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General thermodynamic definitions of the higher order elastic coefficients of thermoelastic media are 
presented in tensor and engineering notation. They are natural generalizations of the customary definitions 
of second-order coefficients, they retain the usual conventions relating tensor and engineering stresses and 
strains, and they simplify thermodynamic calculations. 

RECENT extension of ultrasonic techniques to high 
pressures and high frequencies1-5 renewed interest 

in the higher order coefficients of nonlinear elasticity. 
We proceed to give a general definition, both in the 
tensor and in the abbreviated or engineering notation, 
of elastic coefficients of any order as partial derivatives 
of the thermodynamic potentials of thermoelastic 
media subject to finite deformation. Whereas third-
order stiffnesses have already been introduced into the 
literature,6"9 the present definitions are believed to be 
justified since they provide the following advantages: 
(a) They are natural generalizations of the accepted 
definitions of the second-order coefficients, (b) The 
customary relations between tensor and abbreviated 
notations for stresses and strains are retained, (c) 
Thermodynamic relations are readily transcribed from 
the tensor to the abbreviated notation and vice versa. 
(d) No unwieldy numerical factors occur in thermo­
dynamic calculations, (e) The coefficients defined above 
are identical with those encountered in anharmonic 
lattice theory.10,11 

The energy equation for conservative (nondissipative) 
thermoelastic media12 gives the main thermodynamic 
potentials; namely, the internal energy Z7, the free 
energy F, the enthalpy H, and the Gibbs function G, 
in terms of the conjugate variables S and T, and tjk 

and rjjk/poy as 
dU= TdS+ (l/po)tjkdr)jk 

dF=-SdT+(l/po)tjkdVjk (1) 

dH= TdS- (l/po)rjjkdtjk 

dG= —SdT— (l/po)r)jkdtjk, 
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. = po(dnU/dr)jkdr}pq...)s 

. = po(dnF/drjjkdrjpq.. ) T 

.= —po(dnH/dtjkdlPQ.. .)s 

.= —po(dnG/dtjkdtpq.. ) T . 

where 5 is the entropy, T the temperature, and the tjk 

are the thermodynamic tensions, and the rjjk the 
Lagrangian strains.13 The potentials and all extensive 
quantities are taken per unit mass. From the relations 
(1) follow naturally general definitions of the elastic 
coefficients for any order. Namely for the adiabatic and 
isothermal stiffnesses c and compliances s of the nth. 
order, for n>2, 

(2) 

Since the strains and the thermodynamic tensions 
are symmetric, i.e., Vjk=rjkj and tjk~tkjy only six of 
each set of nine variables are independent, and it is 
customary to introduce the Voigt14 notation: 1 1 ^ 1 , 
2 2 ^ 2 , 3 3 ^ 3 , 2 3 ^ 4 , 13~5 , 1 2 ^ 6 . By convention15 we 
define 

Vab=h(l+&ab)yA and tah=tA, (3) 

where lower case subscripts run from 1 to 3, and where 
capital subscripts run from 1 to 6. Considering the 
potentials now as functions of the single-subscript 
variables, the first of Eqs. (1) and (2) for example 
become 

dU=TdS+(l/po)hdr)j (10 
and 

csjP..~po(dnU/dVJdrjP...)s, (20 

and similarly for the other three equations. Between 
the elastic coefficients in the tensor notation and in the 
abbreviated notation one has the relations 

and 

Cjkpq...= Cjp... ( 4 ) 

Sjkpq...=h(l+&jk)i(l+Spq)'' -SJP.... (5) 

From the definitions (2) and (20, and from the sym­
metries of the strains and tensions follow the familiar 
symmetries in the subscripts of the elastic coefficients. 
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For example 

and 
Cjkpq • • • Ckjpq • • • ^pqjk . . . — * * ' 

Cjp... — Cpj...= • • • . 

(6) 

(7) 

Two examples will illustrate the absence of unwieldy 
numerical factors in thermodynamic formulas and the 
ease with which formulas can be transcribed from the 
tensor to the abbreviated notation, or vice versa: A 
straightforward thermodynamic calculation gives the 
relation between the purely adiabatic third-order stiff-
nesses c jkpqrs 

defined in (2) and mixed coefficients 
Cjkpqrs= (dcSjkpq/dr}rs)T of the type occurring in Eq. (5.9) 
of the preceding paper.13 In the two notations they take 
the forms 

T 
0 jkp qrs ==: {s j kp qrs I C rs m n&'m n 

PoCt 

[ /°C jkpq> 

{sjkpquv&uv i — 

and 
T 

CSJPR=CJPR-\ CSRM&M 

dT 

:)J (8) 

PoCt 
r /dCsjP\ -i 

L V dT / J 
(8') 

where Ct is the specific heat per unit mass at constant t, 
and the a's are the thermal expansion coefficients 

auv=(drjuv/dT)t a n d au=(drju/dT)t. (9) 

Expanding the internal energy about the state of zero 
strain one obtains as the second example for 
poU(ti)=poU(S,Yi)—poU(S,0) the forms 

poU(rj) = ^CSjkpqr}jkVpq^rlcSjkpqrsVjkVpqrlrs+ ' 

and 
poU(t]) = ^cs

JPrjjr]p+icsjPRr)j7}p7]R+ • 

(10) 

(100 

where the elastic coefficients are evaluated at zero 
strain. 

Rewriting the last equation as 

PoUfy) = i £ csjjr]j+ £ csjpvijrip+i E csjjji)j 
J J<P J 

+ 2 H csjjprjjrjP+ J2 CSJPR7}J7)P7JR-\ , (11) 
J^P J<P<R 

one observes that in general the numerical coefficient 
for any term is 1/nl, where n is the number of equal 
indices of the strains. This rule allows a convenient 
check of energy expressions and their partial derivatives 
with respect to strains. 

Between stiffness coefficients in the abbreviated 
notation introduced above and others encountered in 
the literature the following conversion relations hold: 
Murnaghan7: 

1+8/A? l+&pfl 
CjP Cjkpq- (M) -CJP 

l+5yjfe l + 5 p g l + 5 n 
CjPR C jkp qrs " -CJPR (M) (12) 

Birch6: 

CJPR = Z6/N(JPR)1CJPRW, (13) 

where N(JPK) is the number of ways in which CJPR can 
be written with tensor indices, for example iV(l l l ) = l, 
iV(114) = 6 and iV(456) = 48. The third-order stiffnesses 
in the tensor notation are the same as those of Toupin 
and Bernstein,9 and they are six times larger than those 
of Hearmon.8 
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