theory and experiment disappears if 
the assumption is dropped that an optical maser is an 
ideally coherent source giving rise to a field which can be 
represented by a completely determined function of 
time and space. High-power lasers usually operate in 
more than one single mode and the lack of spatial and 
temporal coherence in their output has been clearly 
demonstrated. Solid-state lasers have been known to 
yield a number of different frequencies. Early measure
ments of the spatial coherence of a ruby laser8 have 
given coherence areas substantially smaller than the 
cross section of the crystal. Clark et at.9 have taken 
time-resolved pictures of the front face of a ruby laser 
and shown that the spatial distribution of the intensity 
can be different for different spikes. Correspondingly, 
time resolved spectroscopy performed by Ridgway et al.10 
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shows a change in the frequencies of oscillation from 
spike to spike and sometimes within a spike. 

The representation of a laser as a coherent source is 
inadequate. Accordingly, the complex field of an optical 
maser will be written in the form 

E ( r , 0 = S SLnjkaUnjk(t) CXp( — 2-KlVnjkt) , 
n,3,k,<r 

where the ctnjk are random coefficients. 
The Vnjk are the frequencies of the optical modes 

specified by the "quantum" numbers n, j , k, and the 
polarization variable <r. The wave functions unjk(t) can 
be constructed from the knowledge of the spatial and 
temporal dependence of the field on the front face of the 
laser. This field is expanded as a sum over a set of 
orthogonal modes. These modes might coincide with the 
normal modes defined by Fox and Li11 or Boyd and 
Gordon.12 In any case they determine the correspond
ing unjk(r) over all space. Due to the very small 
divergence of the beam these unjk can be written as 
Ujk(to) exp(iknjkz), where z designates the coordinate 
along the direction of propagation, r0 the position vector 
in the cross section plane, and knjk is the wave number 
of the plane wave in the z direction at the frequency 
Vnjk- The Ujk(ro) are now independent of n and the ex
pression for the field can be rewritten for one sense of 
polarization: 

E(*,t) = ]£ anjUjiro) exp(iknjZ—2irvnjt). (1) 
n,j 

To simplify the notation only one index j has been used 
to label the transverse modes. Although the o>nj s are 
random they are not necessarily statistically inde
pendent, and the number of modes involved in the 
representation of the field is not automatically equal to 
the number of independent parameters. Even modes 
with different eigenfrequencies may have statistically 
correlated amplitudes. The coupling between various 
laser modes by the nonlinearity of the medium is an 
example of this situation. In many other cases, however, 
it can be justified to consider the a's belonging to differ-

11 A. G. Fox and T. Li, Bell System Tech. J. 40, 453 (1961). 
12 G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489 
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ent modes as independent. One example is the case of a 
ruby laser where different modes predominantly make 
use of different ions. 

When Eq. (1) is used for the field E of the source, the 
fields and intensities at a given point in space resulting 
from the nonlinear interaction will themselves be 
random functions whose statistical properties will de
pend on the properties of the &'s. In real experiments the 
measured quantities will not be functions of the field at 
a single point in space and time, but rather suitable 
averages over space and time of such functions. A 
simple example of this is the output current of a photo
tube. Even after such averages are taken, the random
ness of the a's will give rise to fluctuations in the 
measurements and to some possibly large errors in the 
estimates of the nonlinear constants.13,14 In Sec. II 
second-harmonic generation is considered, and it is 
shown that the presence of several incoherent modes in 
the laser beam leads to a discrepancy between the real 
and the measured nonlinear constant, and introduces a 
certain amount of randomness in the ratio between the 
square of the fundamental intensity and the second-
harmonic intensity. Experimental results with a single-
pulse ruby laser are described in Sec. I l l which demon
strate the part played by the spatial modes in the 
mechanism of fluctuations of second-harmonic produc
tion. The theory of fluctuations in higher order nonlinear 
processes is briefly discussed in Sec. IV. Section V is 
devoted to down conversion and related experiments. 
The case of microwave generation is given particular 
attention, and it is shown how a reduction factor, 
analogous to the one introduced by Forrester et al.u for 
the generation of beats in a photocathode, should be 
taken into account in this experiment. 

II. MODE EFFECTS IN SECOND-HARMONIC 
GENERATION 

Consider a laser beam of small angular spread inci
dent on a nonlinear dielectric slab. Take the funda
mental field and the induced harmonic polarization to 
be linearly polarized. The latter can then be expressed 
by means of Eq. (1) as, 

Ps
2"(r0,JM) = x N L L 0ny0n'/'«/(ro)#/'(ro)' 

n,nf, j , j ' 

Xexpi[_(kn3d+kn>jd)z—2ir(Pnj+Vn>j)t]-

Here knj
d is the wave n u m b e r in the dielectric, corre

sponding to frequency vnj close to the average laser 
frequency v, and x N L the appropr ia te nonlinear con
s tant . 3 Th is polar izat ion is going to rad ia te and to give 
rise to a field a t frequency 2v. W e assume t h a t bo th 
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Pershan, Bull. Am. Phys. Soc. 8, 233 (1963). 
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angular and frequency spreads are small enough, that 
dispersion will affect equally the radiation of all terms. 
in the expression of Ps(2v). This excludes a priori the 
consideration of experiments in a "matched" direc
tion.16-17 Then the linearly polarized harmonic field in 
free space can be written 

£<2'>(r0,*,0 

= 9C E &nj(ln'j'Uj(TQ)Uj' (r0) 
n, nr ,j, j ' 

X^i[k(Vnj+Vn'jdz-2Tr{vnj+Vn>j>)t]i (2) 

where 9C is the p roduc t of %NL and a factor depending on 
the length / of the slab in the z direction and on the 
dispersion of the dielectric, 

4TT sin(A«/2) 
9C = X N L - ( f e l ) - — , 

fii2 (AM/2) 

where Ak = k2V~2kv. 

A. Measured Quantities 

In order to perform a measurement, the fundamental 
and the harmonic thus generated will be detected sepa
rately and compared. The detection will generally be 
done by a photocathode normal to the beam. The 
instantaneous current emitted by such a photosensitive 
surface will be proportional to the integral of the square 
of the amplitude of the optical field over the cross 
section of the beam. 

IiM = Vi,2 \Ei>2(rQ)t)\
2dto. 

In fact as there is a spread in the transit time of the 
photoelectrons, and as the associated circuitry has re
active properties, the detected current 11,2 will be 
different from this. 

/i,2= 171,2 fdfh(t-n J I £i,2(r0 /) 12dr0, 

where h(t—tf) expresses the action of a linear filter. We 
will make the simplifying assumption that this action 
can be represented by an integration over a suitable 
time interval T. In this case 

/ 1 = _ / dt'l </r0 |£i(r0/)l2, (3) 
T J t-T/2 J 8 

V2 ct+m r 
I2=-X* dt'\ J r 0 | £ i ( r 0 / ) | 4 , (4) 

T J t-T/2 J 9 

16 J. A. Giordmaine, Phys. Rev. Letters 8, 19 (1962). 
17 P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, 

Phys. Rev. Letters 8, 21 (1962). 
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I i= — / di \ dt0 

T J t-T/2 J 

X E anjan'^Ujiiduy+fa)**"'*, (3a) 
n,nf, jj' 

J2= / df / drQ 

T J t-T/2 J 

X- L^i ttnjttn'j'ttn"j" an"> j>" & 
n, n', n"%n"f 

jj'j"f" 

Xuj(ro)uj>(to)uj»*(to)uj'»*(ro}. (4a) 

In practice, the time interval T, which will be called the 
time constant of the detecting circuit, will be short 
enough that any time dependence of the an/s can be 
neglected when performing the integral. 

Nevertheless, in most situations it will be larger than 
the period of any beat between various frequency com
ponents, so that for our purpose 

I ft+T/2 

— I e2*iAvt'dtf = 8(Av). 
T J t-T/2 

Using this property and the orthonormality of the 
modes over the cross section of the beam, we obtain for 
11 and 1% 

^i=??iEk«i l 2
? (5) 

n,j 

l2~V2^C 2 ^ ClnjQ>n'3,Q>n"j" &n'"j'" ^ 3,3'J" J'" 
X8(vnj+Vn'j' — Vn"j" — Pn"'j'") , (6) 

where 

Cjj>j''j'»= J %(r0)#i'(ro)%"*(r0)%'"*(ro)^ro. 
J S 

B. Relation between Measured Quantities 

Equations (5) and (6) describe the random relation
ship between Ii2 and 12. When the fundamental field con
sists of a homogeneous plane wave, the ratio rji2l"2/frj%l\2 

is minimum and equal to 9C2. In an experiment per
formed with a less than ideal beam this ratio will be 
taken as defining the measured nonlinearity 9Cm. From 
the expressions (3) and (4) for I\ and 12, it is im
mediately seen that 9Cm> 9Ci. This can easily be under
stood by considering harmonic generation by an inter
ference pattern. As the effect is quadratic the maxima 
will overcompensate the minima. In the same way a 
succession of light pulses will be more efficient in 
generating second harmonic than a constant light beam 
having the same average intensity. 

The lack of spatial and temporal coherence of the 
laser beam will give rise to fluctuations in the measured 

value of the nonlinearity. Introduce normalized vari
ables 

/^ -m\ /tX-m\ anj 

£ = ( — ) =( — ) and =«»,-. 
\ X / \ 9 C / I i m 

The a»/s satisfy ]£n,i|a»i|2= 1 &nd their statistical 
properties can be determined from those of the an/s. 

X 2~/ QlnjfXn'j'&n"3" d-Wj'" 

XS(vnj+Vn'3'~~Vn>>3''-~Vn>'>3''')C3'3>3>>3'>'. ( 7 ) 

This expression can be split into a group of phase-
independent terms A and a group of phase-dependent 
terms B 

**• = 2s I @-nj j ^ 3 3 0 3 1 ^ L-d I ®nj I I ®n' j ' | L- jj* jj' . 

Here and throughout the text the ' on £ indicates the 
exclusion of terms for which two sets of indices (nj) are 
identical. 

jj— 2^ OinjOin'j'CX-n"j" OLn,nj"' 

Xo^Vnj-rVn'j' Vn" j " Vn'" j'")^33'3"3f" • 

Here and throughout the text the " on X) indicates the ex
clusion of terms such that the product a»jan'j'aW"y"* 
XaW'"i'"* is identically real. When the phases of the 
a»/s and hence of the a»/s are assumed to be random 
and uniformly distributed over (0,27r), the following 
properties hold: {B)=0(AB)=0. Then 

vt/=2Lrf \ | a r a i | )^3333 

+ 2Y,'{\anj\
2){\an,j,\

2)Cjj,jj,, (8) 

m~(%)2=(A2)~-(A)2+(B2). 

The last term (B2) represents the fluctuations due to the 
random phases; it can be considered as an interference 
effect and disappears when the modes do not overlap 
(Cjj'j»j"> = 0). The origin of this term can be found in 
the fact that a given harmonic mode can in general be 
created by the interaction of several different pairs of 
fundamental modes. For instance all pairs n, nf such 
that Vn+Vn' has a given value will give the same 
harmonic frequency and will be detected together. In 
the same way CJJ>J"J>" can be different from 0 when 
J9*j", j " f and j V / ' , / " . These points will be dis
cussed further when particular cases are considered. 

The expression (A2)—(A)2 represents amplitude fluc
tuations. In the case of nonoverlapping modes there is 
only one term, 

(A^)-(A)^ZZ(\anj\^-{\anJm(Cnny-

The general expression for overlapping modes is more 
complicated and will not be reproduced. The general 
theory will now be applied to some simple cases of 
physical interest. 
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C. Second-Harmonic Generation with 
a Gas Laser 

The output of a gas laser can be represented by a 
small number of modes. Second-harmonic power has 
been generated with a gas laser oscillating simultane
ously in a single transverse spatial mode.18-20 Due to the 
nonlinearity essential to the mechanism of the oscillator, 
the individual modes will have stabilized amplitudes 
and hence very small intensity fluctuations. In this ap
proximation Ii is a constant and the statistical proper
ties of 9CW are those of 1\. In this case it is not really 
necessary to introduce normalized variables H and a. 
The phases are random variables, but because of the 
same nonlinearity, they will not necessarily be inde
pendent. If independent uniformly distributed phases 
are nevertheless assumed, Eqs. (8) and (9) become, for 
the case of one spatial mode uj, 

(X)=c{EI^|4+2E'l«»l2l«„'|2} 

^•(r 0) | 4^o{l+i : ' l«n | 2 | an ' | 2}, (8a) 

<X2>-<£)2= / \uj(ro)\*drQ {4E'k»|4 |an ' |*l«. . 

Xd(2yn— Vn> — JV') + £Zy|cKnI 

Xlan' 

X§{vn+Vn'—Vnrt — Vn">)} . (9a) 

The relation S|o:w |2=l has been used in Eq. (8a). As 
Uj(r) is known, y|wy(r)|4 can be incorporated in % 
and the relative error in the measurement is represented 
by the term 271 <x» 121«»'12» If the an do not vary too 
strongly with n, the order of magnitude of this term is 
N(N—1)/N2 and we can write 

%=(xm/xf=2-N- (10) 

This relation has been derived by Ashkin et al.18 The 
comments made earlier about phase fluctuations are 
here of special interest. As mentioned previously, their 
existence is due to the fact that any pair, n, n! for which 
vn-\-vn> is equal to a given value, will generate the same 
harmonic frequency. An immediate consequence of this 
is that at least three different frequencies in the incident 
beam are necessary to observe these fluctuations. The 
Fourier coefficients of the harmonic field will then appear 
as sums of random variables and their amplitude will 
not be constant. Hence the detecting device measuring 
the sum of the square of these coefficients, will, in 
general, have a random output. In other words, the 
harmonic field will not exhibit the amplitude stabiliza-

18 A. Ashkin, G. D. Boyd, and J. M. Dziedzic, Phys. Rev. 
Letters 11, 14 (1963). 

19 N. I. Adams and P. B. Schoefer, Appl. Phys. Letters 2, 136 
(1963). 

2° S. L. McCall and L. W. Davis, J. Appl. Phys. 34, 2921 (1963). 

tion properties of the incident laser field. In this respect 
it is interesting to note that amplitude correlations of 
the type demonstrated by Brown and Twiss21 for 
incoherent light should also be present in harmonic 
light generated by a multimode gas laser, although the 
fundamental light intensity of the amplitude stabilized 
laser oscillations does not show this effect.22,23 

If the an do not vary too rapidly with n, it is possible 
to estimate the relative rms fluctuations in the meas
urement 

«X2>-<X>2) 1/2 

j~8Q (8Q2-3Q-2) -

L 3 (2Q+iy(4Q+iy„ 

r8Q(8Q2-15Q+7W / 2 

L3 4Q2(4Q-1)2 J 

1/2 

for N=2Q+1 and 

for N=2Q, 

where N is the total number of modes. For N—3 and 
N—4: these numbers are, respectively, 18% and 25%. 
For large TV", the relative root-mean-square fluctuations 
of £ are of order (2/3iV)1/2. 

Experimentally, these fluctuations would be observed, 
if the time constant were small, but just larger than the 
largest beat period between modes.24 The power avail
able from a gas laser is so low that very long time con
stants are required to make the observation of har
monics possible. There it is a time average of 1% rather 
than h itself, which is measured. If the stochastic 
properties of the an's are stationary (and this is a 
reasonable assumption) this time average is equivalent 
to the statistical average we have computed. This will 
not be the case of the measured rms fluctuations which 
might be drastically reduced by the integration process 
[roughly a factor (T/r)112, where r is the correlation 
time of the aw's]. If there is some amount of correlation 
between phases, Eqs. (8a) and (9a) do not, in general, 
apply. They will retain an approximate validity if the 
correlation is expressed by linear relations between the 
phases, as it will be if this correlation is due to any 
simple nonlinear process. 

D. The Case of the Ruby Laser 

Many different frequencies and spatial modes are 
present in the output of an ordinary ruby laser. If we 

21 R. Hanbury Brown and R. Q. Twiss, Nature 177, 28 (1956). 
22 R. J. Glauber, Proc. Third Conf. Quantum Electronics, Paris 

(to be published). 
23 L. Mandel in Progress in Optics, edited by E. Wolf (North-

Holland Publishing Company, Amsterdam, 1963), Vol. II, pp. 
181 ff. 

24 For time constants much shorter than the beat periods be
tween modes, the replacement of a time integration by a Kronecker 
8 in Eqs. (5)-(7) is not allowed. The rms fluctuations measured 
instantaneously would not decrease with N. The problem for very 
short time constants would be similar to that of noise in nonlinear 
devices at radiofrequencies and to the problem of radar echoes 
from a rain cloud. 
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assume as before that the amplitude fluctuations are 
small the rms fluctuations in % will be of order CN~112, 
where N is the number of modes taking part in the 
interaction, C being a factor of order 1 depending on the 
structure of the modes. For N of order 103 or larger 
this will be very small. In fact, experimental observa
tions10-19 make clear that in this case not only the phases 
but the amplitudes of the various modes will fluctuate. 
The amplitudes will even fluctuate to the point that 
although a large number of modes might be available, 
only a few will oscillate in one spike. The order of 
magnitude of the fluctuations will then be given by 
(n)~1/2, where n is the average number of modes going 
at the same time rather than the total number of modes. 
This would account for substantial fluctuations and thus 
correspond to the experimental situation, as reported in 
the following section. The average value of H would not 
be affected by this particular mechanism, as long as the 
average is taken on a large number of trials, i.e., of 
individual spikes. Note that this might mean a very 
large number (as is the number of possible configura
tions) and that this requirement is not necessarily 
satisfied for ordinary measurements. If it is, we will have 
approximately 

{Z)={(xm/xf)~2, 
as given by Eq. (10) for large N. 

When an ordinary ruby laser is used to generate 
second harmonic, the ratio of individual harmonic 
spikes to the square of the intensity of each spike at the 
fundamental frequency shows large fluctuations, as 
shown in Fig. 1. This can be accounted for by the above 
mechanism where both spatial and temporal coherence 
play a role.13,14 When a large time constant is used in the 
detecting circuits, i.e., when the envelope of the pulses 
rather than the individual spikes are observed, it is very 
often^found that a perfect square law does not hold for 
the correspondence 1\ versus 7"i, but that the value of X 
is still varying with time. The remark made above about 
the large number of spikes necessary to get really the 
average value of 36 applies probably here. The time 
constant has a maximum value beyond which the pulse 
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FIG. 2. Experimental arrangement to determine the ratio be
tween fundamental intensity / and the second-harmonic intensity 
h in a giant pulse from a ruby laser. 

envelope will be distorted and any hope of recording the 
real correspondence will vanish. If T is made less than 
this value, the number of spikes on which the time 
average is performed might not be large enough and the 
nonstationarity of the a / s will account for the variation 
of 36 with time. 

III. EXPERIMENTS ON SECOND-HARMONIC 
GENERATION 

FIG. 1. Two laser pulses of about equal intensity at the funda
mental frequency (top line) produce pulses of quite different 
relative intensity at the second-harmonic frequency (bottom line). 

Second-harmonic generation by individual spikes from 
a Q-switched ruby laser has been observed under fairly 
reproducible circumstances. In a first experiment the 
fundamental and harmonic intensity were compared for 
a large number of spikes. The time constants of the 
detecting devices (phototubes plus associated circuitry) 
were made as short as the available equipment per
mitted. This resulted in resolution times between 10 and 
15 mjusec for both tubes. The laser beam was unfocused 
and the distances between the front face of the laser, the 
sample and the surface of the photocathode were short 
enough for the cross section of the beam to be constant. 
A diagram of the experimental arrangement is shown in 
Fig. 2. The results of a series of observations on more 
than 70 pulses are reproduced in Fig. 3. For a given 
value of the fundamental intensity, the corresponding 
harmonic intensity might vary from 1 to 3. For this 
experiment the rms fluctuations were estimated to be 
40%. A standard ruby laser (not Q switched) gives 
similar results. 

The theory developed in the preceding section pro
vides an explanation for these observations. Neverthe
less, it could be argued that some of the time variations 
of the envelope of the rather fast pulse (the duration is 
about 40 nsec) could happen in a time shorter than the 
response of our detecting circuit. If the time variations 
were different for the harmonic and the fundamental, 
this would give rise to different responses for the 
harmonic and the fundamental depending on the shape 
of the pulses. 

To show that the observed fluctuations are due to the 
mechanism we have described, and not to imperfect 
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FIG. 3. A scatter diagram from 70 giant pulses, showing the 
random relationship between the fundamental and second-har
monic intensity. 

experimental conditions, we carried out a series of ex
periments in which the fundamental beam was split in 
two approximately equal parts which in turn generated 
second harmonic in two identical crystals. The separate 
harmonic pulses were detected and their amplitudes 
compared. To avoid any spurious effects due to differ
ences in the time constant of the two circuits, these 
quantities were made much longer (1 jusec) than the 
width of the observed pulses (40 myusec). The peak 
amplitudes were thus very nearly proportional to the 
time integral of the real pulses. The experimental setup 
is shown in Fig. 4. When the beams were left unper
turbed the correlation between pulse amplitudes was, as 
expected, very good. The remaining fluctuations could 
be ascribed to small variations in gain of the circuits and 
were accentuated by the rather long interval between 
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-CuS04 
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pulses required for operation of the laser at an ap
proximately constant temperature. In any case the rms 
fluctuations (4%) were found to be equal to the ones 
observed when splitting a single harmonic beam or the 
beam from a pulsed source of light. 

According to our theory the correlation between the 
harmonic signals could then be spoiled by changing the 
relative phases and amplitudes (or alternatively the 
structure of the modes in one of the fundamental beams) 
but leaving the total intensity constant. This redistri
bution of the energy and of the phases was performed in 
three different and separate ways and led in all cases to a 
significant increase in the rms fluctuations. 

In the first case one of the fundamental beams was 
superimposed on its mirror image (Fig. 5) by means of a 
prism with two reflecting sides. This beam consisted of 
two parts of nearly equal amplitude, one having suffered 
an odd number of reflections, the other an even number. 
This beam was thus replaced by half the sum of itself 
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FIG. 4. Experimental arrangement to determine the relative 
yield of two second-harmonic generation processes with similar 
geometry. 

FIG. 5. The spatial similarity of the laser beams in the two 
quartz samples is destroyed by a glass prism, which modifies the 
geometry of the modes in one of the beams. 

and its mirror image. This operation modified the ex
pression for Ei and E2 and hence the dependence of 12 on 
the an's in Eqs. (4) and (6), although it left h un
changed. Substantial fluctuations were in fact observed. 
Figure 6 shows the corresponding scatter diagram to
gether with the diagram for the unperturbed situation. 
This operation increased the rms fluctuations from 4 
to 14%. 

Another kind of perturbation was provided by a piece 
of frosted glass inserted in one of the beams. The glass 
was put very close to the nonlinear crystal to avoid the 
effects of the increase in cross section due to the acquired 
divergence of the beam. The resulting scattering pro
vided a convenient way to mix linearly the modes of the 
fundamental beam, in a complicated although perfectly 
deterministic way; this in turn had the effect of chang
ing the dependency of I2 on the an's, h was, as before, 
left constant. Here also a substantial increase in the 
fluctuations was observed, which went up with the 
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amount of scattering provided by the frosted glass. The 
corresponding results are summarized in Fig, 7. Similar 
experiments were performed, in which one of the beams 
was reflected from the uneven surface of a rough silver 
mirror. The results were essentially the same as for the 
ground glass, the amount of fluctuations depending on 
the quality of the surface. 

All these experiments consisted in the application of a 
linear perturbation, changing the relative values of the 
complex amplitudes, but not the total energy. If the 
fundamental beam had been spatially coherent, this 
would have modified the intensity of harmonic beam on 
the perturbed side in a constant way and hence would 
not have affected the correlation between the two 
harmonic signals. Thus these experiments clearly dem
onstrate the part played by partial spatial coherence in 
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FIG. 6. A scatter diagram (A) of relative second-harmonic pro
duction with the arrangement of Fig. 4 is compared with the 
scatter diagram (B) with the arrangement of Fig. 5. The abscissa 
is proportional to the deviation from the average, the ordinate 
gives the number of pulses in a certain deviation interval. Compari
son of these experimental results and those in Fig. 3 demonstrates 
the advantage of using a similar nonlinear process with a similar 
geometry as a reference for calibration of the incident laser pulse. 

creating fluctuations. They show also the need to know 
the structure and the statistics of the laser beam before 
the nonlinearity could be measured with a reasonable 
accuracy. 

IV. STOCHASTIC ASPECTS OF MIXING AND 
HIGHER ORDER PROCESSES 

Partial coherence will also affect other nonlinear 
processes. Consider the situation in which two optical 
beams mix to give their sum or difference frequency. 
The case of a very small difference frequency will be 
treated separately in the next section. If Ei(r), E%(r), 
Ez{r) are the amplitudes of the linearly polarized fields 
at frequency z>i, v% vz, respectively, where v%=vi±v^ 

Ez(r) = x(v3~ vi+V2)Ei(r)E2(r) for the sum, 

Ez{r)~x(vi~ V2+v3)Ei(r)E2*(r) for the difference, 
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FIG. 7. The scatter diagram (A) obtained with the arrangement 
of Fig. 4 is compared with a corresponding diagram (B), when a 
frosted glass plate is inserted in front of one of the quartz plates. 

where % is a suitable nonlinear constant. Using Eq. (1) 
for the fields EIJE2, we find for the corresponding de
tected intensities: 

A^EIW2'!2, 

n,j,m,k 

(ID 

where 9C depends on the geometry of the nonlinear 
medium. 73 has two groups of terms: the first summation 
contains phase-independent terms, the second phase-
dependent terms. Comparison of Eq. (11) with the 
corresponding expression for second harmonic, Eq. (6) 
shows that there are nearly twice as many phase-
independent terms for second-harmonic generation than 
for mixing. A given product anjan>j'* occurs twice with 
the same coefficient in second-harmonic generation. 
This degeneracy affects the average value of the de
tected current. If the phases of the different modes are 
independent and uniformly distributed, only the phase-
independent terms will remain after averaging 

</3> = t?39C2 £ (\an 
n,j,m,k 

.(1) I 2' %\am]c™\*)Cjm. 

If the modes are homogeneous, (unj(x,y)=l) and all 

This should be compared to </2>= *?29C2(2iV- 1/N) ((/x))2, 
obtained from second harmonic in the same situation. 

The number of phase-dependent terms will be drasti
cally reduced, if the two sets vnj

{1) and J>„/2) are differ
ent. The condition vnj

a)+vmh(2) = vn>3>a)+Vm>k>(2) will, in 
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general, be satisfied only when Pnja)=Vn>j'a) and *W2) 

= ^m'A;'(2). The beat of two gas lasers oscillating in a 
single transverse spatial mode25 illustrates this com
ment. In this case the presence of phase-dependent 
terms in the detected second-harmonic intensity 1% is 
caused by the even spacing of the longitudinal fre
quencies. Although this condition is still necessary here, 
it is no longer sufficient. The two sets vn

a) and VrP must 
have spacings equal to within the bandwidth of the 
detecting circuit. If the lengths of the two resonators 
are not the same and the time constant of the detector 
is long enough, this condition will not be fulfilled, and 
the expression for 73 will have no phase-dependent term 
(apart from accidental coincidences). 

h=r)sx
2cjjjj E K(1)| W2 ) l2=WV 

n,m 

In this case there are no fluctuations. When the band
width of the detector is made larger than the difference 
between the two intermode spacings, fluctuations will 
appear. As the bandwidth is made larger, these fluctu
ations will become equal in the limit to fluctuations 
observed for equal intermode spacing. They will depend 
in a rather complicated way on the respective number of 
modes Ni and N2 in the two beams. For large numbers, 
the rms fluctuations will be of order (7Vr>)~1/2, where 7V> 
designates the larger of Ni and iW 

The situation where two solid-state lasers beat to 
generate their sum frequency26 is complicated. In this 
case most of the fluctuations will be due to the imperfect 
spatial and temporal overlapping of the spikes. These 
fluctuations which can be quite strong, will depend on 
the characteristics (in particular the distribution of 
energy over the cross section) of the lasers. 

The case of a mercury line source beating with a solid-
state laser27 is simpler. In practice the coherence time 
and the coherence area of the mercury line will be much 
smaller than the corresponding quantities for the laser. 
The number of modes necessary to represent the field at 
the mercury line frequency VHS±VL, in the detection 
time T, and over the cross section of the beam, will be 
very large. This will ensure very small fluctuations at 
sum or difference frequencies VHg±VL- The equality 
Iz=C'Iil2 is closely satisfied. 

High-Order Processes 

The degeneracy which gives rise to the special features 
of second-harmonic generation will be stronger for 
higher harmonic processes. Consider, for instance, the 
generation of the sth harmonic. The amplitudes of the 
fields are connected by the relation, 

Es= dC(vs=sv!)Eis, 

25 N. I. Adams and P. B. Schoefer, Proc. I.E.E.E. 10, 1366 
(1963). 

26 M. Bass, P. A. Franken, A. E. Hill, C. W. Peters, and G. 
Weinreich, Phys. Rev. Letters 8, 18 (1962). 

27 A. W. Smith and N. Braslau, IBM J. Res. Develop. 6, 361 
(1962). 

where 9C is a suitable nonlinear constant.4 Using again 
expression (1) for the field E\ 

pi, pi, • • 'pN 
Pl~{ \~pN=S 

si 
X ; Uh

 P1 • • • UjN 

Xexpi[X^iJVjH hpNvnNjN)z 

— 2ir(plVn>j'-\ \-pNVnN3N)t] ' 

The detected intensity Is can again be split into phase-
dependent and phase-independent terms. In the case of 
independent and uniformly distributed phases the 
phase-dependent terms average to zero. In this case, 

</.> = i?.a?(^ = ^ i ) ( j ! ) 2 E | * » ' y | a p 1 - " 
plp2- • -pN 

Pl-\ \-pN=S 

( 1 Y 
\pllp2l--pNl' 

((Ii»a=Vi'sl E \a^A2p^-\anNJN\2pN 

Plp2' ' 'pN 
px-\ VpN—s 

1 

x , 
p\\p%\- • -pN]-

where 

Th-JNh-w^ / K 0 o ) | 2 - - * \ujN(t0)\
2dr0. 

In the case of a single mode, 

I9=y,/rii8%?(v9=svi)Ii9. 

If the T's are not too different from one and the number 
of modes is very large so that the dominant contribu
tions come from the terms where all pi—p2— • • • —pN 
= 1, one finds 

(Is)=r}s/vis^2^s=sv1)sl(Ii)s. 

In this case, multimoding results in an apparent relative 
increase (s!)1/2 for the nonlinear constant. In a practical 
situation (for instance, a ruby laser) the T's might differ 
appreciably from unity, and the number of modes going 
at the same time is not necessarily large, so that the 
relation does not necessarily hold. 

Fluctuations around the mean sth-harmonic produc
tion can also be derived from the stochastic properties 
of the fundamental modes. The phase fluctuations will 
be subject to the same limitation as for second-harmonic 
generation: i.e., even spacing of the frequencies. If this 
condition is satisfied, the number of phase-dependent 
terms will be of order of N28"1, the number of phase-
independent terms being of order Ns, the rms fluctua
tions due to phase will be of order iV~1/2. 

file:///pllp2l--pNl'
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V. PARTIAL COHERENCE AND DOWN 
CONVERSION 

The beat between two laser beams, or between two 
modes in the same beam, to generate power at a small 
difference frequency needs a separate discussion, be
cause the number of modes available in wave-vector 
space is limited at low frequencies. This includes in 
particular microwave generation and rectification, i.e., 
the creation of a static polarization. 

Consider first the influence of temporal coherence. 
Assume that the output of each laser consists of N fre
quency modes (or lines), with incoherent phases. Each 
frequency will beat with the components of the other 
beam. The bandwidth of the system detecting the beat 
will determine how many of these components will be 
effective in beating with the given one. Thus the number 
of efficient pairs might be less than N2 and the energy 
generated at the difference frequency smaller than in the 
case of coherent beams. If the bandwidth of the de
tector is less than the spacing between lines, as is the 
case in microwave generation, only one component will 
correspond to a given line in the other beam. Thus, if the 
frequencies are equally spaced, the number of pairs will 
be N, and the energy generated N times smaller than for 
coherent beams. Note that this applies equally well to 
the beats between different components of the same 
beam, but does not hold for the creation of a static 
polarization where each component beats with itself. 
There is no reduction due to incoherence in the latter 
situation. 

The influence of spatial incoherence on the beat of 
two monochromatic fields is similar in nature. A pair of 
components from the two beams cannot contribute to 
power generation at the difference frequency, if the 
difference in transverse components of the wave vectors 
is larger than the absolute value of the wave vector at 
the difference frequency, or than the inverse of the 
transverse dimension of the sample. This imposes 
roughly, the condition 

(klx-k2x)
2+(kly—k2y)

2<fo2 or a~2. 

More precisely, at a point r of the nonlinear dielectric 
the two incident fields Ei and E2 at frequencies v\ and v2 

will interact to give rise to a polarization, 

Psvs=xEnEv^, 

where x is the appropriate nonlinearity constant.3 This 
polarization will in turn reradiate and give rise to a 
field En. If we call V the finite domain where the 
interaction takes place, the field at a point R, remote 
from V will be expressed as 

E„(R) = — vi Pa(r)(T*»*di, 
c2 R J 

where k% is a vector of modulus 2ir(ez)l,2vzc~l in the 
direction of R. For the sake of simplicity we have as
sumed the dielectric constants of the nonlinear medium 

and the surrounding medium to be equal, their value at 
frequency v% being €3. 

The total energy radiated by the nonlinear polariza
tion will be given by 

v3
4 1 r r 

W=\M> / Pm(t')Pm*(r") 
c* R2J J 

siniUr"—r'l 
x dx'dt". (13) 

hW'-tf\ 
In the case of interest, h<Kk2, ki, the directions of the 
two optical beams will necessarily nearly coincide and 
their cross sections will overlap completely. If a is the 
common radius of these cross sections and I the 
length of the volume in the direction of the optical 
beams, we will assume that kzd, k%l<l. In this case 
smkz\r"—r'\/(fa\r"—r,\) is practically 1 for r' and r" 
in V and Eq. (13) reduces to: 

|2 

W^16wWc~zR-
/ 

P{x)dx (14) 

In the case of monochromatic beams, E\ and E2 can be 
written by means of Eq. (1) as 

Ji 
Ei= Y, QjUjfa) exp(ikiz), 

E2=Y, bjUj(rQ) exp(ik2z). 

The same set of orthonormal modes have been chosen to 
represent the two beams. Statistical independence of the 
dj will be assumed. More specifically, the amplitude 
fluctuations of the a,j will be neglected and their phases 
are assumed to have a uniform distribution over (0,27r). 
No special assumptions are then necessary for the bj. 

The orthogonality of the modes over the cross section 
gives 

Ps=xH ajbj^UjUj'*, 

/ 
Psdra=xH a.jbj*. 

Equation (14) can then be written in the form 

v3
4 1 

W,= 16*V {Zk-I2l&y|2+E aM.%%.}. (15) 
c3 R2 ; W 

Thus the generated power depends on the relative 
phases of the different modes. This will result in 
fluctuations of the kind mentioned previously. Note 
that they will be extremely large as (AW/(W))2 

~ 1 — J"1, where / is the larger number of modes neces
sary to represent any of the beams. The average power 
generated is given by the first term on the right-hand 
side of Eq. (15), it will be / times smaller than for 
coherent beams, since 
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The reduction factor is determined only by the less 
coherent beam, and the use of one coherent beam will 
not improve the efficiency of the process. 

When the restriction kzlS^ is lifted the above con
clusions still hold. The expression for the radiated 
energy takes the form 

v£ 1 
W= 16*V ( L anbn*}*F(l), 

c* R2 » 
where 

/?(/)= VMSi[2/(*8+fti-*2)]+Si[2/(*,+*,-*i)]} 

describes the influence of kh k%, kz and the length of the 
rod. For large k%l, the energy will be radiated direc-
tionally in a cone having the direction of propagation of 
the optical beams for its axis. 

The same kind of considerations would apply equally 
well to the case where the nonlinear dielectric is 
placed inside a wave guide or a microwave cavity.28 

There the generated power would be proportional to 
[yjrP s(r)*E3(r)]2 , where Ez{t) is the normalized field 
of the excited mode. When the fundamental mode of a 
rectangular guide has its axis along the optical beams, 
Ps{x) is exactly integrated along the cross section and 
once more W takes the form 

W={Hnanb^yG(l}khk1-k2), 

with the same result for the average energy and its rms 
fluctuations. 

The results obtained in these various cases are quite 
general; they apply to all experimental situations where 
the beats of two optical beams generate a difference 
frequency vz by a quadratic process, such that k^a<l. 
The reduction of the efficiency due to the lack of spatial 
coherence had in fact been pointed out by Forrester 
et al.u for the case of photoelectric beats. The maximum 
efficiency in microwave generation will be obtained 
when two spatially coherent sources are used. If an 
experiment with only partially coherent or incoherent 
beams is not properly analyzed, a value of the nonlinear 
constant much smaller than the real value would result. 
This is probably the reason why most of the experiments 
performed so far have been given an apparent dis
crepancy in the relation4 

Xxyz(v3= ^ 1 — ^ 2 ) = X y a a . ( v i = V2+Vs) , 

equating the previously defined nonlinear constant to 
the linear electro-optic coefficient. This statement finds 
supplementary strength in the fact that this relation has 
been verified by the experiments of Bass et alP for the 
static polarization produced by a laser beam in a non
linear dielectric. Here we are dealing with the beat of a 
beam with itself, the a's and b's are the same. In this 
case the last term in Eq. (15) does not average to zero. 
In fact the term between curly brackets becomes 
(DI an 12}2- There is no reduction factor coming from the 

28 K. E. Niebuhr, Appl. Phys. Letters 2, 136 (1963). 
29 M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys. 

Rev. Letters 9, 446 (1962). 

lack of spatial or temporal coherence in the case of 
rectification. This fact is obviously used every time the 
intensity of an incoherent light beam is measured by the 
direct photoelectric current. 

When the wave number kz becomes larger than ar1, 
the beats between neighboring modes will start making 
a contribution to the radiated energy. When kz becomes 
larger than Ski,2, where S is the widest aperture of the 
incident beams, all beats will contribute to the radia
tion. When this condition is largely satisfied, the beat 
frequency will be radiated in a narrow beam, similar to 
the incident waves. The radiated energy can be com
puted as in the case of second harmonic. There is no 
reduction factor due to the spatial incoherence of the 
source in this case, which applies, e.g., to the generation 
of far-infrared radiation by beating two ruby lasers. It 
is also the case for microwave modulation of light. The 
light waves at the sum and difference frequencies will 
have wave vectors, obtained by adding or subtracting 
the microwave vector km to the wave vectors of the 
incident light beam. Hence in this respect microwave 
modulation of light and optical-beat generation of 
microwave beats are not equivalent situations. In the 
former phase space does not impose restrictions on the 
waves to be created, i.e., on the final states, whereas in 
the latter case it does. 

VI. CONCLUSION 

The stochastic properties of nonlinear optical experi
ments give information about the coherence functions 
of the light field. Conversely, a precise absolute de
termination of nonlinear optical susceptibilities is pos
sible only, if the correlation between the various excited 
optical modes is known. Phase correlations between 
different laser modes can, in principle, be determined. 
The interpretation of experimental results depends 
critically on the relative magnitude of the frequency 
spacing between modes and the bandwidth of the 
photoelectric detector circuit. Relative values of non
linear susceptibilities should be measured by calibrating 
the laser beam or beams with a known material under
going the same nonlinear process. Care should be 
exercised that the geometries of the laser beams in 
sample and monitor are the same. 

The classical description of the electromagnetic field 
which has been used in this paper should give an ade
quate description of the fields produced by a relatively 
small number of highly excited laser modes. It would be 
of theoretical interest to extend Glauber's quantum 
mechanical description of the coherence properties of 
the light field to nonlinear interactions. 
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