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The electronic spectra of rare-earth ions in crystalline fields are generally analyzed in terms of a static 
crystalline field, F c = 2«,m AnmrnYn

m(0,<p), which acts on the open shell of 4 / electrons. In this paper, the 
contributions of the closed atomic shells to this electrostatic interaction are examined and are found to 
be significant in several respects: First, the magnitude of the crystal-field splittings are reduced from the 
values obtained by considering just the 4/shell alone; this result supports the familiar assertion that the 
4 / electrons are shielded from the external crystalline field. Secondly, and quite striking, is the result that 
the ordering and relative spacing of the crystal-field levels are not necessarily those implied by the 4 / 
crystal-field matrix elements alone. I t is shown that in some cases the distortion of the ion's charge dis
tribution produces severe deviations from the 4 / crystal-field level scheme predicted by Ve directly. When 
such "nonlinear" deviations occur, they make questionable the standard crystal field parametrization 
schemes used for fitting observed rare-earth spectra. In addition, we also investigate the role played by the 
crystal field in producing by means of the distortion of the closed and 4 / shells, and the interaction of these 
distortions with the open 4 / shell, contributions to the magnetic (and electric) hyperfine interactions. 

I. INTRODUCTION 

BASIC to current methods for analyzing the elec
tronic energy levels of rare-earth ions in crystalline 

fields is the assumption of a static crystalline field, Vc, 
which acts on the open shell of 4 / electrons. Assuming 
that there is no overlap between the 4 / electrons and 
the surrounding ionic charge distribution, Vc has the 
general form 

VC=E An™rnYn
m(e,<p). (!) 

Most simply, the An
m are taken to be lattice sums and 

represent the effects from static charges of the lattice 
of neighboring ions and the Yn

m(d,<p) are the usual 
spherical harmonics. Generally, in fitting observed 
spectra, matrix elements of Vc over the 4 / electrons 
alone are considered; since integrations over the angular 
coordinates are easily done,1 one is left with the quanti
ties Vin

m—An
m(rn) (where (rn) is the integral of rn over 

the 4 / radial density) which are taken to be empirical 
parameters which somehow absorb all the various en
vironmental effects not included in the simple descrip
tion given by Eq. (1). 

In this paper we investigate two postulates of crystal 
field interactions: 

(1) The crystal field interacts only with the open 
4 / shell, i.e., contributions from closed electron shells 

* Supported by the U. S. Air Force Office of Scientific Research. 
1 Crystal-field theory dates back to H. Bethe, Ann. Physik 3, 

133 (1929). See the more recent work of K. W. H. Stevens, Proc. 
Phys. Soc. (London) A65, 209 (1952), R. J. Elliott and K. W. H. 
Stevens, Proc. Roy. Soc. (London) A215, 437 (1952); ibid. A218, 
553 (1953); ibid. A219, 387 (1953); and B, R. Tudd, ibid, hill, 
552 (1955). J 

(generally referred to as shielding effects) are negligible. 
(2) The ordering of the 4 / crystal-field energy levels 

is determined by the group transformation properties 
associated with a Hamiltonian which has the symmetry 
of F e acting on the 4 / shell, i.e., the ordering and 
relative spacing of the electronic energy levels is deter
mined by the angular operators of Vc acting on the 4 / 
electrons alone. The validity of this assumption, often 
cited as one strength of the crystal-field method, is 
used to justify the parametrization procedure. 

In addition, we also investigate the role played by 
the crystal field in producing, by means of the distortion 
of the closed and 4 / shells, contributions to the mag
netic hyperfine interactions. 

The validity of (1) has long been questioned. Indeed, 
until very recently, it has been fashionable to assert 
that the small crystal-field splittings observed for rare-
earth ions, relative to (say) that for the 3d transition 
series, was caused by large shielding effects associated 
with the 5,y and 5p electrons which lie outside the open 
4 / shell. However, in a recent publication, Burns has 
strongly challenged this view.2 Using analytic per
turbation techniques,3 he estimated the shielding of 
the F4° and F6° components of the field in the tri
chlorides and ethyl sulfates to amount to less than 
10%, and presented arguments (as well as calculations 
for lighter ions) to show that similar results should be 
expected for the V20 component. Burns concluded that 
shielding in the rare-earth ions is unimportant and 
hence, that the difference between the iron series and 
rare-earth ion behavior is not due to the fact that the 

2 G. Burns, Phys. Rev. 128, 2121 (1962). 
3 T. P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956). 
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outer electrons shield the 4 / electrons from the crystal 
fields. Instead, Burns attributes these differences to 
two predominant factors: (1) In iron series ions the 
crystal-field strengths are as much as ten times larger 
than for rare-earth lattices; (2) (rn) for 3d ions are two 
times larger than their counterparts for the 4 / ions. 
In a very recent publication, Lenander and Wong4 

(henceforth denoted as L & W), did perturbation-
configuration interaction calculations and found sub
stantial shielding of the F2° and F4° fields (59 and 17%, 
respectively). Using these results and comparing point 
charge calculations with experiment for the trichlorides 
they concluded that as much as 90% shielding could 
occur. Adding to these widely divergent views, is the 
conclusion of Bleaney5 based on data6 for Tm2+ in 
CaF2, that the crystal-field interaction is far larger 
(i.e., antishielding) than that expected from estimates 
based on Eq. (1). Finally, Jo'rgensen, Pappalardo, and 
Schmidtke7 have emphasized the role of covalent 
bonding in rare-earth crystal-field interactions. This 
effect is quite outside the conventional approach asso
ciated with Eq. (1) and despite its probable importance, 
we will not consider these effects here. 

To our knowledge, the validity of (2) has not previ
ously been questioned. Our results show that in addition 
to producing large shielding effects, the crystalline 
potential gives rise to distortions of the ion's charge 
distributions which, in turn, produce deviations from the 
predicted 4 / crystal-field level scheme given by Vc 

directly. Such deviations will not always be of signifi
cant magnitude but when they are, the standard para-
metrization procedure yields parameters which contain 
crystal-field components of inappropriate symmetry. 
The application of this procedure to fit rare-earth 
spectra is most questionable in such a case. The present 
calculations supply crude information concerning these 
deviations, information which indicates that, on occa
sion, these deviations are of experimental importance. 

The computations, to be reported, were carried out 
for Ce3+ which, with its single 4 / electron, offers a 
particularly simple case to deal with; however, the 
implications of these results for other rare-earth ion 
spectra may be readily extended. We will simplify the 
computations by staying within a (L9 ML, S, MS) 
coupling scheme rather than within the (/, Mj, L, S) 
intermediate coupling scheme which is more appro
priate to the rare earths. We believe this to have but 
minor qualitative repercussions on our estimates for 
Ce3+ (although this could be more serious for other 
rare-earth ions). This approximation lets us deal 
entirely with single-determinant antisymmetric many-
electron functions. 

4 C. J. Lenander and E. Y. Wong, J. Chem, Phys. 38, 2750 
(1963). 

6 B. Bleaney (to be published). 
6 Z. Kiss, Phys. Rev. 127, 718 (1962). 
7 C. K. Jjfrgensen, R. Pappalardo, and H. H. Schmidtke, J. 

Chem. Phys. 39, 1422 (1963). 

II. CLOSED-SHELL CRYSTAL-FIELD SHIELDING 

Quite formally, consider a free rare-earth ion and 
represent its ground-state eigenfunction by ^o, which 
is a solution of the Schrodinger equation for the free-ion 
Hamiltonian, Ho. For this ion in an external crystalline 
potential Vc, represented by an additional contribution 
to the Hamiltonian, we may take any of the new state 
functions to be given by 

¥ = * o + £ * G r ¥ x (2) 

in a manner similar to the method of configuration 
interaction (C.I.),8 which is used to discuss the cor
relation problem in atoms and molecules.9 In C.I. 
theory, the tyK (including SPo) form a complete set of 
many-electron functions; the combining coefficients CK 
are determined as the solution of a secular equation 
formed by applying the variational principle to the 
total energy. 

To understand the spectra of rare-earth ions, we 
must calculate the energy differences between crystal-
field energy states for it is these and not abolute ener
gies which are observed experimentally. For simplicity, 
first consider a set of 4 / crystal-field energy levels 
which are obtained by the usual direct interaction of 
Eq. (1) with the 4 / electrons. Now assume that one 
has obtained exact eigenfunctions [the >Fs of Eq. (2)~] 
and eigenvalues by solution of (say) the C. I. problem 
and compare these results with the approximate 
solutions. The differences take two forms. First, in 
going to the exact solutions all the energy levels have 
been lowered by a constant amount. Among the sources 
for this are any interactions solely involving the ion's 
closed shells which, by being distorted by the field, will 
have (to a first approximation) polarization energies 
which are constant for all the crystal-field states of the 
ion. These energy shifts are of no interest to us here. 
Secondly, the energy levels are displaced from one 
another relative to the predictions of Eq. (1) acting 
directly on the 4 / electrons. We shall, in this paper, 
define any effect which causes such a displacement of 
the crystal-field levels, either in magnitude or in relative 
spacing, as a crystal-field shielding effect. However, we 
will not deal with the full crystal-field problem here; 
for example, we assume a potential of the form of Eq. 
(1) and thereby ignore the effects of covalency and ionic 
overlap. We will also concentrate on diagonal matrix 
elements of the interaction, i.e., we ignore mixing 
between the chosen states. These approximations (and 
others which will be introduced) are necessary because 
of the computational complexities of the problem; 
since they affect the quantitative nature of the results, 
detailed comparisons with experiment are not valid. 

8 See R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955) 
for a discussion of C.I. and H-F theory. 

9 J. C. Slater, Technical Report No. 3, Solid-State and Molecular 
Theory Group, MIT, 1963 (unpublished), and J. C. Slater, Quantum 
Theory of Molecules and Solids, Electronic Structure of Molecules 
(McGraw-Hill Book Company, Inc., New York, 1963), Vol. I. 
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To treat the problem let us choose a particular 
(approximate) representation within which we shall 
later carry out our computations. We shall take \Fo to 
be the single determinant of one-electron orbitals which 
represents the conventional (or restricted) Hartree-
Fock (RHF) ground state of the free ion. [We shall 
return later to consider the role of the unrestricted 
Hartree-Fock (UHF) representation in the computa
tions.] For the tyK, we shall consider only those de-
terminantal states (made up of one-electron functions) 
which have nonvanishing matrix elements of Vc with 
respect to the ground state. The enumeration of the 
^K, follows simply and directly from the symmetry 
of Vc and the particular one-electron orbitals, <pi°9 

which make up ^0. Since Vc is an one-electron operator, 
the matrix element (\l>o | Vc | ̂ K) will be nonvanishing 
if (a) "&K differs from SI>o only in having one orbital <piK 

different from the <p° of ¥0, and (b) (<piK\ Vc\ <Pi°)^0. 
Using the properties of the spherical harmonics in (b) 
leads to the following SPR (listed in Table I) for the 

TABLE I. Enumeration of the allowed interacting configurations 
for F2° and VA° fields; e.g., p —> / denotes that ^& obtained by 
replacing a p one-electron orbital by an / one-electron orbital. 

F2° F4° 

s—>d s—> g 
p-*p p-*f 
p->f P~>h 
d—> s d—>d 
d—>d d—*g 
d—+g d—>i 
f->P f~>P 
/ - / / - / 

V2° and VA° components of Vc, where, for example, the 
notation p —» / means that a p orbital in ^o is replaced 
by an / orbital in ^K- Since the ground-state con
figuration of a rare-earth ion consists of the closed 
shells (ls22s23p*--5s25pQ) and an open shell (4/«), 
where q= number of 4 / electrons, it is readily seen what 
limitations are imposed by the selection rules of Table I 
on the excited configuration tyK quite aside from any 
restrictions imposed by the exclusion principle. 

Crystal-field shielding terms arise from the inter
action between the distorted charge distribution and 
the 4 / electrons. These energy contributions are 
straightforwardly evaluated, as they are expressed in 
terms of matrix elements of the two-electron Coulomb 
operator between, for example, ^K and ^o; i.e., 
( ^ I ^ - 1 ! ^ ) . Since *&K and ^ 0 differ by but a single 
orbital (<Pi°—> <PiK), it follows simply that 

< ¥ s k i 2 - W = E ( [> ;* (1W*(2) ]* 
4/shell J 

1 - P l 2 
X ^(lW(2)<fe*&>2 (3) 

ri2 

represents the interaction with the 4 / shell. Here, Pn 
is the permutation operator which exchanges coordi
nates 1 and 2 so that Eq. (3) contains both direct 
Coulomb and exchange contributions.9* 

As in the C. I. case, the combining coefficients CK 
should be determined by solution of the full secular 
equation obtained by minimizing the total energy of 
^ using the Hamiltonian H=Ho+Vc. This we shall 
not do. Instead, we shall rely on a perturbation theory 
approach which, although less accurate, offers a number 
of computational and conceptual advantages. In par
ticular, it allows us to relate the crystal-field shielding 
problem to Sternheimer quadrupole antishielding,10 to 
which it is formally quite similar, and to discuss the 
calculations in terms of the perturbation of the one-
electron orbitals directly, rather than more cumber-
somely in terms of determinants. It should be empha
sized, however, that there are two important differences 
between the crystal-field and the Sternheimer anti
shielding cases. First, unlike the case of hyperfine 
interactions, the crystal-field shielding involves inter-
electronic interactions; hence, as shown in Eq. (3) the 
full two-electron Coulomb and exchange interactions 
between the 4 / and the distorted closed shells must be 
accounted for. Secondly, the 4 / shell is open and so we 
must account for any coupling between it and a closed 
shell which affects the closed shell's distortions. We 
will see that these couplings are important for crystal-
field shielding but are not important in estimates of 
the quadrupole antishielding for an open shell rare-
earth ion. 

To analyze the results we shall find it convenient 
to use the concept of "linear shielding." As we shall see, 
the interaction terms may be classed as to whether or 
not they can be cast into the form of a shielding factor 
times the crystal field strength, i.e., as 

AE=(4f\Vn°(l-Rn)\4f), (4) 

where Rn accounts for the shielding. Terms which, for 
symmetry reasons, can be characterized by an Rn 

contribution, will be called "linear shielding" terms in 
what follows. However, a number of the shielding terms 
(including any second-order shielding) cannot be con
veniently cast into the form of Eq. (4). For this reason 
we will compute the crystal-field shielding energy for 
each of the four \ML\ (= |wj|) states of the Ce3+ ion 
and will compare these with the levels appropriate to 
the unscreened potential. It is from such comparisons 
in these cases that we derive our conclusions concerning 
both linear and nonlinear shielding. 

9a It should be noted that Eq. (3) equals the full matrix element 
of our free-ion multielectron Hamiltonian between SÎ  and ^o only 
if the / values of <pik and <pi° differ (although mi and m8 values are 
the same). Otherwise there are additional terms (see Ref. 8). 

10 R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460 
(1953); H. M. Foley, R. M. Sternheimer, and D. Tycko, ibid. 93, 
734 (1954); R. M. Sternheimer, ibid. 96, 951 (1954); R. M. 
Sternheimer and H. M. Foley, ibid. 102, 731 (1956); R. M. 
Sternheimer, ibid. 80, 102 (1950); 84, 244 (1954); 86, 316 (1952): 
95, 736 (1954); 105, 158 (1957). 
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A. Radial Shielding 

It is readily seen in Table I that the excited configu
rations ̂ K fall into two categories depending on whether 
/, the orbital angular momentum quantum number of 
<PiK, is the same or is different from that in <pi°. Fol
lowing Sternheimer, we shall call the /—»/ terms 
"radial" shielding and the /—>/' terms (with /V/) 
"angular" shielding. 

As seen in Table I, closed-shell radial shielding occurs 
for p and d shells in a V20 field and for d shells in a F4° 
field. Since the occupied 3d and 4d shells of a rare-earth 
ion are well in its interior, they contribute but small 
shielding terms to VA° and so we will not consider these 
here. 

For calculating the V20 radial shielding, we may 
simplify the calculations considerably by making use 
of a previous investigation11 in which it was shown that 
the radial excitations (in a V20 field) may be obtained 
from an UHF calculation. In this method, the electrons 
in a given nl shell having different mt values are allowed 
to have different radial wave functions. Such a calcu
lation for the Ce3+ ion in a V20 field has been reported12 

and, as this supplies us with the radially distorted p 
and d shells, we now need only to investigate the 
interactions of these shells with the 4 / electron. Of the 
set of calculations reported,12 the results which are of 
particular use to us here come from the calculation in 
which (a) the single 4 / electron was forced to make 
spherical (i.e., the conventional HF) contributions to 
the H-F potential and (b) the V20 potential (plus 
intershell repercussions) was allowed to distort the 
closed shells.13 

Given the distortions (in the form of UHF radial 
functions) and given the 4 / orbital behavior, it then 
becomes a simple matter to evaluate the shielding. 
Noting that the radial behavior of individual orbitals 
within the distorted electron shells is independent of 
the sign of their ms and mi quantum numbers, the 
interaction energy of a distorted closed p shell with the 
4 / electron may be written as, 

AEp^f,m/) = ic*(4f,ni/; 4/,**,') 
XCF2(4/,m/;^,0)-F2(4/, mi if, ±1 ) ] 
- t*(4/,ai,'; A0)]2C2(4/,m/ ; Pfl) 
~£±[<2(4/, tn/;P, ± 1 ) ] W / , m/;p, ±1) 
- l<Wf,m' ;Pfi)jG^f,m/ ;pfi) 
~E±&4(4/, m/;p, ±1)]2G4(4/,m'lp, ±1) (5) 

11 R. E. Watson and A. J. Freeman, Phys. Rev. 131, 250 (1963). 
12 A. J. Freeman and R. E. Watson, Phys. Rev. 132, 706 (1963). 
13 In such a procedure, we take the second-order perturbation 

approach, common (Ref. 3) to Sternheimer antishielding investi
gations (cf. Appendix in Ref. 3), of letting one aspherical inter
action (in this case the V<P field) distort the ions closed shells and 
then studying the interaction of these with another aspherical 
source (the 4 / electron). While this approach avoids certain 
serious complications, it has its limitations for treating the crystal 
shielding problem and will not always be followed in subsequent 
sections. 

and for a distorted d shell as, 

AE^d(4f,m/) = (4/7)c2(4/,w/; 4/,w/) 
XLF>(4fym/;dfl)+F>(4f, m/;d, ±1) 
-2F2(4/ , m{\ d, ± 2 ) ] + / * , G\ G\ 

and Gb terms. (6) 

Here the ck(l,mi;l',m/), the Condon and Shortley 
coefficients,14 are integrals of the product of three 
spherical harmonics, 

F*(i,j) = R*(ij;ij); Gk(i,j) = Rk(ij; ji), 

Rk(ab;cd) = / t/a(r1)*76(r2)(r<Vr>*+1) (7) 
Jo Jo 

XUc{rl)Ud{r2)dridr2, 

and the Ui are one-electron radial functions. The F2 

terms of Eqs. (5) and (6) obviously produce linear 
shielding, since the unscreened matrix elements. 
(4/1 V2° 14/), of V2° are proportional15 to c2(4f,mi; 4/,W|). 
Closer inspection of the remaining exchange terms (Gk) 
of AEp-+p shows them also to produce linear shielding.16 

The G1, G3, and G5 terms of AEa^a are linear shielding 
but are zero to the accuracy to which they can be com
puted. The F* term is zero valued from symmetry 
considerations. The inclusion of these terms would 
affect our results by no more than one unit in the last 
digit which we shall report; hence, we shall neglect them. 

Given the distorted UHF wave functions for the p 
and d shells, the evaluation of their contribution to 
radial crystal-field shielding is, or rather would be, 
straightforward if it were not for the question of which 
4 / orbital (or orbitals) to insert into Eqs. (5) and (6). 
That there might be some question is indicated by 
Table I I where we compare various (4/| rn 14/) integrals, 
i.e., 

• f 
Jo 

(i\r"\j)= UMfUMdr (8) 

evaluated for the V2° field UHF results12 and for a RHF 
calculation done with the same basis set.17 We see a 
several percent variation in (4/|r2 |4/) and even larger 
variations for higher powers of r, which suggests that 
the 4 / shell varies noticeably from one crystal-field 
level to another. In order to decouple the closed-shell 
shielding effects from such 4 / orbital variation, we will 

14 See E. U. Condon and G. H. Shortley The Theory of Atomic 
Spectra (Cambridge University Press, New York, 1953), Chap. 
VI. The ck integrals are tabulated on pp. 178-179. 

16 The c2(4fmi;4:fmiys hence the <4/|F2
0 |4/) ,s have values 

proportional to ± 4 , ± 3 , 0, ^ 5 for the mi = 0, ± 1 , ± 2 , and ± 3 
levels, respectively. 

16 This follows from the symmetry of the ck's irrespective of 
details of the radial distortions, as is shown in Appendix II. 

17 We are relying on analytic H-F calculations and compu
tational considerations necessitated using a smaller basis set than 
was used in a previously reported RHF calculation for Ce3"1" 
[A. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058 (1962)1 
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TABLE II. Comparison of (4 / | r n | 4 / ) integrals as obtained from 
the Ce3+ UHF calculation (Ref. 10) used in the shielding estimates 
and from a RHF calculation using the same basis set (Ref. 17). 
All integrals are in a.u. 

UHF RHF 

<4/M4/> 
(4/k2 |4/> 
<4/|f*|4/> 
<4/k6 |4/> 

4.66 
1.23 
3.70 

23.7 

4.71 
1.21 
3.49 

21.6 

evaluate Eqs. (5) and (6) and their angular counter
parts with a single 4 / radial function. Rather arbi
trarily we have selected this orbital from the V£ field 
UHF calculation. We shall discuss the effects of 4 / 
orbital variation in Sec. V. 

B. Angular Shielding 

The remaining and more numerous /—>/' (I'T^I) 
terms of Table I make up the angular shielding con
tributions. Unfortunately, we cannot currently carry 
out a UHF treatment of the angular shielding11 as this 
requires substantial modifications in existing H-F 
computational machinery. Instead, we shall use the 
C. I. scheme described above and determine estimates 
of the CK from perturbation theory. 

To first order, CK is simply given by 

<**|F,|¥b> (<PiK\Vc\tf) 
CK = = (9) 

EQ—EK EQ—EK 

and the energy contribution of ^K to the same order is 

\(<PiK\Vc\<PiQ)\2 

8E=CK(*K\ FC |*O> = — . (10) 
EO—EK 

The leading shielding contributions, i.e., the additional 
electrostatic interactions (arising from the distorted 
closed shells) experienced by the 4 / electrons, may now 
be written down quite simply as 

A£<1> = < ^ | r 1 2 - 1 | ^ > 4 / - < ^ o k i 2 - H ^ o > 4 / 

= 2ZCK(*K\ru~1\Vo)if 

^(<PiK\Vc\<pi")/ 

= 2 E <*x r w - W t f , (11) 
K Eo-EK 

where the subscript 4 / reminds us that we are interested 
here in just the 4 / part of the interaction energy. In 
addition to the terms listed in Eq. (11), part of the 
second-order terms in CK, arising from the normaliza
tion requirement for ^ , make a second-order contri

bution to Eq. (11) which is 

r<^l^i^°)-i2 

K L EO-EK J 

X ^ ^ l r ^ l ^ - ^ o k w - M ^ o ) } . (12) 

These incomplete second-order terms are kept in what 
follows as a test of the validity of the first-order per
turbation theory approach; we shall, in fact, later see 
a case, when dealing with hyperfine effects, where a 
small first-order term causes the second-order terms to 
dominate. 

We shall concentrate our attention on the Sp —> 4 / 
distortions, which one expects to be the most important 
contribution to the angular shielding because of the 
small denominator in its CK for a correspondingly 
substantial numerator. This result is in fact, obtained 
by L & W who find a 30% shielding contribution to 
F20 (out of a total of 59%) and almost the entire F4° 
shielding (17%) from this term alone. [We shall rely 
on L & W for perturbation theory estimates of the 
other angular shielding terms (i.e., Sp --» 5 / and 5s~>d 
for F20).] Our approach will be to take the results of a 
H-F calculation for Ce3+, and to estimate the effect of a 
V<P or F4° field in mixing 4/-like excitations into the 
5^-shell orbitals. We will denote the unoccupied 4 / 
orbitals involved in the mixing by /*, and will constrain 
them to have the same radial behavior as the single 
occupied 4 / orbital obtained in the H-F calculations 
(for which the symbol 4 / will be reserved). 

In a Vn° field, the interaction of a p shell, distorted 
by a p —» / * excitation, with the 4 / electron (whose 
magnetic and spin quantum numbers are denoted by 
m{ and w/ , respectively) is given by 

mi,m8 [ Ep — Ef+ 

X £ CC*(4/ .*»I ' ;4/ ,», ' )C»(?,«J; /*,«») 
&=2,4 

X3*(/*,4/; p,4f)-t(m„m.')ck(p,tni;4lf,mt') 

Xc*(/*,«,; 4/,«,')g*(4/,/*; #,4/)]j , (13) 

with a second-order contribution from Eq. (12): 
-(p\Vn0\f*)-

«.L Ev-E,* J mi,m8 L Ep — Ef* 

X { £ c*(4/,«,'; 4/>»,0c*(/*> mi; / * «i)F*(4/,/*) 
£=0,2,4,6 

- £ c"{Af,ml';Af,mi')ch{p,mi;p,mi)Fk{if,p) 
&=0,2 

-«(«.,«.') £ lck(4f,m';f*,mi)JG*(4f,f*) 
£=2,4,6 

+«(«.,»»/) £ Wf,mi;p,mi)JG>(£J,p)}, (14) 
fc»2,4 
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TABLE III. Radial shielding contributions in au from the 4p, 5p, 
shell F2, G2, and G4 are given separately; for comparison, tl 

Sp shell terms 

4 / W F> G2 G4 Total 

0 -0.00183 0.00033 0.00009 -0.00142 
± 1 -0.00137 0.00025 0.00007 -0.00104 
± 2 
± 3 0.00228 -0.00041 -0.00011 0.00176 

where we have used the notation 

3*(/*4/; p4f)^Rk(fHf; jAf) (15) 
and 

Sk(4ff*;p4f)=R»(W*;PV) (16) 
to emphasize direct and exchange terms, respectively. 
The £7 indicates that the mi+ms summation must 
exclude the m{ and ms

f values of the 4 / electron, as 
required by the exclusion principle. This means that 
53' consists of five terms if w / = 0 or ± 1 for the 4 / 
electron and six terms otherwise. 

One other feature of the exclusion principle needs 
stating. Not only is a shielding term lost in this way, 
but there is in addition, a loss of energy, given by Eq. 
(10), which is associated with the distortion. Such a 
term provides an Wz'-dependent crystal-field energy, 
and so, as discussed earlier, contributes to the 
"shielding." We shall see that this contribution is not 
insignificant. 

We will consider SF* and Qk terms separately in what 
follows but it should be noted that for Ce3+ the effect 
of the exclusion principle disappears if we consider a 
($kyQk) pair, of given k, together. That the excluded 
$k term of Eq. (13) is exactly equal, but opposite in 
sign, to its partner Qk term becomes immediately 
apparent if we observe (1) that the $k integral equals 
gA (since the 4 / and / * orbitals have been constrained 
to have the same radial behavior) and (2) the obvious 
fact that m/(4:f)=mi(f'k) for the excluded terms. This 
is a nice, and often exploited, feature of the H-F 
treatment of interelectronic effects. 

We will use the UHF Ce3+ orbitals when evaluating 
Eq. (13), i.e., the radially distorted Sp shell will be the 
starting point for the Sp —» 4 / estimate. We will again 
require the individual Sp and 4/ orbitals to maintain 
constant radial behavior for the various m{ states. 

A literal evaluation of Eq. (10), (11), (12), (13), or 
(14) is made tedious by the fact that the energy 
denominators are functions of the mi and ms values 
of both the p—*f* and the 4 / orbitals. In order to 
simplify matters we will use averaged Ep—Ef* values 
of -0.72 and -0.68 a.u. for mi (of /*) = 0 and ± 1 , 
respectively, although individual Ep—Ef* values 
actually differ by as much as 5% from these numbers. 
While a careful accounting of the individual terms 

and 4:d shells, obtained by evaluating Eqs. (5) and (6). The Sp 
ie unscreened (4 / | F2°|4/) matrix elements are also listed. 

U shell U shell All 
total total shells (4/|F2

0 |4/> 

-0.00002 -0.00012 -0.00155 -0.0105 
-0.00001 -0.00009 -0.00116 -0.0079 

0.00002 0.00014 0.00193 0.0131 
~ 1 5 % anti-

shielding 

which occur leads to an array of small contributions to 
the shielding, summing over sets of ty^f* orbitals 
reduces the effect of this for $* shielding terms. The 
evaluation of Eq. (13) with these Ep—Ef* values will 
lead to important nonlinear Qk shielding terms, terms 
which would be linear shielding only if we used a 
single-energy denominator in that equation. The treat
ment of the energy denominators is therefore critical 
to any detailed quantitative accounting of nonlinear 
shielding, a matter which we will not attempt in this 
paper.18 

We will have occasion to inspect second-order as well 
as first-order crystal-field terms which involves aban
doning a simple linear polarization approach to the 
shielding and requires that the calculation be done with 
a specific crystal-field potential. For the V2° shielding 
calculations, we shall use the potential used previously,12 

namely, that due to a pair of point charges of 2 a.u. each, 
located 5 a.u. along the z axis to either side of the Ce 
nucleus, with sign such that the m'i=0 state has lowest 
energy. This field is stronger than those normally 
encountered in rare-earth salts. 

III. CLOSED-SHELL V2° SHIELDING RESULTS 

Radial shielding contributions arising from the 4p, 
Sp, and 4d shells were obtained by evaluating Eqs. 
(5) and (6) in the manner discussed in the preceding 
section. Results are listed in Table III, which also lists 
the individual Sp, Fk, and Gk terms separately and, for 
comparison, the unscreened (4/|F2°|4/) matrix ele
ments. In Table III, and in subsequent tables, we follow 
a procedure of shifting the zero in a set of energy levels 
whenever convenient (e.g., this has been with the G2 

and G4 columns of Table III so that zeros occur in the 
| m{ | = 2 row, thereby making their linear shielding 
apparent). 

These radial terms have enhanced the crystal-field 
interaction by 15% due almost entirely to the Sp shell. 
I t is seen that only a one percent antishielding arises 
from the inner 4p and 4d shells; it is perhaps surprising 

18 One may have to abandon perturbation theory (and the 
associated questions of varying energy denominators and the 
exclusion principle) and utilize configuration interaction methods 
on any attempt at detailed results. Several p—*f configuration 
interaction calculations will be reported in a subsequent paper in 
an effort to better resolve nonlinear shielding behavior. 
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TABLE IV. Summary of Sp -> / * shielding contributions to F2°. Individual 5k and S* contributions are listed along with 8E from 
Eq. (10) and the second order terms of Eq. (14). For comparison the shielding associated with just the $2 term ignoring the exclusion 
principle is also given (in au). 

5* terms only Sum of 
Total ignoring second-order 

First-order terms of Eq. (13) g£ 0f shielding exclusion terms 
4/wj ' ff2 3* 92 S4 Eq. (10) energy principle of Eq. (14) 

0 0.00269 -0.00037 0.00026 -0.00026 0.00056 0.00288 0.00340 -0.00012 
± 1 0.00218 -0.00002 0.00003 -0.00044 0.00040 0.00215 0.00255 -0.00010 
± 2 
± 3 -0.00425 -0.00002 0.00064 0.00070 ••• -0.00293 -0.00425 -0.00007 

~ 2 5 % Shielding ~ 3 2 % Shielding 

that these terms play even this large a role. The anti-
shielding would be 25% larger if it were not for the 
exchange (Gk) terms which, as is common, are in oppo
sition to the direct terms and are of significant mag
nitude. Lenander and Wong's 10% antishielding 
estimate was obtained for the Sp F2 term alone for which 
we obtain 18%. In addition to any differences intro
duced by the two computational methods, the difference 
is due primarily to their use of Hartree and approxi
mate Hartree-Fock-Slater functions and the different 
ions considered (Pr2+ versus Ce3+). 

In Table IV, we summarize the angular Sp—>f* 
shielding contributions. Note that the four $k and 9*. 
terms of Eq. (13) which are listed do not make linear 
contributions to the shielding [i.e., to an Rn of Eq. 
(4)]: The #4, Q2, and g4 terms do not, because of sym
metry; the direct $2 term, which might otherwise, does 
not because the exclusion principle has knocked out 
terms in the sums for the 4 / states having tn/=0 and 
± 1 . (The radial integrals necessary for the evaluation 
of these terms are given in Appendix I.) Together, 
these terms add up to a 25% crystal-field shielding 
contribution. Table IV shows the four shielding ener
gies of the m{ states to conform roughly to the 4, 3, 0, 
— 5 spacing characteristic15 of the (4/| 72°|4/> values. 
The agreement would be very good if the w / = ± 3 
term were somewhat larger in magnitude; the deviation 
of this level's position is largely due to the contribution 
from g2 and g4 exchange terms. 

As an instructive comparison, we also list in Table 
IV the tf2 term evaluated ignoring the exclusion 
principle (i.e., X/ is replaced by X) which goes over 
six terms for all ifm/ values) as this is the form of 
Lenander and Wong's estimate. Our result, which 
shows a 32% linear shielding value, is remarkably close 
to the 30% value obtained by L & W; both values are 
somewhat larger than the 25% shielding obtained above 
from the more exact treatment. 

Also listed in the Table IV are the p —» /perturbation 
energies, i.e., 8E of Eq. (10), arising from the exclusion 
principle. Their effect is to compensate for the effect 
of the exclusion principle (via X/) on the dominant £F2 

term, as is seen from Table IV. Finally, the sum of 
second-order terms of Eq. (14) are listed in Table IV 

(but are not included in the shielding summations); as 
one would hope, these have proven to be unimportant. 

The sum of radial and Sp—>f shielding is listed and 
compared with (4/ | V2° | 4/) values in Table V. Here the 
depression of the m / = ± 3 level is more apparent. 

TABLE V. Comparison of radial plus Sp —> f* shielding ener
gies (Tables III and IV) with the unscreened <4/| F2°|4/) terms 
(in au). 

Radial plus Shielding 
Sp -> f* shielding (col. I/col. II) 

4/w i energies (4/1 V2° 14/> in % 

0 0.0013 -0.0105 T H 
± 1 0.0010 -0.0079 - 1 3 
± 2 
± 3 -0.0010 0.0131 - 7 . 6 

To these terms we must add the Ss —> d and 
Sp —» (higher) / contributions. Lenander and Wong 
have estimated these from the $2 terms (with the 
exclusion principle omitted) to produce almost a 40% 
shielding. We believe this value to represent a small 
underestimate of the actual direct electrostatic ^2 

effect: The exchange terms are expected to be less 
important than in the p-^>f* case discussed above 
because the overlap charge densities appearing in these 
integrals are correspondingly less effective. Of course, 
these exchange terms (along with others which have 
been omitted) must be included for any detailed quan
titative shielding estimate. Adding the L & W estimate 
of the 5s —» d and Sp —» (higher) / contributions to our 
radial and Sp —> f* values yields a total shielding of 
50%, in rough agreement with their 59% estimate. 
Since these additional terms are linear shielding in 
nature, their presence reduces the relative importance 
of the w / = ± 3 level displacement thus making the 
set of four shielding energies conform quite well to the 
V20 level scheme. 

We must emphasize that the above estimate for 
Ce3+ includes a 25% shielding contribution from the 
Sp —> / * distortion. In going to other rare-earth ions, 
where one fills the 4 / shell, this distortion is given less 
freedom to act and will almost disappear as one ap-
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TABLE VI. Closed shell F4
0 Sp —» / * shielding results using Eq. (13). The individual 5k and $k contributions are listed along with 

their sum (2), the unscreened (4 / | Vi°\4:f) values, the shielding expressed as in percent and the ^4 term alone ignoring the exclusion 
principle. 

4fmi' ff2 & 94 
<4/wj' |F4

0 |4/W> 
[ = * ( 4 / , * , ' ; 4 / , « , ' ) ] 

2 / ( |F4° |} 
(in %) 

JF4, ignoring 
exclusion 
principle 

0 0.0238 -0.0235 -0.0057 0.0060 
± 1 -0.0070 -0.0048 -0.0130 0.0004 
± 2 ••• 0.0380 0.0324 0.0041 
± 3 -0.0025 -0.0163 -0.0142 -0.0023 

0.0006 
0.0244 
0.0745 
0.0353 

0.1818 
0.0303 

-0.2121 
0.0909 

0.2 
- 8 1 
- 3 5 
- 4 0 

-0.0327 
-0.0054 

0.0380 
-0.0163 

18% shielding 

proaches Yb3+ (4/13). Inspection of this process, how
ever, is complicated by the fact that a proper treatment 
requires dealing with multideterminantal functions (in 
the / , Mj, L, S representation) but qualitatively it 
does appear that there will be a trend as one goes from 
Ce3+ to Yb3+, from —50 to ~ 2 5 % shielding. We shall 
return to this matter later. 

IV. CLOSED-SHELL 74° SHIELDING RESULTS 

As seen from Table I, a V±° field induces p—*f, 
s—>g, and p-^h distortions in the 5s and Sp shells. 
The effectiveness of the latter two are penalized by the 
high energies of the excited orbitals; hence, as is usual, 
we will ignore them. We will again concentrate on the 
contributions of the terms of Eq. (13) to the Sp —» / * 
shielding. These terms proved to be most important 
in the V20 case and by limiting ourselves to them we 
need not again assume a specific field strength for Vn° 
(except for the energy denominators). As in the V20 

case, these terms are not linear in their shielding [cf. 
Eq. (4)] although the shielding energy associated with 
any one of them is proportional to the field strength. 
Their nonlinear nature follows from the exclusion prin
ciple for ^4 (i.e., from the prime terms on the summa
tion) and from symmetry (in combination with the 
varying energy denominators) as well for the other 
terms. Since we cannot simply compute an Rny we must 
again evaluate the shielding energy as a function of the 
4/m/ value and this reintroduces the necessity of some 
(not necessarily physical) crystal field energy scale. We 
have quite arbitrarily found it convenient19 to use one 
such that, very simply, 

<4/w*| F4°|4/mz)=c4(4/,mj; 4/,m*). (17) 

Using this scale, the individual terms of Eq. (13) are 
listed in Table VI. (The radial integrals used in the 
evaluation of these terms are given in Appendix I and 
Table I I ; the RHF <4/|r4|4/) value was used.) 

Also listed in Table VI is the linear shielding version 
of the IF4 term, obtained by ignoring the exclusion 

19 In this scheme, represented by Eq. (17), the shielding energy 
divided by c4(4f,mir; if,mi) is simply the Rn appropriate to that 
4fmi value. We cannot manipulate the resulting set of four Rn's 
(e.g., shiting the zero of energy, or doing a crystal-field fit of the 
levels) and have therefore resorted to the closely related set of 
energy levels defined so that Eq. (17) holds. 

principle. This yields an 18% shielding in close agree
ment with the L & W value but in sharp contrast with 
our more detailed results which differ markedly from 
the (4/w' | F4014/w') energy level scheme. 

When dealing with atomic multiplet spectra, one 
usually encounters the fact that the lower the k value, 
the more important the Fk and Gk energy contributions 
tend to be. A parallel effect appears to be operative 
here since, as seen from Table VI, there are substantial 
energy contributions which arise from the #2 and 
especially from the g2 terms. The result is a set of 
shielding energies which are almost unrecognizable 
related to the parent VA° field. For Ce3+, this is not due 
to the exclusion principle, since, as we have noted (see 
Sec. II), these effects cancel out when $k-£k pairs are 
taken together. 

If we adopt this alternative point of view in analyzing 
the results for Ce3+, i.e., we ignore the exclusion prin
ciple, we see that the £F4 term is linear shielding and the 
$2 terms lead to very small energy contributions which 
conform to the V20 level scheme (as they must). These 
$2 terms would be zero valued if it were not for the fact 
that differing energy denominators were used for 
Sp —» / * distortions corresponding to different | mi \ 
values. In such a description, the deviations of the 
energy levels in Table VI from the F4° level scheme are 
then almost entirely due to the g2 and g4 exchange 
terms, with the former dominating. These contributions 
would have been entirely linear shielding if we had used 
a common energy denominator (—0.70 a.u.) in Eq. (13). 
In such a case we would have linear contributions of 0, 
18, - 1 5 , and - 2 % from the 3F2, <F4, g2, and g4, re
spectively, for a total of 1% shielding. We again see 
the extreme importance of accounting for the g2 

behavior. 
If one were faced with analyzing such a set of non-

linearly displaced energy levels for an ion in an actual 
crystal, one might well try to fit them by assuming the 
ion to be in a crystal potential of V£+V£-\-V£ sym
metry. Let us do just this using the numerical results 
of Table VI. Using Eq. (1) in its integrated form leads 
to setting up an equation of the form 

A£c=£n<4/|F„0 |4/>+Z), (18) 

where D incorporates all contributions which are 
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4fmif 

0 
±1 
±2 
±3 

TABLE VII. The V%\ 
(See 

<4/|F2°|4/> 

0.0100 
0.0075 

-0.0124 

, F40, and F6° energies of Eqs. (18) obtained by solving Eq. (19). 
text for discussion and compare with Table VI.) 

(4/ |F 4° |4/) 

-0.0507 
-0.0084 
+0.0591 
-0.0253 

<4/|F6°|4/> 

+0.0370 
-0.0278 
+0.0111 
-0.0019 

Center of gravity 
(D term) 

+0.0043 
+0.0043 
+0.0043 
+0.0043 

Total 

0.0006 
-0.0244 

0.0745 
-0.0353 

independent of m{ and affects only the center of gravity 
of the set of levels. For our specific case, we must solve 
the following crystal-field energy expressions: 

0.0006= 4(72°)+6(74
0)+20(f ,°)+D, 

-0.0244= 3<72
0)+(f 4°)- 15<f <?)+D, 

0.0745=0(F2°)- 7<74°)+6(f 6°)+Z?, 
-0.0353= SiV^+HV^-iV^+D. 

(19) 

We have simplified the form of Eq. (19) by writing 
only the numerator of the cn(4/,w/; 4/,w/) coeffi
cients; the denominators have been incorporated in 
the radial part of the Vn° matrix elements, as denoted 
by the bar. The solutions of Eqs. (19), expressed as 
values of <4/| F„°|4/>, are given in Table VII. A set 
of F4° terms equivalent to 28% shielding plus F2° and 
VQ° energies of similar magnitude have been produced. 
The F4° shielding result is to be compared with the 
18% obtained by the simpler approach of L & W. 
However, it is the V20 and F6° terms which are of 
greatest interest to our discussion as these terms would 
contribute additively to the energies associated with 
any F2° or F6° crystalline potential actually present. 
If the results of Table VII are typical, these additive 
contributions would most seriously affect the apparent 
V6° energies for these tend to run smaller, whereas V20 

terms usually run larger than the V40 energies them
selves. This phenomenon has serious implications for 
observed crystal-field spectra and will be returned to 
later. 

There are additional F4
0 shielding terms such as 

5p-*h and 4d—>d; we expect that the net effect of 
these to be a small (i.e., one or a few percent) and 
approximately linear shielding contribution. The 5p—>h 
distortion also occurs for F6° fields (likewise the 4d —» d 
appears for V20) with shielding contributions coming 
from 5 ,̂ SF6, g4, and g6 integrals. These terms create a 
similar situation to that seen for the Sp —» / term and 
raise the possibility of yet further shielding which also 
deviate away from the parent Vn° field. These terms 
are already small; hence, any such deviations would be 
of but minor interest. 

V. THE ROLE OF 4 / ORBITAL VARIATION 

In the above investigations, we require that the 4 / 
and / * orbitals have identical radial functions and 
that this dependence be common to all the crystal-field 

levels. If we had dealt with an ion with more than a 
single 4 / electron in its ground configuration we would 
have followed the standard procedure of requiring, in 
addition, a common radial orbital for all 4 / electrons. 
The experience of the preceding sections and the integral 
values quoted in Table II, suggest that the relaxation 
of one or several of these constraints could have ex
perimentally observable repercussions on the predicted 
crystal-field levels of a rare-earth ion. We expect these 
effects to be smaller, however, than those already 
reviewed and we will, therefore, not attempt quanti
tative estimates. 

Ce3+ with its single 4 / electron avoids the question 
of angular and radial distortions causing varying 4 / 
orbital behavior within an open 4 / shell and their 
effects on its crystal-field interaction. Here we need 
only consider the distortions associated with a single 
4 / electron and their variation for different crystal-field 
levels. Such variations (or any angular distortion for 
that matter) will tend to distort the crystal-field levels 
away from the splitting scheme appropriate to the 
unscreened crystal field. This is best seen by a simple 
example. 

Consider the 4 / electron in a F2° field of the form 
given by Eq. (1). Its energy levels are displayed in 
Fig. 1 showing the familiar —4, -—3, 0, + 5 level 
scheme (assuming the fn/=0 state is lowest). Allowing 
the 4 / orbital to have different radial functions in the 
different levels results in an expanded radial function 
for the m/=0 and ± 1 states, an unmodified distri
bution for w / = ± 2 , and a contracted function for 
m / = ± 3 . To a first approximation this will cause the 
second-order energy shifts, in units of the parameter 8, 
shown in Fig. 1. Also shown are the effects of the allowed 
4/—> h and 4/—>J> angular distortions, in units of the 
parameters 5' and 5"; the various splittings are pro
portional to the appropriate Zc2(4f,m/; nl,mi)J values. 
Since the V2° field preserves the mi quantum number, 
only the mt= 0 and d= 1 levels are affected by the 4/—> p 
distortions. Unrealistically large 8, 5', and 8" values 
(relative to A) were used in the figure. Only by accident 
will these distortions make a linear shielding contri
bution to the crystal-field levels; their main effect will 
be to cause deviations from that level scheme and only 
the small magnitude of these terms saves us from having 
to consider these complications. Table II indicates that 
the radial distortions cause but a two percent lowering 
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FIG. 1. Energy levels of a .4 / electron in a F2° field showing the 
effects of various distortions in arbitrary units of the parameters 
A, B} 8

f, and S" (not to scale), 

of the mi=0 level when obtained from a UHF calcu
lation in a strong field. We expect that the combined 
influence of radial and angular distortions will, for more 
normal V£ field strengths, lead to level shifts of under 
one percent. 

The situation is further complicated if we consider 
the ion under the combined influence of several Fw° 
fields and the complications increase as we go to ions 
with more 4 / electrons and/or go over to the more 
appropriate (JMjLS) coupling scheme. Whatever the 
case, there will be a tendency for the crystal fields to 
cause an expansion of the 4 / radial wave function for 
the negative mi energy levels and a contraction for the 
positive energy states. Again we expect the repercus
sions to be negligibly small except perhaps for the F6° 
energies. Table II shows the <4/|r6j4/> integral to ̂ be 
approximately five times as sensitive to orbital variation 
as is (4/ | r2 | 4/}. This sensitivity is of course not sur
prising and leads to the distinct possibility that F2° 
and F4° fields in concert with a F6° field could produce 
4 / shell distortions which have repercussions of ob
servable magnitude on the direct F6° energies alone. 
Such effects, if they did occur, would probably be 
hidden by the crystal-field level distortions discussed 
in the preceding section. 

VI. CRYSTAL-FIELD CONTRIBUTIONS TO 
HYPERFINE INTERACTIONS 

In this section, we examine the role of the crystalline 
field in producing, by means of the distortions of the 
electronic shells of the system, both electric quadrupole 
and magnetic dipole contributions to the hyperfine 
interaction. As mentioned in Sec. II, the crystal-field 
shielding problem is formally similar to the calculation 
of the Sternheimer external field quadrupole anti-

shielding factor (y*>). We shall, therefore, consider this 
contribution first and then go on to discuss the magnetic 
hyperfine interactions. 

We have previously computed12 (y^) for the Ce3+ ion, 
in a study which was limited to the dominant radial 
antishielding terms. There exist, however, small angular 
terms as well as it is instructive to inspect the behavior 
of yzp-*f+ here. The 5p —» / * quadrupole field contri
butions are easily obtained by using Eqs. (11) and (12) 
only with the operator r\<rl replaced everywhere by 
the operator 

Hq= (16^/S)1/2F20(#^)f"3= (3 cos2#-1>~3. (20) 

In the sum over K states, we must again take all the 
appropriate 5^ and / * values, and divide the result by 
the unshielded external field gradient to obtain10 the 
resulting 75j>-»/* contribution to y^. Values of ym are 
listed in Table VIII as a function of the m{ value of 

TABLE VIII. The 5^ -* f* contributions to 7* as a function of 
crystal field level (i.e., 4fmif value) for Ce3+. 

4fmi 
76j>-/* from 

Eq. (11) 
753?^/* including 

terms from Eq. (12) 

0 
± 1 
± 2 
± 3 

0.19 
0.21 
0.24 
0.24 

0.52 
0.02 
0.22 
0.22 

the 4 / electron; the variation in values is due to the 
exclusion principle which is not compensated for by an 
exchange term (since we are here dealing with a one-
electron operator). Including the (incomplete) second 
order terms of Eq. (12), however, appreciably perturbs 
the results, and is due to the small magnitude of the 
linear term of Eq. (11) which is in turn caused by the 
very small (5^|r~3|/*) value of 0.07 au as compared 
with (5^1r~3|5^) and (f*|r"3 | /*) values of ^40 and 
4.6 au, respectively. The Sp radial orbital has a number 
of nodes near the nucleus while the 4 / does not; hence, 
the overlap charge density varies in sign in this region 
and produces a small (f*\f~z\Sp) matrix element. 
(Since these nodes are concentrated in the interior of 
the ion, they do not cause a reduction in the (/* | rn \ Sp) 
integrals, for n>0, which are vital to all 5^—>/* 
effects.) The y$p^f* results of Table VIII are to be 
compared with a radial antishielding12 of — 73.5 and 
are seen to be insignificant. 

Let us now consider the repercussions a crystal field 
may have on the direct 4 / magnetic hyperfine inter
actions. These too will be seen to be small but not 
insignificant. 

The hyperfine effects of interest to us can be intro
duced20 by using (r~~z)i parameters in place of the 

20 For example, see A. J. Freeman and R. E. Watson, Phys. 
Rev. 131,2566 (1963); A J . Freeman and R. E. Watson, in Treatise 
on Magnetism, edited by G. Rado and H. Suhl (Academic Press 
Inc., New York, to be published) for a discussion of this. 
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(4/ |r - 3 |4/)=(r-3) integrals appearing in the standard 
expressions 

4 / shell 

tfi,i=G*//)<r-«> L M, (2D 
i 

4 / shell 

Hm=(p/T)(r*) E {3(8<T</f<)(I.r</f<)-8<.I},(22) 

where #L . i and # S D are the orbital and spin dipolar 4 / 
hyperfine expressions, respectively, I and /* are the 
nuclear spin and magnetic moment, and the operators 
inside the sums involve spin and angular, but not radial, 
4 / orbital coordinates. The crystal field can contribute 
to an (r"3)L.i or (r~3)sD in three ways. The exact con
tributions will be functions of the ion's crystal-field 
state as well as of the field itself. They are: 

(i) As discussed in the preceding section, the crystal 
field will have direct repercussions on the orbital 
behavior of the 4 / shell. The results of Table II indicate 
a one percent decrease in (4/ |r"3 |4/) for m/=0, for 
the F2° radial distortion. Angular effects would, of 
course, also contribute. 

(ii) Noting that the energy denominators of Eq. (9) 
are functions of both 4 / shell occupancy and the mi 
and ms values of the perturbed orbital, suggests that 
the radial and angular distortions of closed shells which 
might otherwise be expected to be magnetically inert, 
are not. The variation in denominators will "open" the 
shells, which then make very small contributions to 
(r_3)L-i and (r~3)sD; the resulting array of small terms 
could conceivably combine to make of the order of a 
tenth of a percent contribution to an (r-3)*. A full 
detailed treatment of this matter is liable to be in
volved with the symmetry controversy discussed 
previously20'21 for the UHF method as applied to free 
ions. 

(iii) Quite aside from any question of the energy 
denominators, there is yet another contribution which 
must be considered. For m{ of the 4 / electron equal to 
± 2 or ± 3 , the set of six 5p —»/* distorted orbitals 
make a zero valued contribution to the magnetic 
hyperfine interaction. However, if the 4/w/ value is 0 
or =bl, the exclusion principle introduces a hole into 
this set of six terms. This hole does have a magnetic 
hyperfine interaction with the nucleus and is just the 
negative of the interaction evaluated for the excluded 
p—>/* orbital. The resulting hyperfine field contri
butions, written so that they can be simply added to 
the (4/| r~z | 4/) value of Table I, are listed in Table IX. 
These rely on the same F2° field and the same matrix 
elements used in earlier sections. The orbital hyperfine 
interaction is zero valued for the m/=0 level; hence, 
the distortion contributes only to its (r~3)sD interaction 

21 Reference 20 gives a fairly complete referencing to the UHF 
method. Regarding the symmetry controversy, see, in particular, 
N. Bessis, H. L. Lefebvre-Brion, and C. M. Moser, Phys. Rev. 
124, 1124 (1961). 

TABLE IX. The Sp —> / * exclusion principle contributions 
parameters of Ce3+ in a F2° field for the 4fmi values of 0 and ± 1 
(in au). 

lst-order 
Contributions terms of 

4fm/ to Eq. (11) only Eq. ( l l ) + E q . (12) 

0 (f~3)SD -0.0016 -f 0.009 

± 1 and -0.0011 -0.006 
</-3>L.I 

and is enhanced by 0.009 au (a 0.2% effect). For the 
mi=zhl state, both (r~3)sD and (r~3)L.i are reduced by 
0.006 au. If we had limited our estimates to the first-
order terms of Eq. (11), the (r~3)/s of both states would 
have been reduced by ^0.001 au. The relative im
portance of the (incompletely described) second-order 
term [Eq. (12)] is again due to the small magnitude of 
(f*\r*\Sp). 

All three contributions occur for V20 and V40 fields 
while (i) and (ii) occur for F6° as well. While the 
estimates quoted above were based on a strong F20 

field, we expect the effect of all three terms on an 
observed (r~z) parameter to be of the order of one 
percent or less. This is not insignificant for as Bleaney 
has recently observed,5 rare-earth hyperfine interactions 
appear to vary by one or two percent under the in
fluence of crystalline environments. Bleaney ascribes 
this to orbital reduction,22 i.e., covalency effects; we 
believe these to dominate over the contributions dis
cussed above. Unfortunately, the presence of these 
latter terms may severely complicate the analyses of 
experiment. 

VII. DISCUSSION 

The Ce3+ calculations have shown that substantial 
linear shielding and severe level deviations (or non
linear shielding) from the simple 4/ crystal-field level 
scheme may occur. Exchange effects were not only sig
nificant but were also the most important single source 
of the deviations. Similar effects should occur for the 
more complicated larger rare-earth ions. 

It should be emphasized that the assumption of a 
potential in the form of Eq. (1) affects the quantitative 
but not the qualitative nature of the results. In fact, 
any treatment involving a potential or an effective 
potential, written as a sum of spherical harmonics 
times radial functions, is liable to yield shielding results 
of a similar nature. In other words, nonlinear effects 
will very likely remain with us when we go to a more 
"realistic" treatment of the problem. In our treatment 
of Ce3+, we found these effects to be sizable for the F40 

field and small for the V2° field, suggesting that the 
standard rare-earth crystal-field parametrization need 

22 For example, see K. W. H. Stevens, Proc. Roy. Soc. (London) 
A219, 542 (1953). 
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not always be destroyed by the presence of nonlinear 
shielding. This does not mean that an apparently 
successful crystal-field fit automatically implies the 
nonexistence of such terms. We believe nonlinear 
shielding to be more important in making misleading 
contributions to a set of crystal-field parameters than 
in causing obvious breakdowns of such fitting schemes. 

The appearance of strong nonlinear shielding for the 
rare earths raises the question of whether similar effects 
occur for transition metal ions. We do not believe that 
the dominant closed-shell effects discussed above are 
important for such ions since their closed shells lie 
inside the open d shells. Also, with the possible exception 
of a 3s —•» 3d distortion (which we expect to be benign), 
the various allowed distortions are penalized by large 
energy denominators [e.g., see Eq. (9)]. On the other 
hand, the open valence shell effects, which were small 
for the rare earths, will be relatively more important 
here. The radial and angular effects will be inextricably 
bound up with covalency and a detailed treatment of 
all of these might very well lead to the partial break
down of such familiar parameters as 10 Dq. Such a non
linear effect, however, would have an almost unrecog
nizably different source than its rare-earth counterpart. 

The level deviations are perhaps the most interesting 
feature of the results, but their importance depends 
strongly on how the levels are observed experimentally. 
If, for example, we had "observed" the splitting between 
the mj=0 and ± 1 (5^—»/* shielding plus unscreened 
field) energy levels of Table VI, we would have con
cluded that there was a 15% enhancement of the F4° 
field rather than the shielding indicated in Table VII. 
Such complications are, of course, a byproduct of these 
deviations. 

As already discussed, the repercussions from the 
exclusion principle on 5p —»/* shielding could be 
ignored for Ce3+ by including self-energy Coulomb and 
exchange terms. This is not the case as soon as there 
is a second electron in the 4 / shell and our experience 
with Ce3+ indicates (e.g., see Tables IV and VI) that 
adherance to the exclusion principle will cause shielding 
and level deviations of significant magnitude. As we 
gradually fill the 4 / shell, the Sp —•> f* distortion will 
be given less freedom to act and aside from any resulting 
level deviations there will be a tendency for its shielding 
to disappear. For example, as seen earlier, the V£ 
shielding will (in a treatment omitting LS coupling) be 
reduced from 50% to 25%. The F4° effects are far more 
complicated and even with the complete disappearance 
of the 5p—>f* distortions, some small shielding and 
some small level deviations are expected. It should be 
noted that Powell and Orbach, in their investigation23 

of rare-earth ethyl sulfate data, observed a trend in the 
V20 crystal-field term consistent with a substantial de
crease in crystal-field shielding on going to larger ions. 

23 M. J. D. Powell and R. Orbach, Proc. Phys. Soc. (London) 
78, 753 (1961); also see Fig. 3 in Ref. 17 and the accompanying 
discussion. 

This is the same direction as the 5p—>f* effect. We 
believe the latter to be, at most, only partially respon
sible for what Powell and Orbach saw. Their observa
tions, which were based on only a few of the ions, showed 
no similar strong trend associated with the V40 or VQ° 
terms. 

As for the existence or nonexistence of (linear) 
shielding, previous investigations have presented widely 
divergent conclusions. As stated in Sec. I, Lenander 
and Wong,4 considering earlier work on the tri
chlorides,24 concluded that huge F2°, strong F4°, and 
weak F6° shielding occurred. Burns2 also considered 
trichlorides as well as the ethyl sulfates and concluded 
that there was essentially no shielding. These differing 
conclusions were based on investigations which involved 
the same experimental data but different computed 
estimates of the crystal field. In addition, in the 
analytic variation-perturbation method used by Burns, 
one limitation arises because the variation functions 
are constrained to have the same radial nodes as the 
unperturbed orbitals. This makes it impossible for the 
mixing of 4 / (in Sp —» /) or Sd (in 5s —> d) character to 
be properly accounted for. The smaller F40 shielding 
obtained by Burns arises from the insufficient vari
ational freedom allowed by the method. In this regard, 
the effect of these shortcomings would have been even 
more severe if an estimate of the F20 shielding had been 
attempted. We believe that the shortcomings of the 
perturbation-variation method to be the primary source 
of the differences between Burn's and the L & W 
conclusions.24* 

As mentioned earlier, Bleaney's conclusion5 of an 
antishielding of RHF predictions for Tm2+ in CaF2 
appears to be at variance with the other results. How
ever, Tm2+ is in an octahedral environment in this 
crystal and Bleaney's observations may be associated 
with an empirical suggestion25 of J^rgensen's to the 
effect that rare-earth crystal-field energies will prove 
to be substantially larger for cubic environments. 

Again, discussion of any conclusions are complicated 
by questions of details of the crystal-field estimates 
and, if we accept the existence of the level deviations, 
their varying repercussions on the analyses of experi
mental data. We do agree with Lenander and Wong 
that the V£ shielding can be large and that for F40 

significant. Conclusions beyond this would at best be 
tentative. 

In the investigations reported here, we have been 
besieged by an array of small effects contributing to 
both hyperfine and crystal-field interactions. The 
crudity of the present calculations allow only qualita
tive conclusions. Details of the perturbation calcula-

24 C. A. Hutchison and E. Wong, J. Chem. Phys. 29, 754 (1958) 
and J. S. Margolis, ibid. 35, 1367 (1961). 

24a Footnote added in proof. D. K. Ray [Proc. Phys* Soc. (London) 
82, 47 (1963)] has also investigated rare-earth crystal field and 
y* linear shielding. 

26 C. K. J^rgenson (private discussions, 1962). 
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tions (e.g., the averaged energy denominators) and the 
use of perturbation theory18 contribute to this. Quite 
aside from such matters, the situation is more compli
cated than Burns and Lenander and Wong have sug
gested. This is in part associated with such matters as 
exchange terms, 4/ shell distortions and nonlinear 
shielding, and in part with questions associated with 
the crystal "field" itself. Crystalline fields of the form 
of Eq. (1) have geen used, with one exception,7 in the 
various investigations to date and this probably repre
sents the most severe shortcoming of the calculations. 
Various inadequacies of such a field are well known26 

for the case of iron series ions and these and other 
effects occur here as well. While Eq. (1) is not com
pletely adequate for discussing the interaction of the 
4/ electrons with the crystalline environment, it is 
undoubtedly a poorer description as regards the 5s and 
Sp shells. Finally, covalent bonding arising directly 
from the open 4/ shell (as discussed by J^rgensen et aL1) 
and from the distorted outer closed shells must be 
inspected before quantitative conclusions are made con
cerning the nature of crystal-field effects on rare-earth 
spectral levels. 

In closing, it should be restated that appreciable non
linear shielding was found for one of the two calculations 
reported in the paper. We believe that characteristically, 
nonlinear shielding will at times have severe and at other 
times benign effects on rare-earth crystal field spectra 
(e.g., Yb3+ which has no linear Sp —•>/ shielding will 
have insignificant nonlinear terms). 
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APPENDIX I 

In this appendix we list the integrals which we have 
used in evaluating the terms of Eq. (13) which appear 
in Tables IV and VI. They are: 

Sp-

3*= g4= 

Ep-Ef*= 

. /*(« ,=0) 5# -> /* (mi=± l ) 
0.121 0.119 

0.100 

-0.72 

1.604 

7.332 

0.100 

-0.68 

1.604 

7.332 

All quantities are given in atomic units. The ck(l,tnrt 

V,m{) integrals can be obtained from Condon and 

Shortley13 or by evaluating 

c*(l,m; / > ' ) = ( - l ) m [ (2H-l) 

where 
(I k A /I k l'\ 
\0 0 0/ \—tn m~m' m') 

are the familiar 3j coefficients. Note that we have 
chosen field strengths such that 

and 

hence, 

(i\ 72°|i)s-0.032^(i,m,; j,m/)(i\r2\j) 

(4 / |F 4 ° |4 / )=^(4 / ,m/ ;4 / ,W) , 

{splvfin^c^spwj+M 
<5#M/*> 

<4/k4l/*> 
APPENDIX II 

In Sec. II we assert that the radially distorted />-shell 
exchange terms (occurring for a F2° field) are linear 
shielding. Let us inspect this matter here. The G2 

contribution to AEP^P [Eq. (5)] is 

- [c 2(4/ , m{• p, ± 1)]G2(4/, nn;p,±i), (Al) 

and evaluating the c2 coefficients we have the shielding 
contribution 

A=-(l/175)[27G2(/>,0)+18G2(^ ± 1 ) ] ; « / = 0 , 

A= - (l/175)[24G2(^,0)+21G2(/>, ± 1 ) ] ± 1 , 

A=-(l/175)[15G2O,0)+30G2(/>, ± 1 ) ] ±2, 

A= -(1/175)[OG2(/>,0)+45G20, ± 1 ) ] ± 3 , 
(A2) 

as a function of 4/w/ value. (We have, and will hence
forth, use an abbreviated notation for the Gh integrals.) 
Let us define 

then 

where 

**=G*(fc±l)-G*(#,0), 

A=const+(12/175)52; w / = 0 , 

A=const+(9/l75)52; m/==bl , 

A = const+0d2; m/=±2y 

A= const- (15/175)52; m/= ± 3 , 

(A3) 

(A4) 

26 For example, see S. Sugano and R. G. Shulman, Phys. Rev. 
130, 517 (1963). 

const= (45/l75)G2(£,0)+ (30/175)52. (A5) 

Now we are not interested in any constant contribution 
to the crystal-field energies and therefore are interested 
only in the 52 terms which display the =F4, =F3, 0, ± 5 
spacing familiar15 to linear F2° shielding. This behavior 
is common to any radial distortion of a closed p shell 
providing (1) that the distortion is held constant for 
the various states of the open 4 / shell and (2) that p 
orbitals with w j = ± l have the same radial behavior. 
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189 

The radial distortions induced by a pure electrostatic 1 
field always meet this second requirement. A' = ~~[12G4(£,0)+24G4(£, ± 1 ) ] 

The G*(4:f,ini ; p,?ni) terms act in much the same 
way, i.e., 

1 
A'= [7G4(/>,0)+29G4(£, ± 1 ) ] 

= const+054; m{ = ± 2, 

1 
A'= [16G4(/>,0)+20G4(A ± 1 ) ] 

189 

1 

= constH 54; m{ — 0, 
189 

189 

where here 

= const Si; m{=± 3, 
189 

36 24 
const= G4 (pfl) H 54, 

189 189 
(A7) A' = [15G4(^0)+21G4(^, ± 1 ) ] 

3 
= constH 54; m{=± 1, 

189 so again we have linear shielding. Such behavior does 
(A6) not occur for the d-shell exchange terms. 
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Reversal in Optical Rotatory Power—"Gyroelectric" Crystals and 
"Hypergyroelectric" Crystals 
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A crystal is provisionally referred to as being "gyroelectric," when its optical rotatory power or gyration 
is nonzero at no biasing electric field and can be reversed in sign by means of a suitable biasing electric field. 
The gyroelectric crystals must be ferroelectric. It is found that, of the 19 kinds of regular ferroelectrics, only 
9 kinds are gyroelectric. It is further shown that the other 10 kinds are divided into 5 "hypergyroelectric" 
and 5 optically inactive kinds. The rate of change of the gyration with the biasing electric field at zero value 
of the biasing electric field is provisionally referred to as the "electrogyration." The hypergyroelectric crystals 
are, somewhat roughly speaking, those crystals whose electrogyration is nonzero and can be reversed in sign 
by means of a suitable biasing electric field. Also, as a first step in the investigation of the properties of the 
gyroelectric and hypergyroelectric crystals, a theoretical inference is made into the change with temperature 
T of the gyration Gs at no biasing field and electrogyration rj of the gyroelectric and hypergyroelectric crystals 
in the neighborhood of their Curie temperature TV On some assumptions, the following are presumed. In the 
gyroelectrics, Gs changes like (To— T)112 with T below To and vanishes above TV In the hypergyroelectrics, 
Gs changes linearly with T both below and above To, but breaks at To. In the gyroelectrics, rj changes 
like (To— T)-1 below To and changes like 2(T—To)~x above To. In the hypergyroelectrics, rj changes like 
(To- T)~112 below To and vanishes above T0. 

1. INTRODUCTION 

WE provisionally refer to the crystals as being 
"gyroelectric" whose optical rotatory power or 

gyration1 is nonzero at no biasing electric field and can 
be reversed in sign by means of a suitable biasing elec
tric field. (A crystal which has a nonzero gyration is 
also called optically active. The reason why the term 
"biasing electric field" is used in place of the simpler 
term "electric field" lies in the distinction of it from the 
"electric field" of the light.) From this definition it may 
be obvious that the gyroelectric crystals must be ferro
electric. (A most reasonable and exact definition 
of ferroelectricity has been given in the preceding 

papers.2,3) In general, the ferroelectric crystals are 
divisible into the regular ferroelectric crystals and the 
irregular ones.2*3 We refer to those gyroelectric crystals 
which are regularly ferroelectric as the regular gyro
electric crystals. 

In this paper the gyroelectric crystals considered are 
limited to the regular ones. In Sec. 2, a determination is 
made as to which of the regular ferroelectric crystals 
should be gyroelectric. On this occasion it will be shown 
that the regular ferroelectric crystals consist of the 
gyroelectric, the "hypergyroelectric," and the optically 
inactive crystals. The rate of change of the gyration 
with the biasing electric field at zero value of the biasing 
electric field is provisionally referred to as the "electro-

1 See, for example, J. F. Nye, Physical Properties of Crystals 
(Clarendon Press, Oxford, England, 1957). 

2 K. Aizu, Rev. Mod. Phys. 34, 550 (1962). 
* K. Aizu, Phys. Rev. 133, A1350 (1964). 


