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General thermodynamic definitions of the higher order elastic coefficients of thermoelastic media are
presented in tensor and engineering notation. They are natural generalizations of the customary definitions
of second-order coefficients, they retain the usual conventions relating tensor and engineering stresses and
strains, and they simplify thermodynamic calculations.

ECENT extension of ultrasonic techniques to high

pressures and high frequencies’® renewed interest
in the higher order coefficients of nonlinear elasticity.
We proceed to give a general definition, both in the
tensor and in the abbreviated or engineering notation,
of elastic coefficients of any order as partial derivatives
of the thermodynamic potentials of thermoelastic
media subject to finite deformation. Whereas third-
order stiffnesses have already been introduced into the
literature,®° the present definitions are believed to be
justified since they provide the following advantages:
(a) They are natural generalizations of the accepted
definitions of the second-order coefficients. (b) The
customary relations between tensor and abbreviated
notations for stresses and strains are retained. (c)
Thermodynamic relations are readily transcribed from
the tensor to the abbreviated notation and vice versa.
(d) No unwieldy numerical factors occur in thermo-
dynamic calculations. (e) The coefficients defined above
are identical with those encountered in anharmonic
lattice theory.10:

The energy equation for conservative (nondissipative)
thermoelastic media!? gives the main thermodynamic
potentials; namely, the internal energy U, the free
energy F, the enthalpy H, and the Gibbs function G,
in terms of the conjugate variables S and T, and #j
and 7;1/po, as

aU= TdS+ (l/po)tjkdﬂjk

dF—_— —‘SdT‘l‘ (1/po)tjkd'r]jk (1)
dH=TdS— (1/p0)njxdtir

dG=—SdT— (1/po)nsxdt;i ,
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where S is the entropy, T the temperature, and the ¢
are the thermodynamic tensions, and the #;;, the
Lagrangian strains.’® The potentials and all extensive
quantities are taken per unit mass. From the relations
(1) follow naturally general definitions of the elastic
coefficients for any order. Namely for the adiabatic and
isothermal stifinesses ¢ and compliances s of the nth
order, for n>2,

csjkpq. . .=po(3”U/a77jkaﬂpq . ‘)S

Tikpg...=po(0"F/0nsOpq.. )7 2
Ssikpq- = ~—'po((9"H/3ljkai,,q. )8
STjkpq L= —po(ana/afjkatpq .. .)T .

Since the strains and the thermodynamic tensions
are symmetric, i.e., n;x=nz and fjx=#;; only six of
each set of nine variables are independent, and it is
customary to introduce the Voigt notation: 11~1,
22~2, 33~ 3, 23~4, 13~5, 12~6. By convention!® we
define

nabz%(l'*_aab)"?zi and tab=tA, (3)

where lower case subscripts run from 1 to 3, and where
capital subscripts run from 1 to 6. Considering the
potentials now as functions of the single-subscript
variables, the first of Egs. (1) and (2) for example
become
AU =TdS+ (1/po)tsdns 5]
and
cSyp..=po(@"U/dmsdnp..)s, (2

and similarly for the other three equations. Between
the elastic coefficients in the tensor notation and in the
abbreviated notation one has the relations

Cikpg...=CJIP... 4)
and
Sitpg..- =5 (1+8x)3(1+8p0) - - *ssp.... (5)

From the definitions (2) and (2’), and from the sym-
metries of the strains and tensions follow the familiar
symmetries in the subscripts of the elastic coefficients.
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For example

Cikpa---= Chkjpq... = Cpgjk... = ***, (6)
and
Crp...=Cpj...=-"". (7)

Two examples will illustrate the absence of unwieldy
numerical factors in thermodynamic formulas and the
ease with which formulas can be transcribed from the
tensor to the abbreviated notation, or vice versa: A
straightforward thermodynamic calculation gives the
relation between the purely adiabatic third-order stiff-
nesses ¢Sjpers defined in (2) and mixed coefficients
Cikpars= (¢5j1pqe/ Ors) 7 Of the type occurring in Eq. (5.9)
of the preceding paper.’ In the two notations they take
the forms

Sikpars= CikparsT——C5rsmnOmn
POct

acs‘k
X [Cjkpquvauv— ( ’ pq) :I (8)
aT /.

7pr=Crprt+——cSruan

POCt
aCS;p
XI:CJPUO‘U_< > ] ) (&)
aT /.

where C. is the specific heat per unit mass at constant ¢,
and the o’s are the thermal expansion coefficients

Olyy= (aﬂuv/aT)t and ay= (aﬂv/aT)t- (9)

Expanding the internal energy about the state of zero
strain one obtains as the second example for
poU () =poU (S,1)—polU (S,0) the forms

and

8

poU (”l)=%Gsikpq"ljk"lpq'l'%Csjkpqrsmk"lpq"lrs‘i" <o+ (10)
and

poU m)=%cSrpmmpt+gcSrprnmene+---, (10°)
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where the elastic coefficients are evaluated at zero
strain.
Rewriting the last equation as

polUm)=3%2 cSomi+ X cSommmpt+i X cSrrmd
7 J<P 7

+3 2 Suminpt X Srprnmenrtcc -,
J=P J<P<R

(11)

one observes that in general the numerical coefficient
for any term is 1/x!, where » is the number of equal
indices of the strains. This rule allows a convenient
check of energy expressions and their partial derivatives
with respect to strains.

Between stiffness coefficients in the abbreviated
notation introduced above and others encountered in
the literature the following conversion relations hold:
Murnaghan’:

140, 146854

CJP
2

1485 148, 1485
2

(M)

CIP= Cjkpg™

CIPR= Cijkpars= crpr®  (12)

Birché:

crp=cysp®

crpr=[6/N(JPR)Jcspr®, (13)

where N (JPR) is the number of ways in which cspg can
be written with tensor indices, for example N (111)=1,
N (114)=6 and N (456)=48. The third-order stiffnesses
in the tensor notation are the same as those of Toupin
and Bernstein,® and they are six times larger than those
of Hearmon.?
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