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The relation between the amplitudes of the electric 
field and of the acoustic displacement is found using the 
result 

mio) 1—<TOR± 
£ ± = — — — - & . (55) 

er l—ip<ToR± 

For the left-hand polarization we obtain (after making 
the same approximations that were made in Sec. II) 

£ + = - Le(a>g- a)H)/mo>2G)c']E+. (56) 

In particular, for the crossing branches at the frequency 
a>d we find the relation 

eg* / Oc \1 /2 

k = ± " ) £f, (57) 
tncodCOc^Zgd&d/ 

where the ± sign correspond to the two branches in 
Eq. (54). A simple calculation shows that at the cross-

I. INTRODUCTION 

THE nature of the localized magnetic impurity 
states observed in metals1 was investigated in a 

number of recent papers.2-4 Following the ideas of Mott5 

and Friedel6 on the nature of the magnetic state, it was 
shown that such states can be described as virtual 
localized states in the conduction band. Their magnetic 
behavior is dominated by the Coulomb repulsion be
tween electrons of opposite spin in the same atomic 

* Part of this work was done while at Bell Telephone Labora
tories, Murray Hill, New Jersey. 

1 B. T. Matthias, M. Peter, H. J. Williams, A. M. Clogston, 
E. Corenzwit, and R. J. Sherwood, Phys. Rev. Letters 5, 542 
(1960); Phys. Rev. 125, 541 (1962). 

2 P. W. Anderson, Phys. Rev. 124, 41 (1961). 
3 P. A. Wolff, Phys. Rev. 124, 1030 (1961). 
4 A. M. Clogston, Phys. Rev. 125, 439 (1962). 
* N. F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949). 
6 J. Friedel, Suppl. Nuovo Cimento 7, 287 (1958); A. Blandin 

and J. Friedel, J. Phys. Radium 20, 160 (1958). 

over the elastic energy density is equal to the electro
magnetic energy density as expected. 

The strong coupling between helicon and transverse 
acoustic waves in the region of the crossover suggests 
the possibility of exciting the latter modes by electro
magnetic means. It is, of course, also possible to use this 
effect for the detection of transverse acoustic modes. 
Finally, it is interesting to notice that for some values 
of the magnetic field Eq. (51) can have up to three solu
tions for wd while ordinarily it only has one. 
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state.2 The magnetism is therefore basically of atomic 
origin and in this sense resembles the truly localized 
magnetic moments in insulators.7 The situation in 
metals differs from that in insulators because the 
localized states are virtual, i.e., spread out in energy 
because of s—d interactions, and can therefore contain 
a nonintegral number of electrons. As a result they 
describe something intermediate between a localized and 
an itinerant situation. The magnetic properties are 
essentially those of localized states whereas the effects 
on the electronic specific heat are similar to those of an 
itinerant density of states at the Fermi level. 

The purpose of the present paper is to try to calculate 
the interaction between two similar magnetic impurities 
near to each other in an otherwise completely non
magnetic material. Like the cases of a single impurity 

7 For a discussion of these ideas see, e.g., Ref. 13. 
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and of the pure magnetic metal, this case can, in prin
ciple, be solved exactly within the Hartree-Fock method. 
The results, in contrast to both of the other two cases, 
can then be reasonably directly interpreted in terms of 
exchange processes taking place between the magnetic 
atoms, and in particular ferro- and antiferromagnetic 
and indirect exchange processes can be easily identified. 

We are thus investigating probably the simplest 
model which contains most of the relevant physical 
elements which may be of importance in the exchange 
couplings which lead to ferromagnetism and antiferro-
magnetism in d-band metals. We would hope, therefore, 
to find behavior corresponding to the three exchange 
mechanisms which have been seriously proposed for 
these metals: "direct" exchange between atomic d func
tions, Zener indirect exchange8 due to mobile d electrons 
(or, more rigorously, mobile magnetic electrons), and 
indirect exchange via "s" electrons. We do in fact find 
mechanisms closely similar to those of these. The first 
we find to be antiferromagnetic as in insulators, the 
second ferromagnetic but present only in special circum
stances, and the third we do not investigate in detail but 
it seems it may be relatively small. 

Van Vleck9 has suggested a model for magnetic tran
sition metals in which the d electrons are partially 
itinerant. He pointed out that one would not expect 
these electrons themselves to form a band because the 
separations between different ionization states of the d 
shell are too large. In a metal the d electrons could how
ever show an itinerant behavior because of the possi
bility of transferring electrons to s states. For example, 
one would expect the configurations 3d10 and 3d9 As but 
not 3d8 to be important in the conduction band of Ni. 
Virtual magnetic states describe a similar type of be
havior for isolated impurities. This is another reason 
why it seemed of interest to investigate the magnetic 
interactions between such states. 

Our model and techniques are essentially those of 
Anderson.2 We assume a Hamiltonian 

W=Xf+3Cd+Wfdy (1) 
where 

3C/=££kWk' (2) 
k,<r 

is the free (s) electron Hamiltonian and E* and n* are 
the energy and number operator for an electron with 
momentum k in spin state o\ 

JCd=EoE(»i<r+»2<r)+Dr(»it»i*+»2t»2*) 

+ Z (V1^*ci"+ Vtlci"ci'), (3) 

where E0 is the self-energy of the localized states (1) and 
(2) in the absence of interactions, U is the Coulomb 

8 C. Zener, Phys. Rev. 91, 303 (1953). 
9 J. H. Van Vleck, Rev. Mod. Phys. 25, 223 (1953); see also 

P. W. Anderson, Oxford discussion on magnetism, 1959 (un
published). 

repulsion between two electrons in a localized state, and 

V1%= F2i*= f <pi*{T)<p*{r)Wdr (4) 

is the transfer integral between the two d states, a, Ci* 
are, respectively, the annihilation and creation operators 
for a d electron at site i with spin a, and nf is the corre
sponding number operator. Finally, 

Wfd= L ( V W V + Virtue**) (5) 
ik.er 

describes the interaction of the d states with the band. 
Clearly 

7i k=«* k- '»7 8k, (6) 

with a proper choice of phases. 
To calculate the magnetic interactions we use the 

Green's function formalism described by Anderson2 

within the Hartree-Fock self-consistency scheme. The 
position of the Fermi level is taken as a fixed parameter 
which does not depend on the position of the virtual 
states. One obtains a set of four simultaneous equations 
connecting the four occupation numbers nf. These 
equations may have several stable isolated solutions so 
that an explicit energy calculation is necessary to deter
mine the self-consistent state of lowest energy. In 
particular when both impurity sites are magnetic in 
themselves and Vn is small, the localized moments 
could be aligned either parallel to each other or 
antiparallel. 

Clearly there are two types of coupling mechanism: 
a direct coupling due to Vn Eq. (3), and an indirect 
effect via the s—d interaction Eq. (5). The effect of the 
latter is oscillating and has the general character of the 
Ruderman-Kittel-Yosida10 interaction between localized 
moments. 

The effect of the direct terms can be studied much 
more easily and has some interesting features. The sign 
of the effective interaction between the magnetic mo
ment depends on the position of the virtual levels. When 
the virtual levels are approximately symmetrical around 
the Fermi level one has essentially an antiferromagnetic 
kinetic interaction of order Fi22/£7, very similar to that 
existing in antiferromagnetic insulators.8'11 On the other 
hand, when one of the two (single impurity) virtual 
levels is much closer to the Fermi surface than the 
other one, a parallel alignment is favored.12 This may 
indicate a tendency for forming ferromagnetic bands of 
the Van Vleck type. 

10 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); 
T. Kasuya, Progr. Theoret Phys. (Kyoto) 16, 45 (1956); K. 
Yosida, Phys. Rev. 106, 893 (1957). 

11 P. W. Anderson, Phys. Rev. 115, 2 (1959). 
12 It is interesting to note that the Fermi level in a metal should 

tend to adjust itself to such a position because of the large Estate 
density. 
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II. THE GREENE FUNCTIONS where 

The Green's function £(e) is denned by the matrix e1°*=£04-Re(lim^ J+^X^i"0") 
equation V"*0 * e+is—Ej 

lim(€+w-3e)G(€) = l . (7) =Eo'+U(nr<), 
(11) 

€f=E*'+U{ni-'), 
As discussed by Anderson,2 many properties of interest V- V -
can be calculated from the density of states Xtf—Z) > (12) 

p(6)=-l/7rIm(TrG(6)). (8) / \Vlk\* 
A= A(e) = Im( lim E J. (13) 

In particular the density of states in the localized states 
at sites 1 and 2 and of the free electrons can be found For simplicity we assume the ( Vik\ depends on the 
from the diagonal elements of G. Thus, e.g., for the energy (Ek) only, and that. 17*1 and the unperturbed 
density of states of electrons with spin <r in state 1 one density of states of the free electrons [p„(E)] are slowly 
has the equations: varying functions of E. One then has E0

f^E0 in Eq. (11) 
and 

(e+is-EQ-Unr*)Gnff-V12G2f-i:VlkGkf=l, (9a) A(e) = 47r2| Vik\*pu(e), (14) 
k 

X(e) = \i2=; A2i= — iA(e)sin(krn)/kru (15) 
ie+is-Ea-Un-,)G21,_VnGn<,_Z F 2 k G k l ' =0 , (9b) f r o m ( 1 2 ) a n d ( 1 3 ) H e r e k i s d e f i n e d b y Ek=e T h e 

expression (15) for X is clearly meaningful only in the 
(e+is-EJGha'- Vudi'- VklGu'=0. (9c) d i l u t e c a s e ' Le-> w h e n r i 2 i s sufficiently large, so that 

£ri2»l (16) 
Replacing the number operators nf by c numbers, the . 

equations can be solved for G u ' : 1S t h e r e S l o n of m t e r .e s t- ( F o r t h e vnivrea effect only, of 
course.) In general, if the phases are chosen so that Vu 

Gu'(e)= 
(\u+Vli)(\n+Vil)V ^re*i,AU-A,i. 

€—d'+iA (10) The expression for G22 (e) is exactly analogous to 
«-€»'+*A J ' Eq. (10). 

The free-electron Green's function is (again using the same phase convention) 

Gkk*(e) = [(Gkk*(e)]»+[Gu*(€)+G22"(e)] lim| y , k | 2 / (€+w-£ k ) 2 

8-*0 

(FikFk2+F2![Fkl)CX(e)+F12] 
+Iim , (17) 

•*> (e-£k+w)2[(6-e1 '+iA)(e-62 f f+iA)- (X+F12)2] 

where (G *̂*)0 = lim(e— ek+is)"1 is the unperturbed free-electron Green's function. The physically interesting 
»-»o 

quantity is of course the total free-electron density: 

1 
P/'(«)= — I m E G u ' ( e ) 

7T k 

= P«'(€)+8i/>'(«)+8ip'(«). (18) 
In (18), 

Im dr |F i k | 2 "I 
Su>'(e) = — LGn>(e)+Gtf(e)J- lim £ (19a) 

v del3-0
 k (e -£*+w)J 

and 
Im (X+F21)2Re(F2kFkl) / 

8jp'(«)= l i m E /C(6-6/+iA)(e-€ 2 '+ iA)- (X+F 1 2) 2 ] . (19b) 
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With our previous approximations (19) becomes 

Re dA(e) 
«ip'(e) = — ( G U ' ( € ) + G M ' ( € ) ) , 

•K de 

hp" 
I m dX / 

(e) = — 2(X+ 7«)— / [ («-« i»+*A)(e-^+fA)- (X+ Fi2)2]. 

A1S97 

(20a) 

(20b) 

The first correction term 8ip [or the corresponding 
term in (17)] describes the independent polarization of 
the free electrons by the two impurity sites. This effect 
is discussed in detail by Anderson (see Sec. VI of Ref. 2) 
and is probably small. The effect of the interference 
term 52p should be even smaller as long as (16) applies. 

III. SELF-CONSISTENCY CONDITIONS 

Equation (10) determines the density of states in 
terms of the four occupation numbers nf. To find a self-
consistent solution one has to solve the four simultane
ous equations for the nf 

on the n° and d*. Clearly 

» ' = Im f [Gii'(€) + G22'(€)]<*€ 
2TT J 

• Imf [G+"(e)+G_*(e)]</e, (29) 
2T J 

d°~-
Ud~° 

2TV~ 
- I m J [G+« («)-G_'(€)]«fc, 

where 

1 ft 
n°= — Im / Ga' 

7T J 

G±°(e)=(e-e±°+iA)~l 

(30) 

(31) 

(e)de, (21) from Eqs. (21) and (24) and the definitions of n* and da 

Evaluating the integrals one finally finds 

where the integrals are from the bottom of the (free-
electron) conduction band to the Fermi level (€/). For 
simplicity we assume a low concentration of localized 
states so that the Fermi level can be regarded as a fixed 
parameter which does not depend on the position of the 
virtual levels. Moreover we will restrict ourselves to a 
situation where the interactions are dominated by the 
transfer integral: 

F=F1 2»|X(€) | (22) 

in the region of interest. One can then write [instead 
of (10)]: 

Gu 'W= [«-€ i '+«A- F2 /(6-62 '+iA)]-1 , 

G22"(€) = [6-€2'+iA-FV(e-<i f f+^'A)]-1. (23) 

Equation (23) can be rewritten as 

Gn'(«) = i [ ( l + t f ^ / V - ' ) ( € - e f ' + » A ) - » 
+ (l-Ud-'/V-')(e-€^+iA)-1^, (24) 

Gn'(e) = i£(.l-Ud-/V-)(.6-eS+te) 

+ (1+ Ud-'/V-") (e-e-'+^'A)-1], 

where we have defined 

e±'=E<ri-Utr'±V—, (25) 

« ' r=K»i '+«2') , (26) 

«*'=K»i*-»»*), (27) 

1 1 / « / -€+ ' € / -€_ 
I tan-1 {- tan-1 

2 2x\ A ) • 
(32a) 

Udr< / €/-€+* € / - e _ ° \ 
d'= (tan"1 tan"1 1 . (32b) 

A A A / 2TTV~ 

AU the t a n - 1 functions are in the range — J x < tan" 1 < %ir. 
One notes tha t there are two obvious types of solu

tions. Equat ion (32b) has the trivial solution 

which implies 
</t = ^ = 0 , 

yt=Vl=V 

(33) 

(34) 

and 
7*==+[tf2(^)24-72]i/2 t (28) 

I t is now convenient to replace the self-consistency 
conditions for the nf (21) by the equivalent conditions 

in Eq. (32a). These solutions describe a s tate where the 
two localized moments are parallel to each other, i.e., 
[from (33)2: 

ni(T=n2<r=n<r. 

Substituting (34) in (32) one finally gets two equations 
for wf and nl: 

1 1 
n* = —| {ta,n~1[y(x—n)l — v'] 

2 2TT 
+tan"1Qy(£—nty+v"]} , 

(35, 

ni = —| [tan-1(j(x—n*) — v)-
2 2T 

+tear1(y(x—n^)+v)2, 

where we have introduced the dimensionless parameters 

x=(Ef-E0)/U; y=U/A; v=V/A. (36) 
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FIG. 1. Plot of w?(«*) and n^(n^) in the n*, n* plane for the 
following values of x=E/—Eo/U, v~V/A, and y — U/A: (a) For 
#=i , y — 5 curves with v = 0, 0.5 and 2 are shown. Note that for 
2 = 2 there is no magnetic solution; (b) #=0.85, y = 10, t?=0.5, 2; 
(c) x=0} y=l0, ?>=0.5, 2. The latter value of v gives a magnetic 
solution. The line of nonmagnetic solutions is also shown and the 
points (#,§) and (f ,#) are marked by squares. 

In Fig. 1 we have plotted these two functions in the 
nf, nl plane for a few values of x, y, and v. 

For the second type of solution d'^O. It follows from 
(32b) that: 

<W<0, (37) 

so that in a sense all these solutions show a tendency for 
antiparallel alignment. The simple antiparallel solution 
for which 

nt = ni = n df=-d* = d (38) 

is singled out by the fact that it goes to the proper limit 
of two antiparallel localized moments of equal magni
tude as V/U—+0. The model we are using is certainly 
meaningful only as long as V/U is small so that one 
feels reasonably safe in considering only these special 
solutions. 

It follows from (38) that 

7 t = F* = £U2d2+V22m= Uw. (39) 

(This defines w.) Using this and (38) in (32) one finds 
the two self-consistent equations for antiparallel 
moments: 

W + W = ! + 1 / T tan_1y(^—n-j-w), 

n-—w=%+l/Trt&ir1y(x—n—w). 

The existence of self-consistent magnetic solutions of 
either type obviously depends on the parameters in 
Eqs. (35) and (40). It is interesting to investigate the 
conditions on the parameters and in particular to see 
how the interaction affects the requirements (on x and y) 

for the existence of localized magnetic states. We will 
return to this problem in Sec. V. 

As one would expect intuitively the effect of the 
interaction on the size of the moments is usually small 
(when V/U<<i\) except very near the critical boundary 
for the existence of magnetism. Over most of the range 
of values of x and y for which a single ion is magnetic 
both Eqs. (35) and (40) have stable magnetic solutions. 
To determine the preferred orientations (i.e., the signs 
of the effective magnetic interaction) one has to compare 
the energies. 

IV. INTERACTION ENERGIES OF 
LOCALIZED MOMENTS 

The energy of the two magnetic ions is 

Im /••/ 
E(F)= / ede(GuKe)+G22H*)+GuK<d+G22Ke)) 

-U(tii*ni*+.th*n2*), (41) 

where the last term is needed because the interaction 
energies are counted twice in the integral. Again we 
neglect the polarization of the "free" electrons. Using 
(24), Eq. (41) can be rewritten as 

Im /•«/ 
E(V)= / €&[G+t(€)+G-t(€)+G+*(0+G-K€)] 

-2U(n*n*+dW), (42) 

where the G±(€).are defined in (31). 
The energy in (42) depends on V through the €-/, n* 

and tf°V Let 

8€±«=6±°(V)-e±«(0)=U8n-°zkdV-% (43) 

fa'=:n'(V)-n*(fi)'9 «*=(** (7)-<**(()); 
(44) 

5F-=F{ r(F)-F< T(0)=F^(F)-C/^(0). v J 

The change in energy due to introducing F is, then, to 
second order in the 5's 

- J[(5€+*)W(0)+ ($€_*)V-*(0)]} 

~2Ur[»t(O)a»*+»KO)8»t+rf(0)tM* 

+d(0)*Mt+5wtgn*+wtM*], (45) 
where 

» = t ' ( t 0 = R l A tan- 'Oz-et 'dOn/A (46) 
and 

P± ' (F)=(l/7r)A/C(6 /-6± ' (F))2+A^ (47) 

are the occupation number and density of states for the 
virtual states described by the G±(e) (31). The meaning 
of (45) is fairly obvious (see Figs. 2 and 3). The first two 
terms describe the energy change of the four virtual 
levels when shifted by a small amount so that terms of 
order 

(dendp/de) (48) 
can be neglected. 
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In a properly magnetic state (|wf—n*\ ~1) at least 
one of the virtual states is far from the Fermi surface. 
We assume also : 

V/U, A/U«l. (55) 

Consider first a symmetric situation: 

)—*'(o)+V 

>—**(o) 

>—£»(o)-v 

Then 

and 

It follows that 

(«,-.Eo)/ff~i. 

Up*~Upl~A/U«l 

dp/<k~A/U3. 

[USnl^V^A/U, 

(56) 

(57) 

(58) 

(59) 

FIG. 2. Schematic diagram showing change in energy for parallel 
spins. Without interaction the virtual levels at both sites are at 
e*(0) a n d each contains n electrons. The splitting by V shifts n 
electrons down and n—Vp electrons up (by V). The slice Vp near 
e/ remains unchanged. The change in energy is therefore V2p. 

When the two moments are parallel to each other, 
one has 

»+'(0) = ».'(0) V=6V=V <**=«'= 0, (49) 

so that (45) becomes 

CE(F)~E(0) ] p a r =-(£ /^^+F 2 )p t (0 ) 
-(UW2+V2)P*(0)-2U5n*5nK (50) 

For sufficiently small 8n this reduces to 

D E ( F ) - £ ( 0 ) ; U = - F V + P ' ) . (51) 

This is illustrated in Fig. 2. To see if this is consistent 
one has to check whether 

and, moreover, 
? 7 W « F 2 , 

Udn\8ni<£V2(pi+pi). 

(52) 

(53) 

The last requirement is particularly important because 
8n* and 8n* have opposite signs in the magnetic state 
and the last term on the right-hand side of (50) is 
therefore positive. 

From (35) one finds 

fa*=-Ufa*p*+i(U*to»+V*)(dp*/de), 
fe** = - U8n*pi+%(U28nV+V2)(dpi/de). 

(54) 

Clearly 8n is at most of order V2 but one has to check 
whether U8n is still small. 

and both (52) and (53) hold. The energy gain (51) 
becomes 

E(V)-E(0)~-8V2A/TU2. (60) 

In an asymmetric situation 

(ef-E0)/U~0 or 1—(€/—JE0)/i7~0; (61) 

one virtual state (e.g., ef) is much nearer to e/ than the 
second one, i.e., 

€ / " € / - € ' 
~ « 1 . 

u 
(62) 

A sufficient condition for the expansion is now: 

F / | 6 , - € * | « l . (63) 

From (54), (55), and (63) 

5»*~ - (AAE/")5»f«5»t (64) 

dp* 
so that 

8n^W2- '•/{i--A 'Fy(€/-et)2. (65) 

From (64) and the estimate of p implied by (62), it 
follows that the corrections to the energy (50), because 
of changes in occupation, are at most of order V28n2. The 
corrections are therefore small when (63) holds. 

For antiparallel moments: 

^+t(0) = ^ ( 0 ) = /*+, 

Wlt(0) = »2*(0), (66) 

The situation is illustrated in Fig. 3. Now 

^ t ( o ) = - ^ ( o ) = | ( w + ( 0 ) - ^ _ ( 0 ) ) = - ^ (67) 
and 

8V*=8V*~U8d-V2/2Ud. (68) 

Substituting in (45) one gets: 

£E(V)~E(0)']&p=-(2V2/U)--U2(8n+8d)2p+ 

- U2(8n- 8d)2p„-2U(8n2- 8d2). (69) 

The terms in 8n and 8d can be calculated from the self-
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A* 
il / 

[— 
= " l f " 

V2/Ud 

^—- -^ k 2 ( 

Ud 

i • f 

V2/Ud 

(70) 

FIG. 3. Energy change for antiparallel moments. 

consistency equations (40), i.e., 

(8n+8d)=-U(8n~8d)p~ 

{8n-8d)2dp~ V2 

+ U2 

2 de 2Ud 

(8n-8d)=-U(8n+8d)p+ 
U2(8n+8d)2dp+ V2 

+ P+. 
2 de 2Ud 

An argument similar to that for the parallel case shows 
that all correction terms are small as long as 

V/\ef-e±\«l; A/U«l. (71) 

Consequently, 

tE(V)-E(0)-]^~-2V2/U. (72) 

This is of course just superexchange, as defined by 
Anderson in Ref. 13 (called "kinetic exchange" in 
Ref. 2). 

Comparing (72) with (51) it is clear that a parallel 
arrangement is favored when 

In a symmetric situation both virtual levels are far 
from ef(e~f—eff) and the left-hand side of the inequality 
(73) is approximately A/U [see (57)]. It is thus clear 
that antiferromagnetic superexchange is favored. In 
fact the Lorentzian model of the virtual state certainly 
exaggerates the magnitude of p far from the center of 
the virtual level, which makes the argument even 
stronger. 

For an asymmetric situation one virtual level is close 
to the Fermi surface and has a large density of states 
there, so that (73) can hold. If, in particular, the Fermi 
level is well within the virtual state, the left-hand side 
of (73) becomes of order U/A and therefore large. 

We have seen that the sign of the magnetic coupling 
depends on the position of the Fermi level relative to 
the impurity energy E0. When ef is near E0 or near 
EQ+ U parallel spins are favored, whereas in the inter
mediate region one finds antiferromagnetic "super-
exchange." This results from a competition between 
two coupling mechanisms. Clearly a single electron, 
distributed among the two d states, would have the 
same spin direction at both sites. For exactly two 
electrons (and large U) it is most favorable to have 
opposite spins so that each electron can interact with 
an empty (ionized) state of proper spin. Our virtual 
states have nonintegral occupations and the position 
of the Fermi level determines which mechanism is 
dominant. 

The ferromagnetic mechanism is very similar to the 
Zener double-exchange mechanism.13'8 It is likely that 
the generalization of the above criterion for ferromag-
netism which will apply in more general situations is 
the requirement of a high density of magnetic electrons 
near the Fermi surface. We intend to study the more 
realistic case of coupling between atoms with orbitally 
degenerate d levels in the future. 

V. THE CRITICAL BOUNDARY 

The conditions for the validity of the approximations 
of the last section are quite stringent and one would like 
to know what happens near the critical boundary for 
magnetism when they are no longer valid. 

We have seen that the state with parallel moments is 
favored in an asymmetric situation when one of the 
virtual levels is very close to the Fermi surface. This 
implies that these solutions are important mainly near 
the critical boundary. It is therefore of particular 
interest to investigate the stability of the solutions of 
(35) near the boundary for the magnetism of a single 
ion. This is best done by looking at the solutions of 
(35) on this critical boundary. We still show that (35) 
has no magnetic solutions on the boundary in a sym
metric situation (#~ | ) . On the other hand, in an 
asymmetric situation (x~0, 1), (35) does have such 
solutions on the boundary and even beyond it. 

Equations (35) always have a nonmagnetic solution 

§J/(pt(0)+p*(0))>l. (73) i3 p. W. Anderson, Solid State Phys. 14, 99 (1963). 
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FIG. 4. The density of states [ f t - w ^ + l J" 1 +Cte+») a +l J"1 for 
v = 0, 0.5, 1, and 2 as a function of £^y(x—n). The level where 
n = constant at constant slope is also marked. 

where nf = n* = n(v). This solution becomes unstable 
when 

(cV (w*)/d»*)nt-»*-»< - 1 (74) 

(see Fig. 1). This is therefore a sufficient condition for 
magnetism.14 Differentiating (35a) one has 

2TT 

-{Z(y(x-ni)-vy+iy 

+t(y(x-n>)+vy+lT1} • (75) 

The expression in curved brackets is plotted in Fig. 4 
for several values of v. For the particular case #=•§• we 
know that » = | . One then finds 

ye&v) = *(l+*), (76) 

where yc(x,v) is the value of y on the critical boundary 

14 When (74) does not hold the nonmagnetic solution is stable. 
For small values of v this implies that there are no magnetic solu
tions. However, when v2> J, each of the curves (35) has three in
flection points so that they can have five simultaneous solutions. 
There is then a limited range of x and y in which both magnetic 
and nonmagnetic solutions exist and are stable. This effect results 
from the splitting of the virtual level by v (Fig. 4) and is probably 
fortuitous. Clearly (74) is still a sufficient condition for magnetism 
and it is at least necessary that the maximum slope of n^ (»*) be 
smaller than — 1 . 

where d ^ f / d ^ = — 1. It is thus clear that the magnetic 
region is reduced in this vicinity. In fact one can fairly 
easily do a little better. In the Appendix it is shown that 
the slope of nf(nl) is decreased at the nonmagnetic 
solution and, therefore, 

yc(oc,v)>yc(xfi) 

for all values of x, such that 

yc(xfl)/T<4/3. 

(77) 

(78) 

This can be interpreted as a criterion for a range of 
values of x for which the interaction has an unfavorable 
effect on the magnetic transition. Roughly this is the 
range 

0.2<*<0.8, (79) 

as can be seen, e.g., in Fig. 5. 
In the vicinity of x= 0 and x= 1 the slope of the curves 

at the nonmagnetic solution is increased. It is shown in 

o 
LU 
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0.2 0.4 

7T 

y 
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7TA 
U 

0.8 

FIG. 5. Critical boundaries for the existence of antiparallel 
magnetic solutions for V/U—0, 0.1 and 0.3. The curves were 
computed from Eq. (85). 
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the Appendix that yc(%,v) is certainly larger than yc(%fi) 
when 

yo(*,Q)/ir>2, (80) 
i.e., when 

#<0.09 and *>0.91. (81) 

The transition from one region to the other takes 
place somewhere between the ranges (81) and (79) and 
is not really of interest. The numerical values of the 
limits in the inequalities (78)-(81) are in any case 
sensitive to the details of the model and cannot be 
taken very seriously. In particular one would expect 
the "favorable" regions to decrease with a more realistic 
shape of the virtual level. 

The discussion of the antiparallel case is quite 
straightforward. If one considers (n+w) and (n—w) as 
variables in Eqs. (40), these equations become formally 
equivalent to the Anderson2 equations for a single ion 

= J + (1/TT) tan"1?(x-n~ff). (82) 

The self-consistent value of w(waQ) calculated from (40) 
is therefore equal to half the magnitude of the localized 
moment calculated from (82): 

\n*(0)-n*(0)\=2wm (83) 

for the same values of x a n d y. T h e solutions of (40) are 
however meaningful only when 

w>V/TJ—wc (84) 

by definition (39). The actual magnetic region of (40) is 
thus given by these values of x, y for which (82) would 
give | nf—nl | > 2V/U and is therefore smaller than that 
of a single ion. This may be connected with the relative 
rarity of metallic antiferromagnets. In fact it is obvious 
from the above arguments that the interaction always 
tends to decrease the size of the moments. 

The critical boundary of (40) is given by setting 
w=we in the equations. This gives parametric equations 
iozx and / o n the boundary in terms of n: 

xc=n— (wc/$in.2irwc) sin27ra, 

2TT . (85) 
— = (2Trwc/sm2Trwc)(cos2Trwc— cos27ra). 
y c 

The boundary for several values of wc is plotted in 
Fig. 5. 

VI. DISCUSSION 

The above results are of course only a preliminary 
approach to a very complicated problem. Even the 
model itself is treated only in Hartree-Fock approxima
tion ; that this is rather primitive may be seen by realiz
ing that the corresponding approximation for a pure 
magnetic metal is the Stoner-Slater free-electron theory 
of ferro- and antiferromagnetism. Nonetheless it ap
pears that Hartree-Fock may be more accurate and is 

certainly simpler and more transparent in the local 
moment model than in the pure model. 

Another very serious limitation is the use of only a 
single nondegenerate orbital on each solute atom. It is 
amazing and rather gratifying that the model is none
theless subtle enough that a Zener-like mechanism 
comes out. The criterion for this mechanism is trans
parently generalizable to the more complex case, and 
it will be interesting to see how this works out 
quantitatively. 

Physically, we can see that the antiferromagnetic 
effect is very like "kinetic exchange,"13 in that it comes 
about because energy is to be gained by virtual transfer 
of electrons from the full spin-down level on one atom 
to the empty spin-down level on the other and vice 
versa. This, being a purely virtual process, requires no 
level density at the Fermi surface and so is favored by 
well-localized, symmetrically disposed virtual states. 

The ferromagnetic effect, on the other hand, depends 
on an energy gain coming from real transitions of 
electrons of one spin back and forth between the two 
virtual states, and therefore works well when one state 
has a large density near the Fermi surface, precisely the 
case in which the antiferromagnetic effect is inefficient. 

APPENDIX: EFFECT OF THE INTERACTION ON 
THE CRITICAL BOUNDARY FOR 

PARALLEL MOMENTS 

In the parallel case we want to compare the stability 
region of magnetic solutions of (35) with that of (82). 
This can be done by investigating the derivative of (35) 
at the nonmagnetic solution: 

[_dn* (»*,o;,y,t>)/d»4']nt»n*-n(») (Al) 

for values of x and y on the critical boundary of (82). 
This is sufficient to see the direction in which v moves 
the boundary for any value of x and y, 

One first notes that 

|*-fl(iO|>|a?-»(0)| (A2) 

as can be seen from (35) and (85), or e.g., in Fig. 6. 
We will first investigate the conditions for a decrease 

in the slope. It follows from (75) that 

| (dn*/dn*)(n*,x,y,v) \ < \ (dnf/dn*)(n*,x7y,0)| (A3) 

when 
y2(x-n*y<(v2+l/3). (A4) 

Now for small v(v2<%)\dnf/dnl\ is also a mono tonic 
decreasing function of \x—n*\. It then follows from 
(A2) and (A3) that 

dn* (x, W)\ 

dn^ 
< 

I n^^niv) 

dn* (x,y,v) 

dti* 

< 
dn*(x,y,0) 

dtl* n*«»(0) 

(AS) 
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We now want to show that there is a range of x near 
#=0 (and near x= 1) where (35) has magnetic solutions 
on the critical boundary of (82) so that 

ye(x,v)<ye(xfi). (A10) 

For this it is sufficient to show that 

| (dn*/dn*) (»*,») | „t.»*_„<,) 

> | (a»V*»*)(»*iO)l»t-»*-»(o). (All) 

For small v, (All) will follow if 

dn* (n*,x,y,v) | 

wt(n4-)=n(0) 
dw* 

> 
< 9 ^ * 

-(»*,*,y,0) (A12) 
nt=w,4'=sn(0) j 

X X+0.1 X+0.2 X+0.3 X4-0.4 

FIG. 6. Plot of 

for y = 10 and v = 0, 0.5 and 2 as a function of x—rfi. Only the lower 
part of the curves (n* <0.5) are shown. The places where the slope 
of nt(y) becomes larger than that of w*(0) at constant wt [the 
vertical lines (x—n)2==(v2+l)/3yi2 a n d at constant n [the hori
zontal line dn^(v)/dn^ = constant] are shown. The position of the 
nonmagnetic solutions n(v) depends on x. It can be seen from the 
direction of the line n^=n^ that n*(v) always has a larger slope 
when x is such that n(0) < J. 

when (A4) holds at n(0). On the critical boundary for 
v=0 (75) becomes 

[yc(x,0)/7r]-l = y c
2 M)(^-^cfe0)) 2 . (A6) 

Substituting this in (A4), it then follows that (A5) 
holds on the critical boundary for v=0, and therefore 

yc(x,v)>yc(x,0) (A7) 

y«(*,0)A<(4+t^/3); v*<h (A8) 

because the left-hand side (A12) is smaller than the left-
hand side of (All) (see Fig. 6). We therefore want to 
compare the slope of n (n,v) with that of n (n,0) when 

(»f (»*,*))»*-«= (»f(»S0))»*_*. (A13) 

To do this it is convenient to invert (35), i.e., 

tan27r(wt-i) = 2 y ( x - ^ ) / [ l + z ; 2 - y 2 ( ^ - ^ ) 2 ] . (A14) 

Substitution of (A 13) now gives 

x—a 1+fl2—y2{x—a)2 

x-p l-y2(x-@)2 

Differentiating (A14) gives 

T d»t r 1 
=—y\ 

cos227r(^t~i) Qn\ L l + ^ - y 2 ^ - ^ ) 2 

2y(x—n) 

(A15) 

when 0- (A16) 

For large v(v2> §) the above argument no longer holds 
because dnf/dnl has two separated maxima. The maxi
mum of (75) is however smaller than 47r/3y for such 
values of v, and one has at least 

yc(v)/T>%yv2>%. (A9) 

This is approximately equivalent to (A8) as a condition 
on the range of x for which (A7) holds. Roughly this is 
the range: 

0.2<#<0.8. 

£l+v2-y2(x-ni)2']-

Using (A15) in (A16) it is seen that (A12) holds when 

y2[x-n($)J>\ (A17) 

and the denominator of the first term on the right-hand 
side of (A16) is therefore negative. On the critical 
boundary (for v=0) we can now use (A6) to get 

yc(x,0)/T>2. (MS) 

For large v(v2>\) (All) does not follow from (A12). It 
can however be shown that (A18) is still a sufficient 
condition. 


