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The purpose of this paper is twofold. Firstly, we present an analysis of the transverse modes of oscillation 
of an electron gas in the presence of a strong longitudinal magnetic field. These modes have been called 
helicons. We exhibit the form of the dispersion equation of helicons of arbitrary wave vector. Secondly, we 
study the interaction of helicons with transverse acoustic waves in metals. This interaction is particularly 
strong when the frequencies and wavelengths of a helicon and a transverse phonon coincide. It is suggested 
that this effect permits the excitation of transverse phonons by electromagnetic means. We also discuss the 
interaction of helicons and phonons in the long-wavelength limit. In this case we find small corrections to 
their frequencies. 

I. INTRODUCTION 

AN electron gas in a sufficiently strong longitudinal 
magnetic field possesses transverse modes of 

oscillation, which may under certain circumstances of 
low damping, be self-sustained. These normal modes 
have been named "helicons" by Aigrain.1 They are also 
known as "whistlers" in ionosphere physics.2 A helicon 
mode is a transverse electromagnetic wave propagating 
in an electron gas along the direction of the applied 
magnetic field Bo. The electromagnetic fields associated 
with the wave are circularly polarized and perpendicular 
to Bo. Only the helicon with left-hand polarization (as 
viewed when we face the direction of propagation) can 
propagate with velocity parallel to Bo. There is, of 
course, also a mode propagating in the direction opposite 
to Bo which when viewed along its direction of propaga­
tion, has right-hand polarization. For sufficiently long 
wavelengths, the frequency of a helicon of wave vector 
q is 

a>H=c2q2o)c/a>p
2
7 (1) 

where c is the speed of light, o>c=eBo/mc is the cyclotron 
frequency of the electrons (the charge on the electron is 
designated by —e), and o)p is the electron plasma 
frequency. 

The object of this paper is twofold. Firstly, we study 
the dispersion relation of helicon waves in a degenerate 
electron gas with particular attention to phenomena 
occurring at metallic densities. Secondly, we investigate 
the interaction of these modes with the transverse 

* Supported in part by the U. S. Army Research Office and by 
the Advanced Research Projects Agency. 

1 P. Aigrain, Proceedings of the International Conference on Semi­
conductor Physics, Prague, 1960 (Czechoslovak Academy of 
Sciences, Prague, 1961), p. 224. Experimental evidence for the 
existence of this waves in solids has been given in Refs. 5 and 6, 
and also by F. E. Rose, M. T. Taylor, and R. Bowers, Phys. Rev. 
127, 1122 (1962); M. T. Taylor, J. R. Merrill, and R. Bowers, 
ibid. 129, 2525 (1963); A. Libchaber and R. Veilex, ibid. 127, 774 
(1962). 

2 L. R. O. Storey, Phil. Trans. Roy. Soc. (London) A246, 113 
(1953). H. Bremmer, Handbuch der Physik, edited by S, Flilgge 
(Springer-Verlag, Berlin, 1958), Vol, 16, p. 570, 

acoustic waves in a metal. The first part of this program 
is carried out in Sec. I I and the second in Sec. I I I . 

We assume that a metal consists of an electron gas 
embedded in an isotropic background of positively 
charged ions which are able to sustain both longitudinal 
and shear acoustic waves. I t is to be emphasized that the 
present model differs slightly from that of Bohm and 
Staver3 in that the elastic properties of the continuum 
of positive charges arise from the short-range forces 
between the ion cores. The long-range Coulomb forces 
are included in this work in terms of a self-consistent 
electromagnetic field acting on the electrons and on the 
positive ions. This model has been used by one of the 
authors4 in the study of the behavior of the velocity of 
acoustic waves in metals as a function of an applied 
magnetic field. We shall assume that we have n0 elec­
trons per unit volume and % conduction electrons per 
atom. The mass of the atom will be designated by M. 

I t is instructive to consider the physical reason for 
the stability of helicon oscillations. Let us consider a 
helicon wave propagating along the direction of Bo 
which we choose as the % axis of a Cartesian coordinate 
system (x,y,z). The electric field associated with the 
wave has components of the form 

and 
EX=EQ cos(oot—qz), 

Ey=Eo sin (o)t— qz). 

(2a) 

(2b) 

Now the electrons moving in the presence of the fields 
E and Bo acquire a drift velocity V D = C E XBQ/BQ2, which 
can in turn interact with Bo to give rise to a Lorentz 
force that opposes the motion of the electrons in the 
direction of — E. A quantitative discussion of this argu­
ment has been given by Bowers et al} and by Chambers 

3 D. Bohm and T. Staver, Phys. Rev. 84, 836 (1952); see also 
J. Bardeen and D. Pines, ibid. 99, 1140 (1955). 

4 S. Rodriguez, Phys. Rev. 130, 1778 (1963). For a more de­
tailed derivation of some of the results needed see also, M. H. 
Cohen, M. J. Harrison, and W. A. Harrison, ibid. 117, 937 (1960). 

5 R. Bowers, C, Legendy, and F. Rose, Phys. Rev. Letters 7,339 
(1961), " ~ 
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and Jones.6 A more complete treatment is presented in 
Sec. II. The helicon wave is, in general, damped by the 
collisions of the electrons with lattice imperfections and 
with thermal phonons so that, in order for the system to 
exhibit helicon oscillations it is required that a>cr2>l, 
i.e., the electrons should be able to complete at least 
one orbit in their cyclotron motion before being scat­
tered. The quantity r designates the average time be­
tween two successive collisions of an electron. We shall 
limit our consideration to a degenerate electron gas. 
In particular we shall not concern ourselves with any 
effects arising from the finite temperature of the speci­
men under study. Even though the condition o)er^>l is 
satisfied, it is possible for the helicon waves to be highly 
damped if qvo>uc, where vQ is the Fermi velocity of the 
electron gas. We shall show in Sec. II that when this 
condition is satisfied there is a strong absorption of 
energy from the helicon by individual electrons. 

In Sec. I l l we discuss the modification of transverse 
acoustic waves in metals which arise because of the 
presence of helicons. A discussion of some aspects of 
this work has been given elsewhere.7 In particular we 
show that for acoustic waves having the same frequency 
and wavelength as a helicon wave there is a large ad­
mixture of the two forms of motion. In fact, in that re­
gion the normal modes of motion of the system are ad­
mixtures of helicon-like and phonon-like waves each 
carrying the same energy density. 

II. HELICONS 

We consider an electron gas in a metal or a semicon­
ductor in the presence of a magnetic field B0 such that 
o>cT^>l. It is our aim to study the forms of transverse 
electromagnetic disturbances which can propagate 
within the electron gas. For this purpose we assume that 
the medium is nonmagnetic and consider a wave vary­
ing as exp(mt—iq't). The equations of electrodynamics 
allow us to write the relations 

and 
wB=cqxE, 

cqxB= — we*E, 

(3) 

(4) 

connecting the electric and magnetic fields E and B 
associated with the wave. Here e= e(q,o>) is the Fourier 
component of the dielectric tensor appropriate to a dis­
turbance of angular frequency co and wave vector q. As 
before we choose a Cartesian coordinate system whose 
z axis points along the direction of the applied magnetic 
field Bo and we restrict our consideration to the situa­
tion in which q= (0,0,#) is directed in the same fashion. 
Symmetry considerations require that the components 

and of the dielectric tensor vanish, 

6 R. G. Chambers and B. K. Jones, Proc. Roy. Soc. (London) 
A270, 417 (1962). 

7 J. J. Quinn and S. Rodriguez, Phys. Rev. Letters 11, 552 
(1963); see also D. N. Langenberg and J. Bok, ibid. 11,549 (1963). 

Furthermore, 

From (3) and (4) we can eliminate B and we obtain a 
set of homogeneous algebraic equations for the com­
ponents of E. The determinant of the coefficients in 
these equations is the secular equation giving the fre­
quency of oscillation a> of the normal mode having 
wave vector q. For transverse waves the result can be 
expressed in the most convenient fashion by introducing 
the notation 

E±=Ex±iEy, (7) 
and 

€ - { . = ^xxit^xy * \p) 

We obtain 

( C y - c ^ ± ) i 2 ± = 0 , (9) 

and the frequencies of the helicons are determined by 

0^ = ^ / 6 ^ . (10) 

The dielectric tensor is simply related to the magneto-
conductivity tensor cr(q,a>). In fact, we can easily show 
that 

£(q,w) = l+(47r/^>(q?w), (11) 

where 1 stands for the unit tensor. The tensor cr can 
be obtained using standard considerations of transport 
theory. For example, one obtains8 

(T-j. = (Txx'Fio'xy = = <TQG± , (12) 

where (ro=w3,
2r/47r is the ordinary dc electrical conduc­

tivity and G± is the function 

3 /•* sin*$d6 

l+iuT^iwcT—iqvoT cos0 
(13) 

The quantity ô is the velocity of an electron on the 
surface of the Fermi sphere and we shall designate the 

FIG. 1. Behavior of the function f(w) as a function of w. 

8T. Kjeldaas, Jr., Phys. Rev. 113, 1473 (1959). 
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mean free path V0T of an electron by the symbol /. 
Clearly, if qv0<£a)c we can write 

G ± « (l+iwrTiwcf)""1, (14) 

then, assuming further that O>CT2>1 and o)<^o>c<^o)p
2/w 

and using Eqs. (10) and (11) we obtain 

o)H=dcc2q2o}c/o}p2. (15) 

This is the result given in Eq. (1). However if qvQ is 
comparable to or larger than wc this derivation requires 
some modifications which we presently discuss. We still 
require that O>CT2>1 and that co<3Cwc. Under these condi­
tions we have (in the limit in which Q)CT —»<»), 

G+=-
3i 

4wa>t K 
1 (l-afyfc 

x±w±~ 

-iwL (l-a?)5(*±w± -l)dx\ (16) 

The symbol P preceding the integral in Eq. (16) is 
meant to imply that one must substitute for the integral 
only its principal value and 5(x) is the Dirac delta func­
tion of argument x. The quantities w± are defined by 

where 
w±=w{\ =F (o>/o>c) )~~x, 

w=qvo/<ac. 

After some transformations we find 

Im(a0G±)--

with 
4w(o>c

::Fo)) 
• / ( « * ) , 

/(«0= 
3 r l 1—w' 

w 

r l 1—w2 \l+w\~\ 
In . 

i_2 4w l l - w l J 

(17) 

(18) 

(19) 

(20) 

We also obtain 

Re(<r^±)==(3o)p
2/16qv0)(l-w:ir

2) if w ± > l , 

= 0 otherwise. (21) 

These results yield 

e± = ldb«p
2/(w±)/«(wc : :F«)+ (4ir/w)Re (croGj. (22) 

Equation (22) permits us to obtain both the frequency 
and the absorption coefficient for the helicon waves. The 
function f(w) behaves as shown in Fig. 1. If we assume 
a)<K(*>c, w<l, and a>p

2f(w)^>cmc we obtain a real fre­
quency for the helicon waves, namely, 

o>H
f=±c2qW<»p2f(w). (23) 

We expect that in the vicinity of qvo/o)c=l there is a 
small oscillation in wjy'. This arises from the fact that 
when w±>l (or approximately w>t) the electrons can 
absorb energy from the helicon wave in a coherent 
fashion. In fact, let us consider an electron having a 
component of velocity vz—vQ COS0 along the direction of 
B0. The motion of the electron takes place along a helical 

path and may (except for a small shift) be always in 
phase with electric field E if qvg~qvo cos0=a>c. Thus at 
w=l we have an absorption edge (see for example, 
Ref. 8). Therefore, strictly speaking Eq. (23) is valid 
for w< 1 only. The reason for this is that for w> 1 the 
damping is sufficiently strong that it modifies the fre­
quency of the normal modes. In fact, making the same 
approximations as before, we find for w>l that 

uP
2f(w)r 3wi w2— 1 

€ ± = ± — 1 1=F-
L 4 wzf(w)J 

If we make use of the notation 

3w w2~l 

we obtain 

and 

0)H 

4 it?f(w) 

c2q2o)c 
~ 1 

o>2f(w)(\+a2) 

c2q2o)cd 

Up*f(w)(l+o*) 

(24) 

(25) 

(26) 

(27) 

Here o>=UH'+IWH" is the complex frequency of a helicon 
wave. The imaginary part gives the absorption coef­
ficient of the wave. From Eqs. (26) and (27) we see that 
a>Hf,=a\o)Hf\ so that the absorption coefficient is pro­
portional to a. The amplitude of the helicon decreases 
as exp(—aqz) as the wave propagates in the medium and 
the coefficient of energy absorption is y—2aq. I t seems 
necessary to emphasize the fact that Eq. (26) is valid 
if w>\ while Eq. (23) gives the correct result when 
w<l. For convenience in our discussion in Sec. I l l we 
define the function 

g(w) = f(w) if w< 1, 

= f(w)(l+a2) if w>\. (28) 

This permits us to write 

un'=±*fw*/<*p*g(w), (29) 

an equation that is valid over the whole range of values 
of w. In Fig. 2 we show a graph of the function g(w) 
and a plot of ca#'. The graph is conveniently presented 
by showing the ratio of &H/Q>H as a function of w. We 
have defined QH=c2(ac

z/vQ2o>p
2. I t is interesting to note 

that, if w2>l,g(w) approaches 37r2/16 SO that the dis­
persion of helicon waves is modified by the reciprocal of 
this factor. However, the absorption in this region is 
extremely strong. 

III. HELICON-PHONON INTERACTION 

In the previous section we discussed the properties of 
helicon waves propagating in a degenerate electron gas. 
We saw that these modes are self-sustained in a suf­
ficiently strong magnetic field. In a metal, the positive 
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Functions g(w) and <*}Hf/®n = w2/g(w) as a function of w. 

ions are capable of propagating transverse acoustic 
modes whose velocity we shall designate by s. It is clear 
that when the frequencies and wave lengths of a helicon 
and an acoustic wave coincide we do not expect the 
normal modes of the system to be purely acoustic or 
purely electromagnetic. Under these conditions there is 
a strong coupling between these two forms of motion. 
The model used to describe the interaction has already 
been described in the introduction and is identical to 
thatofRef. 4. 

The equation of motion of the positive ions of charge 
ze and mass M can be written down in the form 

Md2l/dt2=dv(V^)-CtV x (V x Q 
+zeE+ (ze/c)n x B0-f F. (30) 

Here %(t,i) is the displacement at time / of an atom 
whose position of stable equilibrium is r, and Ci and 
Ct=Ms2 are elastic constants describing the interaction 
of the ion cores but excluding the long-range Coulomb 
repulsion. As in Ref. 4, u=d^/dt=ico^, where we have 
assumed a disturbance that varies in space and time in 
the form exp(ia)t—iq*r). The collision force F arises 
from the fact that a conduction electron with velocity 
v upon colliding with the lattice transfers to it the mo­
mentum m(\—u). This assumes that the scattering is 
diffuse in the system of coordinates in which the lattice 
is locally at rest. Naturally, the electron retains a 
velocity u when observed in the laboratory system. This 
transfer of momentum gives rise to an average force 
acting on each atom and having magnitude (zm/r) 
((v)—u). The factor z arises from the fact that there 
are z conduction electrons per atom. The quantity 
(v)=— j ( 1 ) /W is the average velocity of the electrons 
and j ( 1 ) the electron current density. This latter quantity 
can be obtained using the result4 

j(1) = cr.[E-(wuAr)]+^D-V^. (31) 

Here or(q,o>) is the magnetoconductivity tensor and D 

is the diffusion tensor D = a/e2go(fo)(l+£W), g0(?o) 
being the density of electron states per unit volume and 
per unit energy range at the Fermi level. Here we are 
studying an acoustic wave whose frequency is o> and 
whose wave vector is q. No confusion need arise because 
we have the same symbols to describe a helicon wave. 
The quantity Vn is the gradient of the electron density. 
If we consider only transverse waves then Vn=0 be­
cause during the passage of a shear wave the electron 
density n is not disturbed from its equilibrium value no. 
To discuss transverse waves we introduce, as before, 
parameters which describe circularly polarized disturb­
ances. Thus, using 

€±=f*±f&, (32) 

and similarly defined quantities we find 

(o>2-s2q2±tica>)Z±= _ (ze/M)E±-F±/M. (33) 

We can eliminate E± and F± using the constitutive equa­
tion (31) together with Maxwell's equations and the 
value of F. Maxwell's equations relate the total electric 
current density 

j = j d ) + w u (34) 

to the self-consistent electric field E. For transverse 
waves we are led to the result 

j±v+noeia>£±=i!3<ToE±= (ic2q2/±™)E±, (35) 

where we have made the assumption a)<Zicq and the 
second equality defines fi. This approximation is equival­
ent to neglecting the displacement current. We are 
thus investigating the propagation of waves whose 
phase velocity is much smaller than the velocity of light. 
After some transformations we obtain 

a)2—s2q2dz&cW-
zmico (l—ij3)(aoR±—l)~ 

Mi l-ipo-oR* 
{ ± = 0 . (36) 

In this equation R±= l/a±. The frequencies of the nor­
mal modes are to be found by setting the coefficients 
of £± equal to zero. We shall assume that j8<^l which is 
usually satisfied for pure materials at low temperature. 
Making use of the equations for the components of the 
conductivity tensor developed in Sec. I I and using the 
approximations o)cr^>l and co<<Cwc we find the following 
results 

<jQR±=^[io>cr/g(w)~](\±ia). (37) 

Here we have redefined a to mean a(w) = 0 if w< 1 and 
a(w) given by Eq. (25) if w>\. In the region in which 
a<£\ we obtain the relations 

K±(a}) = G>*=F(a>2/g){a>H+£lc(l-g)} 
-o>{s2q2+(QcuH/g)}±(s2q2"H/g) = 0. (38) 

Inspection of Eq. (38) reveals that 

K+(-o)r=-K-(u). (39) 

This result implies that it is sufficient to solve Eq. (38) 
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FIG. 3. Frequencies of the three roots of the equation JT+(w) = 0 for 
wd = 0.9 using the parameters appropriate to sodium. 

for one polarization only. We consider the left-hand 
polarization to fix the ideas. This corresponds to the 
upper sign in Eq. (38) and to a helicon wave propagating 
along the direction of the magnetic field Bo. The first 
question we study is the long-wavelength limit of the 
frequency spectrum of phonons and helicons. This re­
sult is obtained most simply as follows. If o>i, o>2, and 
C03 are the roots of K+(o>) = 0 we must have 

«!+«,+«»= ( W « ) + &c/g) (i-g) , (40) 

^10)2+^20)3+^3^1= —s2q2— (%o)H/g) , (41) 
and 

o>io>2o>3 = — s2q2o)H/g. (42) 

We obtain solutions of these equations in the limit in 
which gz?0/̂ >c<SCl. This allows us to expand g(w) = f(w) 
in a power series and we find 

wi=csq+jxq2, (43) 

W2™- csq+ixq2, (44) 
and 

<*=!*'f. (45) 

The quantities involved in these relations are 

r zm/co)c\
2']U2 

cs=d ! + — ( — ) > (46> 
L M\sQ>p/ J 

M = l + - ( — ) , (47) 

and 

M'=-H !+-{ — ) ' (48) 

o)p
2L M\s(*)p/ J 

The three waves obtained are, of course, left-hand cir­
cularly polarized. The branches (43) and (44) corres­
pond to acoustic waves propagating in opposite direc­
tions and (45) is a helicon. We notice that the electron-
phonon interaction gives rise to small corrections to 
both the speed of sound c8 and to the frequency o>H of 
a helicon on long wavelength. These corrections are 
small; in particular, for sodium in a magnetic field of 
5X104 G the quantity in the square bracket of Eq. (48) 
differs from unity by about 4X10"3 . I t is interesting to 
notice that the change in the velocity of sound c8 is the 
same as that obtained in Ref. 4. 

A second region of interest is that in which, in the 
absence of the electron-phonon interaction the fre­
quencies and wave vectors of a helicon and a transverse 
phonon coincide. This occurs at the wave vector qd de­
fined by the transcendental equation9 

sqd=c2qd
2o)c/o>p2g(wd), (49) 

where 
wd=qdvo/o)c. (50) 

This equation can be transformed into 

g (w-d) = (c2a>c2/svQO)p
2)wd. (51) 

Given the applied magnetic field B0 we are in a position 
to obtain wd at the cross over by solving Eq. (51) 
graphically. For example, if we take the constants for 
sodium ( S = 2 . 2 5 X 1 0 5 cm/sec, t>0=1.07X108 cm/sec, 
C % = 8 . 9 2 X 1 0 1 5 sec"1) we find that the crossover for a 
magnetic field of about 106 G occurs at wd=0.9. The 
crossover frequency turns out to be O J ( I = 3 . 2 9 X 1 0 9 . A 
plot of the solutions of the cubic equation (38) is given 
in Fig. 3 taking this value of wd. The solution for the 
splitting of the two branches that cross at wd and o)d 

can be carried out analytically as well if we assume that 
the third branch is not appreciably altered by the inter­
action. In fact, let us designate o>/o>d by r, gd/g=yy 

w/wd=q/qd=%. Then we obtain 

r=K^+^ 2 7)±iC(^-^ 2 7) 2 +4(O c /o> d )P( r ) ] 1 / 2 , (52) 

where 
P(r) = Z(r2/g)(l-g)+rx2y'](r+x)--K (53) 

These equations allow us to obtain the frequency as a 
function of q for the two branches in the vicinity of the 
degeneracy frequency a)d. Clearly the result is to be ob­
tained by iteration regarding the term (4Qc/o>d)P(r) as 
a small perturbation. When q=qd the frequencies of the 
two branches are 

o)=aJd[l±(Oc/2gdo)d)1/2]. (54) 

9 The discussion of this point given in Ref. 7 neglected the effect 
of the strong damping when w>l. However, for a sufficiently 
pure sample, the absorption experiences large quantum oscilla­
tion [see J. J. Quinn, Phys. Letters 7, 235 (1963)] so that there 
are ranges of values of w>\ for which the absorption is zero. 
The results of Ref. 7 are strictly valid only in those regions. If 
this is not the case, the analysis given in Sec. I I of this work must 
be used. 



A1594 J . J . Q U I N N A N D S . R O D R I G U E Z 

The relation between the amplitudes of the electric 
field and of the acoustic displacement is found using the 
result 

mio) 1—<TOR± 
£ ± = — — — - & . (55) 

er l—ip<ToR± 

For the left-hand polarization we obtain (after making 
the same approximations that were made in Sec. II) 

£ + = - Le(a>g- a)H)/mo>2G)c']E+. (56) 

In particular, for the crossing branches at the frequency 
a>d we find the relation 

eg* / Oc \1 /2 

k = ± " ) £f, (57) 
tncodCOc^Zgd&d/ 

where the ± sign correspond to the two branches in 
Eq. (54). A simple calculation shows that at the cross-

I. INTRODUCTION 

THE nature of the localized magnetic impurity 
states observed in metals1 was investigated in a 

number of recent papers.2-4 Following the ideas of Mott5 

and Friedel6 on the nature of the magnetic state, it was 
shown that such states can be described as virtual 
localized states in the conduction band. Their magnetic 
behavior is dominated by the Coulomb repulsion be­
tween electrons of opposite spin in the same atomic 

* Part of this work was done while at Bell Telephone Labora­
tories, Murray Hill, New Jersey. 

1 B. T. Matthias, M. Peter, H. J. Williams, A. M. Clogston, 
E. Corenzwit, and R. J. Sherwood, Phys. Rev. Letters 5, 542 
(1960); Phys. Rev. 125, 541 (1962). 

2 P. W. Anderson, Phys. Rev. 124, 41 (1961). 
3 P. A. Wolff, Phys. Rev. 124, 1030 (1961). 
4 A. M. Clogston, Phys. Rev. 125, 439 (1962). 
* N. F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949). 
6 J. Friedel, Suppl. Nuovo Cimento 7, 287 (1958); A. Blandin 

and J. Friedel, J. Phys. Radium 20, 160 (1958). 

over the elastic energy density is equal to the electro­
magnetic energy density as expected. 

The strong coupling between helicon and transverse 
acoustic waves in the region of the crossover suggests 
the possibility of exciting the latter modes by electro­
magnetic means. It is, of course, also possible to use this 
effect for the detection of transverse acoustic modes. 
Finally, it is interesting to notice that for some values 
of the magnetic field Eq. (51) can have up to three solu­
tions for wd while ordinarily it only has one. 
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state.2 The magnetism is therefore basically of atomic 
origin and in this sense resembles the truly localized 
magnetic moments in insulators.7 The situation in 
metals differs from that in insulators because the 
localized states are virtual, i.e., spread out in energy 
because of s—d interactions, and can therefore contain 
a nonintegral number of electrons. As a result they 
describe something intermediate between a localized and 
an itinerant situation. The magnetic properties are 
essentially those of localized states whereas the effects 
on the electronic specific heat are similar to those of an 
itinerant density of states at the Fermi level. 

The purpose of the present paper is to try to calculate 
the interaction between two similar magnetic impurities 
near to each other in an otherwise completely non­
magnetic material. Like the cases of a single impurity 

7 For a discussion of these ideas see, e.g., Ref. 13. 
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The theory of localized magnetic states of solute atoms in metals is extended to the case of a pair of 
neighboring magnetic atoms. I t is found that the simplified model based on the idea that the important 
interaction is the diagonal exchange integral in the localized state, which is exactly soluble in Hartree-Fock 
theory for isolated ions, is still soluble, and the solutions show both ferromagnetic and antiferromagnetic 
exchange mechanisms. 


