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Third-order elastic constants can be determined from the velocity of small amplitude sound waves in 
statically stressed media. For this purpose exact expressions are derived for the sound velocity and for a 
natural velocity and their stress derivatives, evaluated at zero stress, in terms of second- and third-order 
elastic constants. The formulas apply to arbitrary crystal symmetry and to arbitrary stress systems depend
ing on a single scalar variable. Special formulas for hydrostatic pressure and uniaxial stress are listed for the 
cubic point groups O, Oh, Td, and for isotropic materials. Attention is given to the proper variation of prop
agation direction with static stress in order to maintain propagation normal to a given crystal face as in ultra
sonic experiments, and to the proper separation of isothermal and isentropic coefficients in the results. The 
simplest and most convenient form of the results employs the natural velocity (natural unstressed length 
at the same temperature divided by the transit time), which is computed directly from experimental 
data without correcting the path length for the effect of stress. 

1. INTRODUCTION 

THIRD-ORDER elastic constants play an impor
tant role in solid-state physics. They allow an 

evaluation of first-order anharmonic terms of the inter
atomic potential or of generalized Griineisen param
eters, which enter the theories of all anharmonic 
phenomena, such as the interaction of acoustic and 
thermal phonons and the equation of state. 

The third-order constants can be determined from 
velocity measurements on small amplitude sound waves 
in statically stressed media.1 Mason1 and Seeger and 
Buck2 calculated the sound velocities in terms of 
second- and third-order elastic constants for various 
wave modes in uniaxially and hydrostatically com
pressed cubic crystals. Using a nonlinear3 stress-strain 
relation they derived special equations of motion for 
the given crystal symmetry and solved them by sub
stituting plane-wave solutions. This procedure is 
exceedingly laborious, especially for crystals of lower 
symmetry. 

The method presented here, for arbitrary crystal 
symmetry and arbitrary homogeneous stress systems 
depending on a single scalar variable, yields general 
results in a form suitable for algebraic machine reduc
tion4 to any desired special case. Considerable simplifi
cation is obtained by properly maintaining the direction 
of propagation perpendicular to a chosen crystal face 
during the deformation, and by introducing instead of 
the actual wave velocity a natural wave velocity which 
is more readily obtained from experiments. The result
ing formulas for the squares of the actual and of this 
natural velocity and for their stress derivatives, 
evaluated at zero stress, are exact. The ease of taking 
these derivatives depends on the thermodynamic 

1 T. Bateman, W. P. Mason, and H. J. McSkimin, J. Appl. 
Phys. 32, 928 (1961). 

2 A. Seeger and O. Buck, Z. Naturforsch. 15A, 1056 (1960). 
3 F. D. Murnaghan, Finite Deformation of an Elastic Solid 

(John Wiley & Sons, Inc., New York, 1951). 
* W. S. Brown, Bell System Tech. J. 42, 2081 (1963). 
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definition of higher order elastic constants given in the 
following paper.5 

In Sec. 2, the stress is related to energy functions,3 

and an appropriate general form of the equation of 
motion is derived.6 In Sec. 3, the equation of motion is 
linearized about an arbitrary state of homogeneous 
strain, and solutions are obtained for small amplitude 
plane waves superimposed on a homogeneously strained 
initial state. Section 4 relates the actual propagation 
direction n and velocity V to the corresponding natural 
direction N and natural velocity W used in Sec. 3. For 
stress systems depending on a single scalar variable, 
formulas for the stress derivatives of poW2 and poF2, 
evaluated at zero stress, are given in Sees. 5 and 6, 
respectively. Finally, in Sec. 7, we list results for the 
cubic point groups 0, Oh, and Td and for isotropic media 
when the stress is hydrostatic pressure or uniaxial 
compression. 

2. EQUATION OF MOTION 

From the theory of the mechanics of continua, one 
has, in the absence of body forces, the equations of 
motion 

pxj={d/dxk)Tkj, (2.1) 

where the stresses r*./ are given by3,7 

1 dxk dXj 
Thj— tpq. (2.2) 

/ dap daq 

The a,j and 0Cj a re the coordinates of a material particle 
in the unstrained and strained states, and the x$ are 
the components of its acceleration. J, the Jacobian of 
the deformation, 

7= 
dXr 

das 

Po 
(2.3) 

fi K. Brugger, Phys. Rev. following paper 133, A1611 (1964). 
6 C. Truesdell and R. Toupin, Handbuch der Physik, edited by 

S. Fliigge (Springer-Verlag, Berlin, 1960), Vol. I I I / l , p. 226. 
7 R. N. Thurston, in Physical Acoustics, edited by W. P. Mason 

(Academic Press Inc., New York, 1964) 1A, p. 1. 
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equals the ratio of unstrained to strained density, and 

'dU\ /dF 
= Po( 

^drjpq/s \dr)pq, 
k (dU\ (BF\ 

\dr}pJs \dtiPq/T 
(2.4) 

with U and F, respectively, the internal energy and 
Helmholtz free energy per unit mass. S and T denote 
entropy and temperature. The Lagrangian strains are 
given by 

1/dXt dxt \ 
Vpa^~[ h<i) - (2.5) 

2\dav da a ' 

Equation (2.4) shows that in the terminology of 
Truesdell and Toupin,6 the quantities tpq are thermo
dynamic tensions conjugate to the variables rjpq/po, 
while Eq. (2.2) enables one to identify tpq as the second 
Piola-Kir chhoff stress tensor.6 

Substituting from Eqs. (2.2) and (2.3) into (2.1) and 
making use of the identity of Euler, Piola, and Jacobi,6,7 

d 

dxk 

/ l dxk\ 

\J daJ 
= 0, 

the equations of motion become 

poXj=dPjp/dap 

Pjp=(dXj/daq)tpq. 
with 

(2.6) 

(2.7) 

(2.8) 

Pjp is the first Piola-Kirchhoff stress tensor, or double 
vector.6 

3. SMALL AMPLITUDE WAVES IN A 
STRAINED MEDIUM 

We now consider the propagation of small amplitude 
elastic waves in a homogeneously deformed medium. 
We define, for every initial temperature T, a»-= coordi
nate in the natural or unstressed state, Xt-(a) = coordi
nate in homogeneously stressed or initial state, 
Ui=Xi—Xi= component of displacement from initial 
state due to the wave. We regard P3P in Eq. (2.7) as a 
function of the entropy and the deformation gradients 
dxk/dam. To obtain an appropriately linearized equation 
of motion, we expand PJP about the initial state of 
coordinates Xi, denoting the initial values by ~ over 
the symbols, and assuming explicitly that the deviations 
from X to x are isentropic: 

dPf. 
p. —P. = 

JT 3p ± Jp 

, /dxk dXk\ 

]am)\dam dam/ 

where 

Clearly, 

d (dxk/dam) \dam dan 

duk — Is., i_. 
- ^ jkpm I 

dam 

18.. = -*1 1 Knm— jkpm~ 
\d(dxk/dam)/yL,i 

dPjP/dap=0. 

(3.1) 

(3.2) 

(3.3) 

Then, substituting from Eq. (3.1) into Eq. (2.7) and 
retaining only first powers of the displacement gradients 
duk/dam, we obtain linearized equations of motion 
for Uj in the form 

PQUj ij JOL jkpm (3.4) 

The tensor A Sjkpm can be expressed in terms of deforma
tion gradients and derivatives of the internal energy 
with respect to the classical strain components rjij by 
making use of the relation 

drjij l/dxp dxp \ 
— - = - ( —*«+— K- , (3.5) 

d(dxp/daq) 2\daj dai / 

which follows easily from the definition (2.5). By 
differentiation of Eq. (2.8), 

AS., — 
-*1 ikwrn jkpm ~ 

d[(dXj/daq)tpq] 

d(dxk/dam) 

dxj dxk 

bjktpm'x 

where 
daq dai 

(3.6) 

( ) = P O ( ) . (3.7) 
\drimi' s \drjmidriPq/s 

The symmetries of cs
pqir with respect to permutation 

of indices have been used in arriving at Eq. (3.6). The 
quantity ASjkpm in Eq. (3.4) is then obtained by 
evaluating Eq. (3.6) at the homogeneously strained 
initial state: 

dXj dXk 

jkpm djk*p 
daq dai 

(3.8) 

We now assume plane sinusoidal waves of the form 

Uj=Aj e x p [ > ( / - {Niai/Wm, (3.9) 

where N is a unit vector. 
According to this expression, the wave front is a 

material plane which has unit normal N in the natural 
state; and a wave front moves from the plane N*a=0 
to N-a=Z, 0 in the time Lo/W. Thus W is the wave 
speed referred to natural dimensions, and we call it the 
natural velocity for propagation normal to a plane of 
natural normal N. 

In a typical ultrasonic experiment, plane waves are 
reflected between opposite parallel faces of a specimen, 
the wave fronts being parallel to these faces. One 
ordinarily measures a repetition frequency F, which is 
the inverse of the time required for a round trip between 
the opposite faces. Hence, 

W=2LoF. (3.10) 

The advantages of W and N over the actual velocity 
V and actual propagation direction n which would 

file:///drimi'
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appear in the representation 

exptMt-(niXi/Vm 

are as follows: (1) W is proportional to the directly 
measured frequency F, whereas V involves the actual 
length under stress. (2) n may change with static stress, 
but since the propagation direction remains normal to 
the same faces of the specimen, N is constant. 

Substitution of Eq. (3.9) into Eq. (3.4) provides the 
propagation conditions 

poW2uj=As
jhpmNpNmUk. (3.11) 

It follows that the possible values of poW2 for plane-
wave propagation normal to the material plane of 
natural normal N are eigenvalues of the second rank 
tensor 

and the possible particle displacement directions are the 
corresponding eigenvectors. It follows from the sym
metry of tpm and cs

pqmi that Sjk is symmetric, and hence 
at any state of strain there are three mutually per
pendicular particle displacement directions for plane 
waves corresponding to a given N. For three real waves, 
Sjk must also be positive definite. Criteria for this are 
discussed in the literature.8-10 In general, S/& depends 
on rotation as well as strain, but the rotational depend
ence reflects only the obvious fact that the particle 
displacement directions must rotate with the material. 
For a given N, the eigenvalues poW2 are independent 
of the rotation. 

To obtain a representation completely independent 
of the rotation, we transform the particle displacement 
direction u back to the natural undeformed direction of 
the material line along it by the transformation9 

u^idXj/da^Uq. (3.13) 

Then Eq. (3.11) is transformed to 

poW*Uj=wikUk, (3.14) 
where 

da}- 6XS 
Wjk = Srs 

dXr dak 
= NrNs (8jktT8+ CqkC

Sjrqs) (3. IS) 
and 

_ dXi dXi 
Cqk= = (dqk+2rjqk). (3.16) 

daq dak 

It is now obvious that all quantities appearing in 
Eq. (3.15) are independent of the rotation. They 
depend on the strain and one other thermodynamic 
variable which may be taken as either the entropy or 
the temperature. We emphasize the significance of 

8 C. Truesdell, Arch. Rati. Mech. Anal. 8, 263 (1961). 
9 R. A. Toupin and B. Bernstein, J. Acoust. Soc. Am. 33, 216 

(1961). 
10 C. Truesdell and R. Toupin, Arch. Rati. Mech. Anal. 12, 1 

(1963). 

Eq. (3.14): The possible values of p0FP for propagation 
normal to a material surface of natural undeformed 
normal N are the eigenvalues of wjk, and the material 
lines along the corresponding eigenvectors U are rotated 
by the deformation [I.e., transformed by Eq. (3.13)] 
into the actual particle displacement directions u. The 
three eigenvectors U corresponding to a given N are 
not in general orthogonal. 

4. PROPAGATION DIRECTION AND VELOCITY 

In the definitive paper of Truesdell8 and in other 
published work,7,9 results have been expressed in terms 
of actual propagation direction and velocity. To permit 
ready comparison, we shall relate N and W in Eq. (3.9) 
to the actual propagation direction n and velocity V. 

In the homogeneous deformation, the material point 
at a in the natural state moves to X, where 

Oi^idat/dXdXj. (4.1) 

It follows that the actual plane wave front in the 
homogeneously deformed body has coordinates Xj 
satisfying 

N- *=Ni(dai/dX3)Xj= const. 

Thus, the propagation direction has the direction num
bers Nidai/dXj and the direction cosines 

n^ifvd-Wi&Oi/dXj), (4.2) 

where the normalization factor /N satisfies 

dai dak 
h2=NiNk -Cik-tNiNk. (4.3) 

dXjdXj 

[It is readily verified that (dai/dXj) (dak/dXj) is the ik 
element in the inverse of the tensor Cpq.2 

To obtain the actual path length and propagation 
velocity, we note that a material line segment of unit 
length along N in the unstrained state is rotated and 
stretched by the homogeneous deformation into a new 
line segment having the components {dXi/da})Nj. 
Letting m denote a unit vector along its new direction, 
and AN the stretched length, we have 

dX§ 
XN*»/= Nk. (4.4) 

dak 

By projecting the slant distance XN back onto the new 
normal n, we find the ratio of deformed to undeformed 
perpendicular distance between material planes of 
natural, undeformed normal N: 

L 1 dai dXj 1 
—=X N mn= NiNk=—. (4.5) 
LQ / N dXj dak /N 

Hence, the actual propagation velocity V, given by 
LW/Lo, is 

V=W/fr. (4.6) 
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The geometric relationships involved here are 
pictured in Fig. 1. They may be summarized as follows: 
N denotes the original unit normal to a pair of parallel 
material planes. The originally normal material line 
segment LoN connecting the planes is deformed into 
AN.£om while the material planes acquire the new unit 
normal n. The separation of the planes changes from 
LQ to Z=XN^oin-n=Zo//N. 

From Eq. (4.2), 

Nh=fans(dXi/dak). (4.7) 

In view of Eq. (4.6), the possible values of poV2 for a 
given propagation direction are the eigenvalues of the 
tensor Qjk=Sjh/fa

2. From Eqs. (3.12) and (4.7), 

dXr dXs 
Qjk (n) =A s

jkpm nrns. (4.8) 
dap dam 

Truesdell8 has called Q(n) the acoustical tensor for the 
direction n in an elastic material subject to the deforma
tion gradient dXk/dam. In one respect, the formula (4.8) 
is but a special case of TruesdelPs general result, the 
specialization having been made to a hyperelastic 
material (material for which there exists a stored energy 
function). The loss of generality is unessential for the 
present purpose. Moreover, our inclusion of a non-
mechanical variable (either temperature or entropy) in 
the internal energy function makes it possible to treat 
isentropic deformations superimposed on a state which 
is reached by an isothermal deformation from the 
natural unstrained state. 

In showing that the speeds of propagation are 
independent of the rotation, the previous treatments7-9 

introduced a vector v equal to the present N / / N . The 
above discussion and Fig. 1 clarify the geometrical 
significance of this vector. Its direction is the natural 
normal to the material plane containing the wave front, 
and its magnitude is the ratio of stressed to unstressed 
path length for propagation normal to this material 
plane. 

5. VARIATION OF Q0W
2 WITH STATIC STRESS 

In a typical experiment, the repetition frequency F 
is measured as a function of the applied stress at con
stant temperature. In all measurements on elastic 
crystals known to us,1,11"13 this relation is linear to 
within experimental error. Hence its slope is of primary 
interest. Whereas one could readily evaluate the 
isothermal stress derivative for an arbitrary stress 
system, it seems sufficient to consider deformed states 
depending on a single scalar variable p. Ordinarily, 
though not necessarily, p will represent either the 

11 H. J. McSkimin and P. Andreatch, J. Appl. Phys. 34, 651 
(1963). 

12 H. J. McSkimin, measurements on quartz (private communi
cation). 

13 J. R. Drabble, measurements of germanium and silicon 
(private communication). 

\^L^\ 

NATURAL DEFORMED 
STATE STATE 

FIG. 1. Change of propagation direction n and path length L 
with change of static deformation. (The propagation direction 
remains perpendicular to the reflecting faces of the specimen while 
the material line segment X0N is rotated and stretched into 
XN^OHI. The perpendicular distance between the faces changes 
from Lo to L^X^Lotn-n.) 

hydrostatic pressure, or the magnitude of a uniaxial 
load in some prescribed direction per unit of natural 
undeformed area. We refer the strain components to 
the natural unstressed state at the temperature of the 
experiment. Then strain components rjij and thermo
dynamic tensions hj are functions of p which vanish at 
^=0 . We wish to evaluate the quantity 

(poW*y=Z(d/dp)(poW*)lT (5.1) 
&tp=0. 

By differentiation of Eq. (3.14), we obtain 

(poW^'Urhp0W*U/=wik'Uh+w,kUk', (5.2) 

where the prime denotes the derivative with respect to 
p at constant temperature. We assume without loss of 
generality that the eigenvector U is normalized, and 
hence 

U U = 1 , IMJ '=0 , (5.3) 

Multiplying Eq. (5.2) by Uj and making use of Eq. 
(5.3), we find 

(PoJF2)'= U/wik'Uk+U/wikUk'. (5.4) 

Now at p=0, Wjk is symmetric, being identically equal 
to Sjk. It follows that 

(U/wJk)^o= (poW2Uk)p=s0 (5.5) 

and hence when Eq. (5.4) is evaluated at p=0, the last 
term vanishes, leaving only 

(poW2YP^= (UjWjk'Uk)p=o. (5.6) 

Equation (5.6) states that the derivative of an eigen
value of the tensor wjk, evaluated at p=0, is obtained 
from the corresponding eigenvector of the tensor wjk 

and the components of Wjk. 
If Wjk has multiple eigenvalues at p=0, & precaution 

should be observed in the use of Eq. (5.6) because the 
direction of the eigenvector belonging to a multiple 
eigenvalue is not determined. It is implicit in the use of 
the relation U-U'=0 that in this case one should use 
in Eq. (5.6) the limiting right eigenvector of wjk(p) as 
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TABLE I. Cubic crystals under hydrostatic pressure.8, 

Propagation 
direction 

[100] 

[100] 

[110] 

[110] 

[110] 

Displacement 
direction 

[100] 

Any J_ direction 

[110] 

[l io] 

[001] 

TOs(p0y%_0 (poJ**)', 2>=0 

Cua 

i(cns+cns-\-2cu) 

i(cns-ci2
s) 

2w 1 
_ 1 (Ciii+2Cii2) 

SB 3B 
Iw 1 

_ 1 (Ci44+2Ci6e) 
3B 3B 
2w 1 

~ 1 ( i C n i + 2Cii2+Cl44+2Cl66 + iCi23) 
3B 3B 
2w 1 

- 1 ( i d i i - iC i* , ) 
3B 3B 
2w 1 

— 1 (C144+2C166) 
3B 3B 

a B = l/3(5n^+25i2r) =i(cii r+2ci2 r) =isothermal bulk modulus at i> =0. 

p —» 0, and not just any eigenvector of wyjb(0) belonging For hydrostatic pressure, rjby== —phi, and hence 
to the multiple eigenvalue. 

Let us now evaluate wjk(0) for use in Eq. (5.6). VOW—5 / T^L^L] - _ * (z 
Quantities dependent on the strain are differentiated »•« w ^y ^ dX-J -~ ™* 
in accordance with the formula 

For uniaxial compression in the direction of a unit 
vector M, 

i i ) 

/ d \ _/ottm\ /dva\ / d \ 

\dp/T \ dp /T\dtkm' T\dyij'1 

/ d \ 
tkm S ijkmy I • 

rkj= -aMkMj^ -p(A0/A)MkMj, 

.- v̂ where <r is the actual magnitude of the compressive 
^ • ' stress, i.e., force per unit of actual area A, and p is the 

compressive force per unit of original area Ao. By 
Recalling that N is independent of p, we obtain, by substitution into Eq. (5.10), and differentiation with 
differentiation of Eq. (3.15), respect to p, we find 

12) 
Wjk'(0)=NrNs[8jktrs'(0) + tah'(0) I Ao ddr dds\ 

X(2s\kabc^rqs+s%abCjrk,ip)2, (5.8) ^ ( 0 ) = - M * / - — - =-MrMs. (5. 
\ A oAk oAj/33=0 

where all quantities are evaluated at p=0 and 
Now let U° denote a limiting eigenvector of Wjk{p) 

__/dcSjrks\ as p—>0, and w the corresponding eigenvalue, i.e., 
^sjrksip^^ I j • W*^V 

\ driip / T; p=o w=(poW2)p=o=(pQV2)p=o. (5.13) 
The derivatives trs'(0) are easily evaluated for hydro- It follows easily from Eqs. (3.14)-(3.16) that 

static pressure and uniaxial compression. From ,AN A7 A7 « 
E / 2 2 ) Wjk{0)=NrNsC^jrks, 

dar das wjk(0)Uf>=wUk°, (5.14) 
Us —J Tkj' (5.10) 

dXk dXj where the elastic coefficients are now understood to be 
TABLE II . Cubic crystals under uniaxial compression along [001 ] . a 

Propagation 
direction 

[100] 
[100] 
[100] 
[ l io] 
Clio: 
[HO] 

Displacement 
direction 

[100] 
[010] 
[001] 
Clio] 
[110] 
[001] 

w=(poF2)p_o 

Cll S 

Cu 
Cu 

h(cns+cizs+2cid 
\{cns-cns) 

cu 

Fu° 
a 
a 

i(a-b) 
a 
a 

*(«-») 

(POTT2)VO 

2wFu0+aCm+Cii2(a-&) 
2wFjjQ-bCiu+2aCU6 

2wFTjQ+aCiu+Ci<M(a-b) 
2wFxs°-{-haCui+i>Cii2(3a—b)+2aCn&—bCiu—hbCus 
2wFv0+haCiu-hCn2(a+b)-}-ibC12z 
2wFvQ+aCut+Cim(a-b) 

a a s -siP ^cnySBtcnT-cnT). b =snT = <,cnT +cizT)/$B{ciiT -aP), B =K^u r +2ci2 r ) . 
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TABLE III. Cubic crystals under uniaxial compression along [110].a 

Propagation Displacement 
direction direction u>==(poF%=o Fu0 (PoW*yp^ 

1—
II—

II—
I 

o 
o 

o 
o 

o 
o 

1 
I

I 
I

I 1 

[110] 

[HO] 
[110] 

[001] 
[110] 
[110] 

[110] 

[110] 
[001] 

CnS 

Cu 

cu 

i(cus+Cns-\-2cu) 

i(cns-ci2s) 
Cu 

a 
\{a-b-2c) 
Ua-b+2c) 
i(a-b+2c) 

i(a-b-2c) 
a 

2wFvO+aCm+(a-b)Cu2 
2wFJj»+i(a-b)C1u+iC1K(3a-b)-2cCi5Q 

2wFvo+i(a-b)C1u-\-iCnQ(3a-b)+2cC4M 
|2wFu0+i(a-6)Ciii+iCn2(Sfl-3ft) 
I +Cu&(a~ b+4:c)+adu+iaCm 
2wF u o+i(a-«Ci i i+lCi i 2 ( f l+6)-JaC 1 2 s 
2wFv0+i(a-b)C1u+iC1Qs(3a-b)+2cCiM 

* c =|544 = l/4c44. a,b as in Tab le I I . 

evaluated at p = 0. When Eqs. (5.8) and (5.14) are 
substituted into Eq. (5.6), we obtain 

(poTF2)^o= U (0)lNaNb+ U»Uk° 

X {2wST
jkah

JrNrNsS
TiVabCjrksip)~]. ( 5 . 1 5 ) 

The reduction of Eq. (5.15) to obtain special formulas 
for given directions of wave propagation and stress can 
be quickly carried out by hand only for simple direc
tions in crystals of high symmetry. However, such 
algebraic reduction can be done automatically by 
computer. The special results for cubic crystals in 
Tables I—III have in fact been checked by a computer 
program using ALPAK.4 

In experimental investigations, the "natural" direc
tion of propagation N is frequently chosen such that U° 
is along a principal axis of the second rank symmetric 
tensor 

F\k^ I ) =ST
qkabtab'(0) • (5.16) 

\ dp /p==o 
Then 

F\kUk«=Fv«Uq\ (5.17) 

where FJJ° is the eigenvalue of F°qk belonging to U°. In 
this case, the middle term in Eq. (5.15) can be simplified 
as follows: 

2wsT
Jkaitab (0) Uk°Uj° = 2wFv°. (5.18) 

Thus, whenever the particle displacement direction U° 
is an eigenvector of F°qk, we obtain the following simpler 
version of Eq. (5.15) : 

(poW2yp==o=2wFv
Q 

+ i V r ^ . C f r / ( 0 ) + ^ W ^ a r f a 6 / ( 0 ) C / r i b . < p ] . ( 5 . 1 9 ) 

In addition, NrNatrJ(0) is easily simplified for 
hydrostatic pressure and for uniaxial compression 
along M. 

NrNstrs
f (0) = — 1 for hydrostatic pressure, 

= — (N • M)2 for uniaxial compression. (5.20) 

This term is therefore zero when the propagation 
direction is perpendicular to the direction of uniaxial 
stress. 

6. VARIATION OF 90V2 WITH STATIC STRESS 

The formula for (poV2)' is in general more complicated 
than that for (poW2)' because of the variation of 

(V/W)2=(L/Lo)2=l/fx2 (6.1) 

By straightforward evaluation, using Eqs. (4.3), (3.16), 
and (5.7), 

2NklYmsT 

Jcmpqlpq (0) 

= 2NkNmF*km. (6.2) 

It follows that 

[(poF2) '- (p0PF2)']^o= 2NkNmF>kmw. (6.3) 

In view of Eqs. (5.14) and (5.15), the general result 
(6.3) can be expanded to the form 

(poF2)Vo=iVI.iVsC//C//[5^/(0)+2iViiVmF<'imcsyrt3 

- j - L r qkC jrqs~T~-F ip^jrksipj > {P'^J 

where, as before, all quantities are evaluated at p=0. 
Equation (6.4) differs from a formula published 

previously7 because the previous formula is for propaga
tion along a given material line, whereas the present 
formula is for propagation normal to a given material 
plane. The two formulas give the same result whenever 
the normal direction to the material plane continues to 
lie along the same material line, or when N is an eigen
vector of the second rank tensor F°im denned in Eq. 
(5.16). This is true for all of the special cases previously 
worked out, and will frequently be true in future 
experiments. In this case, Eq. (6.3) can be simplified: 
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TABLE IV. Isotropic medium. 

Type of stress 

Hydrostatic pressure 

Hydrostatic pressure 

Uniaxial compression 

Uniaxial compression 

Uniaxial compression 

Propagation 
direction N 

arbitrary 

arbitrary 

J_ to stress 

J_ to stress 

JL to stress 

Mode* 

L 

S 

L 

S 

S 

Displacement 
direction U 

|| to N 

± t o N 

|| t o N 

|| to stress 

J_ to stress 

W^(POV%»O 

Cns=\s+2/x 

ca—ti 

cu
s=\s+2n 

£44=At 

£44=/* 

(poJP)' 

1 
- 1 (2w-f3*i+10r2+8*3) 

W 
1 

- 1 (2^+3*2+4*3) 
3B 

1 
—[o-(2w+8*3)+*i(2a— l)+*2(8<r-2)] 
E 
1 

—Z-2w+r2(2<r- l )+2*3(cr-1)] 
E 
1 
~[(r(2W+4* 3)+*2(2a-l)] 
E 

»L =longitudinal, 5=shear; J5=Xr+|At=isothermal bulk modulus; E =l/$uT =3IIB/(\T+11) =isothermal Young's modulus; <r = — snT/snT 

-\T/2(\T-\-n) = isothermal Poisson's ratio. 

(6.5) 

When N is an eigenvector of F°km, 

C(poF2)'- (poTP)']i>-o= 2FN°w, 

where FN° is the eigenvalue of F°km belonging to N. 
Because early workers1,2 have reported values of 

(pF2)', we note that at p=0, 

(pF2)'-(poF2)'= - ( P O F 2 — ) 

• — (poV2STUabtab)p=0* 

Of course the same formula also holds with V replaced 
byW. 

7. RELATIONS FOR CUBIC CRYSTALS AND 
ISOTROPIC MEDIA 

The elastic coefficients of the ^th order are tensors of 
order 2n. They must be invariant under the symmetry 
operations of the point group of the crystal. This condi
tion requires certain coefficients to vanish and supplies 
relations among some of the remaining ones. The 
second- and third-order coefficients have been exhaus
tively treated and the results are tabulated for all point 
groups.14 For the cubic point groups 0, Oh and Td, one 
has in the abbreviated notation of the following paper5 

for the second order: 

en—£22=633, 

^ 1 2 = ^ 2 3 = ^ 1 3 , 

644= 655 = £ 6 6 , 

and all others zero, 

(7.1) 

14 See for example, W. P. Mason, Piezoelectric Crystals and 
Their Application to Ultrasonics (D. Van Nostrand Company, 
Inc., New York, 1950) for second-order coefficients; and R. F. S. 
Hearman, Acta Cryst. 6, 331 (1953) for third-order stiffnesses. 

and for the third order: 

C n i = C 2 2 2 = C 3 3 3 , 

Cl44 = C255 = C366 , 

C l l 2 = C 2 2 3 = Cl33 = C l l 3 = C l 2 2 = C233, ( 7 . 2 ) 

C155 = C*244 = C344 = Ci66 = C266 = C355 , 

C123, 

C456, 

and all others zero. 

For isotropic media, the above three second-order 
coefficients and six third-order coefficients have the 
following representation in terms of the Lame coeffi
cients of second order (X,/x), and third order9 (vi,v%vz)i 

Cn = \+2fJLy C i 2 = A , £44 = /*, 

C i 2 3 = P l , C i 4 4 = ^ 2 , C456=* , 3 , (7 .3 ) 

Cu2=vi+2v2, Cu5= V2+2vz, Cm =^1+6^2+8^3. 

Values of w and (p0W
2YP=:o for various cases in cubic 

crystals belonging to the point groups 0, OA, and Td are 
given in Tables I—III. The corresponding formulas for 
(poV2)' and (pV2)' are consistent with formulas already 
in the literature.1,2«7 The new definitions should be 
noted.5 

Special formulas for isotropic media are given in 
Table IV. The corresponding formulas for (poV2)' agree 
with those given by Toupin and Bernstein9 if one sets 
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