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The nuclear relaxation induced by core polarization (c.p.) in a transition metal is calculated in the tight-
binding limit. It is shown that a Korringa-like relation exists between the c.p. Knight shift and the c.p. 
relaxation rate, but with a factor that inhibits relaxation, the numerical value of which depends on the 
relative weight of Tg and r 3 orbitals at the Fermi surface. Using estimates of the hyperfine fields, the relaxa­
tion rates associated with the contact, c.p., and orbital interactions are calculated for three transition 
metals. It is found that all three processes make significant contributions. The agreement with the measured 
relaxation rates is satisfactory considering the uncertainties in the estimated numbers. 

T 
1. INTRODUCTION 

HE Knight shift in metals is the sum of several 
contributions resulting from: 

(a) The contact interaction with the unpaired elec­
tron spins at the Fermi surface. 

(b) The contact interaction with closed-shell elec­
trons which, as a result of configuration interaction, 
have a nonvanishing spin density at the nucleus (core 
polarization). 

(c) The orbital and spin-dipolar interactions with 
electrons in partly rilled 1^0 shells. 

The relative importance of these contributions de­
pends upon the electronic structure of the metal. In 
the alkalis the first is dominant,1 in platinum the 
second,2 and in vanadium the third.3 

On general grounds, it is expected that each of these 
interactions will also lead to a relaxation process for the 
nuclear spin. The relaxation due to the first was calcu­
lated by Korringa4 and is well known; the relaxation 
due to the third was recently calculated by Obata.5 

It is the purpose of this work to study the relaxation 
process connected with the core polarization. 

Our aim is not to obtain an absolute magnitude for 
the relaxation rate, but only to relate it to the core 
polarization Knight shift. To this end the method of 
configuration interaction6 is well suited. As explained 
in the next section, the unrestricted Hartree-Fock 
method1-7-9 is not convenient for relaxation calcula­
tions. We now outline our main results. 

Since the exchange energies responsible for core po­
larization are small compared to promotion energies, 
we do a first-order perturbation calculation. The ex­
pression for the matrix elements leading to relaxation 
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* J. Korringa, Physica 16, 601 (1950). 
« Y. Obata, J. Phys. Soc. Japan 18, 1020 (1963). 
6 R . K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955). 
* W. Marshall, Proc. Phys. Soc. (London) 78, 113 (1961). 
8 R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027 (1961). 
9 K. F. Berggren and R. F. Wood, Phys. Rev. 130,198 (1963). 

which we find can be simplified in the tight binding 
limit. This simplification is a result of retaining only 
those configurations that keep the excited core electron 
on the same atom. As a consequence we obtain a rela­
tion similar to Korringa's,4 but with a numerical re­
duction factor arising from the degeneracy of the d 
bands. Thus relaxation by core polarization is less 
effective than relaxation by ordinary contact inter­
action, the reduction factor ranging from one-half 
when only the twofold (F3) d states are present at the 
Fermi surface, to one-fifth when all d orbitals are 
equally represented. In the same approximation and 
allowing for the mixing of s and d orbitals in a given 
Bloch state at the Fermi surface, the total relaxation 
rate is found to be the sum of the contact and core 
polarization relaxation rates. The absence of any inter­
ference terms simplifies the interpretation of nuclear 
relaxation data. 

2. CORE POLARIZATION IN THE LITHIUM ATOM 

In order to exhibit the relation between the Knight 
shift and the nuclear relaxation induced by core po­
larization, we first consider the lithium atom. We neg­
lect spin-orbit coupling so that the spin and orbital 
angular momenta are separately good quantum num­
bers. The Hamiltonian is 

3C—JCO"T"5C , (i) 

where 3Co is the sum of the kinetic and electrostatic 
energies, and 3C' is the contact interaction, 

&r 3 
3C' = —0Etr<^(*V~R), 

3 i-i 
(2) 

where p is the Bohr magneton, y the nuclear moment, 
<ti the Pauli spin operator for electron i, R the po­
sition of the nucleus, and the sum is over the three 
electrons on the lithium atom. The magnetic field at the 
nucleus is given by the matrix elements of the operator 

H= 
8x 
-02><8(r<-R). (3) 
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H is an irreducible tensor operator of the first rank10; 
it obeys the required commutation rules both with re­
spect to the total angular momentum J and the total 
spin S, i.e., 

[S± , t f2 ]=T2tf± ; [5± ,FT ]==FF, 

[5 . ^T± ]=±H ± ; [ S „ # J = 0 , 

where S±= (Sx±iSy) and H±=%(Hx±iHy). Hence we 
can apply the Wigner-Eckart theorem10 to the matrix 
elements of H taken between stationary states of 3Co 
having quantum numbers S and mg. (If spin-orbit 
coupling had not been neglected, the theorem would 
still hold provided / , ntj were used instead of 5, f»g.) 
Thus, for the ground-state doublet \g,S,ms), where g 
is the set of orbital quantum numbers and 5 = J, we 
obtain 

(g,U\Bt\g,U)= (g, h ±h\H±\g, h T i ) . (5) 

This relation is significant because, when the atom is 
part of a solid, the diagonal and off-diagonal (in ms) 
matrix elements of H are closely related to the Knight 
shift and the relaxation rate, respectively. It is obeyed, 
whether core polarization is taken into account or not, 
provided the wave functions used are eigenfunctions 
of S2. The unrestricted Hartree-Fock solutions are not 
eigenfunctions of S2 and hence, are not a useful starting 
point for a calculation of the relaxation. 

We shall treat the core polarization by perturbation 
theory, using Nesbet's method6 of configuration inter­
action. The unperturbed wave functions are solutions 
to the Hartree-Fock (HF) equations obtained under 
symmetry and equivalence restrictions. To illustrate 
the method we apply it to lithium. 

The outer electron is assumed to be in a pz state and 
to have up (f) spin. The unperturbed solution is Sf̂  
= [lsa,lsP,2p2pi], where the square bracket around the 
one-electron states is used to denote the Slater deter­
minant constructed from these states. The symmetry 
orbitals Is and 2pz are the best solutions of that sym­
metry which satisfy the Hartree-Fock equations for 
up-spin (they are not variational solutions for the energy 
but this is unimportant for our purpose). The matrix 
elements of H over the ^o1, ̂ o ; manifold vanish so 
that the hyperfine field results entirely from core po­
larization. To calculate it we form a complete and 
orthonormal set of one-electron functions (n,l,nii), 
which includes our Is and 2p orbitals. In principle, the 
true wave function is an infinite sum of determinants 
constructed from these orbitals. In perturbation theory, 
we restrict ourselves to those admixtures to ̂ of which 
are of the order of the ratio of an exchange integral to 
the difference in energy between two configurations. 
We consider only admixtures of the type [\s,ns,2pz~] 
since these are responsible for the nonvanishing of H. 

10 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957), Chap. 5. E. U. Condon and 
G. H. Shortley, Theory of Atomic Spectra (Cambridge University 
Press, New York, 1935), Chap. 3. 

The three determinantal wave functions based on Is, 
ns, and 2pz that can mix with ^o f are: 

ylni = [lsa,nsp,2pSla'], 

¥tJ=Znsa,UP,2p4r\, (6) 

V*ni = D.sa,nsa,2pM£\-

However, the matrix element ( ^M^ol^o 1 ) vanishes 
by construction.6 This is because (Is) is the best 5 
orbital that satisfies the HF equations for up-spin; 
since ^r

2w
t differs from S&of in the substitution of a 

single orbital, the matrix element vanishes. ^iJ also 
differs from ^0

f in a single orbital, but this is substituted 
in the down spin. As (Is) does not satisfy the HF equa­
tions for down spin, the matrix element (^in

f I^Col^o1) 
does not vanish; it differs from (V2J |3Co|^of) by an 
exchange integral. We denote the Coulomb interaction 
between two electrons by g, and the matrix element 
(«z(ri)«m(r2),g(ri,r2)«n(ri)«p(r2)) by (l,m\g\n,p) in 
which case 

(*in*\3h\*o*)=(ns,2p.\g\2p,,ls), 

(*zJ\Ko\W)=-(ns,2pz\g\2pzyls). 

Let cn= (ns,2pz\g\2pz,ls)/(Els—Ens)J where Eu—Ens 

is the energy difference between the configurations 
(ls,ls,2pz) and (ls,ns,2pz). Consistent with treating the 
exchange terms to first order we neglect the exchange 
splitting of Ens- To first order in cn the wave function is 

* t = * 0 t + 2 : c 4 > i „ t - * 3 „ t ] (g) 

and it is easily verified that it is a spin doublet, 5 = ^ . u 

Within this doublet, the magnetic field at the nucleus 
is proportional to the electron spin and is given by 

8TT 
H = ^ r E [ c n ^ * ( 0 ) ^ n . ( 0 ) + c . c ] , (9) 

3 

where ^»«(0) is the value of the ns orbital at the 
nucleus. It is seen that the admixture of ^ i w contributes 
to Hz and the admixture of ̂ zn contributes to H±. 

3. RELAXATION BY CORE POLARIZATION IN 
A TRANSITION METAL 

The treatment of the wave functions in the transition 
metal parallels that of the preceding paragraph. The 
unperturbed orbitals are (in principle) HF solutions 
obtained under symmetry and equivalence restrictions. 
The exchange integrals responsible for core polarization 
are treated to first order in perturbation theory. The 
exchange integrals between two conduction band orbi­
tals are neglected. It is plausible that consideration of 

11 This wave function appears to be different from that used in 
Ref. 7. This is because our unperturbed ^o differs from Marshall's 
in first order in cn. Our total wave function agrees with his. 
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these exchange terms would not alter significantly the 
reduction factor that is obtained below. 

The true eigenstates of 3C0 [Eq. (1)J are eigenfunc-
tions of S2, but because we neglect exchange between 
valence orbitals, the spin degeneracy of the Slater de­
terminants constructed from a given set of orbitals is 
not lifted. Hence we may take single Slater determi­
nants as unperturbed wave functions. In this approxi­
mation each valence state occupied by an electron con­
tributes independently to the core polarization and it is 
sufficient to consider first a single valence electron, and 
then to sum over the occupied states. 

The self-consistent Bloch functions of the partly 
filled bands, denoted by (vk) or <pvk, are mixtures of s} 

p, and d atomic orbitals. The unperturbed H F solution 
for a system with a single (vk) electron outside of the 
filled bands is written schematically as 

* , k t ° = [ - • -,lsYa,lsv&,- • - ^ k a ] , (10) 

where for simplicity only one of the occupied s shells 
has been indicated; the contributions from different s 
shells are additive and the relation between the Knight 
shift and the relaxation is not affected by this simplifi­
cation. The orbitals in (10) are solutions to the H F 
equations for up spin, so there are no admixtures to 
(10) that differ only in the substitution of one up-spin 
orbital. In analogy to Eq. (6), the states that mix with 

where V is the volume, ye and yn the electron and nu­
clear gyromagnetic ratios, respectively, kB the Boltz-
mann constant, T the temperature, V^EV the gradient 
of the energy of band v, and dSp* is integrated over the 
Fermi surface. Equations (16a) and (16b) are valid for 
temperatures low enough that the variation of the inte­
grands within kBT of the Fermi surface can be neg­
lected. 

In order to obtain a relation between (16a) and 
(16b) we express the core polarization part of Eq. (15) 
in terms of Wannier functions, 

1 
a„.(r—R0 = X>xp(-iK-Rz)<pn s K(r). (17) 

N112
 K 
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(10) and contribute to core polarization are 

¥Vkt(»,*,q) (11) 
= [• • - j l sKa^K—q)cv • - / ( k + q ) / ? ] . 

The admixtures of SF1 and SF3 contribute to the Knight 
shift and to the relaxation, respectively. The matrix 
elements that determine these admixtures are 

( ^ k t 1 K^O) |5Co |^k t 0 )= (^K, j / k | g | ^k , l ^K) , 

(^kt»(»,K,q)|3Co|*,kt°) (12) 

= - (*w(ic-q), / ( k + q ) \g\vk, ISK) , 

and the wave functions, to first order, are 

^ ,k t = ^kt°+2(n,K)e l9y(n,Kfi; k j ^ k t 1 (» ,K,0) 
+2(»,K,q,j/)*8r'r(»,ic,q; ky*Vkt8(»,ic,q), (13) 

where 
(nsK,vk\ g\vk,lsK) 

ei„„(w,K,0; k) = , (14) 
E 1 S (K)—E n s (v ) 

and similarly for e%v>y. K and q are summed over the 
reduced zone and v' over the partly filled bands. We 
consider a nucleus situated at the origin of the co­
ordinates. The operator H [Eq. (3)] has the matrix 
elements 

We make the approximation that the energy denomina­
tor of Eq. (14) is constant. This is obviously justified 
for the energy of the core state, but it is also a good 
approximation for Ens> For, if (ns) is a low-lying ex­
cited state, the variation of Ens is small compared to 
the energy difference with the deep-lying core state 
while if (ns) is a high-lying excited state the variation 
is small compared to En8 itself. Let Si and 5 3 refer re­
spectively to the core polarization sums in Eqs. (15a) 
and (15b). We assume cpnK and <^w to be real at the 
origin. Using (17) we find 

S l = £ (ttiO,vk\g\vk,lsRa) 

X a l s ( - R z ) M - R H - R a ) , (18a) 

8TT 

(* ,k t | f f . | * ,k t ) = ^ { H ? , k ( 0 ) | 2 + £ (15a) 
3 w,K 

8 
(^/k+qi|fl r-|^ rFkt)=-ir/3{—^'k+q*(0)^k(0)— LC«8F'»(^,l«,q;k)^iM*(0)^n«-q(0) 

3 n,K 
+ * w ( w , K, — q; k+q)<pis*(0) *(0) ]} , (15b) 

and the Knight shift and the relaxation rate are, respectively: 

; /" (* ,kt |£r . | *v 
AH V r dSfk 

— = - y . * 2 ; / ( * » k t | f f . | ¥ , k t ) , (16a) 

1 F2 4x r dS,k dS,,k 

- = ( 7 « * ) % r Z : / | ( * , ' k ' + | f f - | * , k t ) | * - , (16b) 
r (2T)« *• '.''J \V*EV\ Tk£,« 

file:///g/vk
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5 i = - E e-^-^-R«>[(^0,^(k+q)|g |vk,kR a) 

+ (l50y(k+q)|gUk,wR«)] 
X<h.(-Ri)an.(-Ri+R«), (18b) 

where the notation (wsRa) in the matrix elements of g 
refers to the corresponding Wannier functions. 

We now make two approximations: First we retain 
only the core orbitals with R*= 0, which is well justified; 
second, we retain only those excited states with R«=0, 
which means that only those configurations for which a 
core electron remains on the same atom are included. 
This approximation is not as good as the former but 
there is a saving grace: If <pnsk(Q) is independent of k, 
then it can easily be shown that ana(0— Ra) vanishes 
for Ra3^0. Since in s bands <pk(0) does not vary rapidly 
with k, ans(0— Ra) will be small. 

To evaluate the exchange integral in Eq. (18) we 
assume that <pv^ is the sum of two parts, 

3 

*>Fk = «F.k+L CZ bvi(k)ut(r-Ri) 
Rl € = 1 

+E^r(kK(r-R*)], (19) 
7 - 1 

uVSk being the contribution of the s band (which, near 

Using the cubic symmetry operations, it is easily 
shown that 

jv*(0)c,S(k)dS,k=0, 

and 

jbVe(k)b,t>*(k)dSvk=0 for e^e' . 

Thus there are no cross terms in the modulus square of 
the matrix element in (21b). 

This is a useful result which simplifies the interpreta­
tion of the relaxation data when the relaxation rates 
due to the contact interaction of the valence s electron 
and to the core polarization are both significant. It 
shows that there are no interference terms between the 
two processes and hence that they are additive, even 
when s-d mixing in the wave functions is taken into 
account. Although one expects a given band to have 

the zone edge, may have a strong p character), and the 
remainder being that of the d bands which we treat in 
the tight-binding approximation. The functions u* and 
uy belong to the T5 and T3 representations, respectively 
(we are dealing with a cubic crystal) and are nor­
malized to unity. The s and d parts of <p„k both contrib­
ute to core polarization, but as the contact term from 
a pure s state is an order of magnitude larger8 than the 
core polarization term from a pure d or s state, the core 
polarization due to the s part can be neglected—it 
would represent at most a small correction to the con­
tact term. In the matrix element (ls0,/k ' |g | vk,ns0), 
the interaction g is invariant under rotations and since 
(1$0) and (nsO) are also invariant under the cubic 
operations, only the terms that have the same u€ or 
% in the expansions of <pVk and <p„v contribute to the 
integral. We obtain 

(Is0yk'\g\vk,ns0) 

= £ C^.*(k/)6,.(k)+^7*(k/)^(k)]/„, (20) 

where it has been assumed that the radial dependence 
of u€ and u7 are the same, resulting in a common ex­
change integral Jn* 

We substitute Eq. (20) into (18), (15), and the re­
sulting expression into (16), to obtain 

primarily s or d character at the Fermi surface, a small 
s admixture in the wave function may result in com­
parable contributions to the contact and core polariza­
tion hyperfine fields. It may be noted that if core 
polarization is due to an s conduction electron as in the 
alkali metals, the contribution to the matrix element 
that is due to the part of the wave function that has s 
character will interfere with the contact term. This 
means that, e.g., in lithium it is immaterial, as far as 
the relaxation time is concerned, whether the departure 
of the Knight shift from the one-electron value is a 
result of core polarization,1 or of correlation between a 
symmetrical core and the outer electron.9 

We assume that the core polarization and contact 
hyperfine fields are of opposite signs and define 

H—T
J1

r-an(0)ans(0)=-\<P°M\2- (22) 
- (En)-(E1) 

AH V 4rr r [ r 2/„ -i 1 dS,* 
—=--~(VeWT. / I P * ( 0 ) 1 H - E / v , alt(0)g,.(0) [E(|Mk)l2+k,(k)|2)] , (21; 
H (2irf 3 r j l L n (En)-(Ei) J .,T JVk£„ 

1 F2 4 r /4x\ 2 r r\ r 2Jn -] 
- = — ( —) (yeyn^nBTZ / / U.k'*(0)*,k(0)+ £ <n.(0)ff».(0) 
r ( 2 7 r ) 6 A 3 / >,<•'J J I ln(En)-(E1) J 

I2 dSp* dS,>k' 
XE(^.*(k')J, .(k)+<vT*(k')c,T(k))] -. (21b) 

<-y I V k £ „ | Vk'-Ep' 
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FIG. 1. Reduction factor of the Korringa relation for core 
polarization, q = i / 2 +i ( 1 _ - / ) 2 > plotted as a function of / , the 
fractional character of Ts d orbitals at the Fermi surface. 

We further define 

- f 
(2xW 

V fl (0)| 

dSy 

dSvk 
2 = 

VkEv 

-= i ? ( ro ) , (23a) 

K^2(0)Mfo), (23b) 

where ??(fo) is the density of states for one direction 
of the spin at the Fermi level f 0. 

Let iT/and K(l — f) be, respectively, the probability 
amplitudes squared of the T5 and T3 orbitals in the wave 
functions, averaged at f0. Thus K is the fractional d 
character and / the relative weight of the T5 repre­
sentation at the Fermi surface. In terms of the newly 
defined quantities Eqs. (21a) and (21b), simplify to 

AH 4TT 

—=-W)2«^2(o)>-
H 3 

: ^ p ( o ) i 2 ^ , (24a) 

1 47T/47ry 

r ~ f t \ 3 / 
(y6ynhykBT[_{<pmY 

+1 ^cp(o)|4z2(i/2+i(i-/)2)>2. (24b) 

It is seen from (24) that the contact and core po­
larization terms separately obey a Korringa-like rela­
tion. However the Korringa relation for the core 
polarization has a reduction factor | / 2 +J(— l / ) 2 , i.e., 

1\ 47r/7nY/A#Y = T\ /\w) ^rR/2+K1~/)2]- (25) 0 
The reduction factor has the minimum value of one-
fifth for / = 3 / 5 , corresponding to an equal population 
of all the d orbitals, and a maximum value of one-half 
for / = 0 , corresponding to a population of only T3 

orbitals; it is plotted on Fig. 1. 

The origin of the reduction factor lies in the fact 
that the matrix elements of H involved in the Knight 
shift and in relaxation are not the same. Thus the 
Knight shift is given by the average (at the Fermi 
surface) of the matrix element of H that is diagonal in 
k, while the relaxation rate is given by the modulus-
square of the off-diagonal matrix element. Because of 
the degeneracy of the d bands there are cancellations 
in the latter while not in the former, resulting in a 
reduction factor equal to the reciprocal of the de­
generacy. In the case of 5 bands this factor is unity 
and one regains the Korringa relation. 

4. TEMPERATURE DEPENDENCE OF >zT 

In the next section we will compare the experimental 
results on TT for the transition metals vanadium, 
niobium, and platinum. For V and Nb, TT (as well as 
the susceptibility x) are temperature-independent in 
the range 0-300°K. For Pt however both TT and x 
change measurably in this range. 

As expected, when ksT becomes comparable with 
the energy range over which the density of states or 
the matrix element of H- vary significantly, the product 
TT shows a temperature dependence. Equation (16b) 
is replaced by the more general expression 

1 4TT V2 

-{ynhYkBT lFiE}{- — )dE, 
dE/ 

(26) 
T ft (2x)6 

where g(E) is the Fermi function and F(E) is given by 

dSpk dOy'k' 

Vk£,Vk<£ ,< (27) 

=HHEW(E). 

F(JE) = £ |0*v t a | f l , - |¥ ,k t ) |»-

The temperature dependence of (26) is then obtained 
from the relations12 

[F(E)(-^)dE=F(i;)+-(kBTy[ — ) (28a) 

and 

f=fo ( W 

6 

'Idti 

XdE?/t 

\v dE/s0 

(28b) 

If in F(E), H?(E) is assumed to be independent of E, 
then upon using (28) one obtains 

1 

TT 

T 2 

i+-(kBTyi c-l A \ 

<Z£2/ro' 
(29) 

In the cubic transition metals this assumption of the 
constancy of Hi2(E) cannot be made, mainly because 
/ , the fraction of P5 orbitals, is expected to vary with 

12 N. F. Mott and H. Jones, The Theory of the Properties of 
Metals and Alloys (Oxford University Press, New York, 1936), 
Chap. VI. 



N U C L E A R S P I N R E L A X A T I O N I N T R A N S I T I O N M E T A L S A1635 

the energy. Hence the coefficient of T2 will not be given 
by (29), but will involve df/dE. 

These considerations also apply to the relaxation in­
duced by the orbital interaction; the latter depends on 
the density of d states at the Fermi surface, which is 
very close to the total density of states y\ (see also next 
section). The existence of a significant temperature de­
pendence in TT indicates that an appreciable contribu­
tion to relaxation must come from core polarization 
and/or orbital interactions. However, because of the 
dependence of / on E, it is not necessarily warranted to 
compare the temperature dependence of TT with that 
of the susceptibility and to expect that these de­
pendences will be similar. 

5. COMPARISON WITH EXPERIMENT 

The nuclear relaxation time has been measured in 
vanadium,13 niobium,14 and platinum.15 We shall now 
estimate the relaxation rates associated with each of 
the four processes, i.e., (a) contact interaction with the 
valence s function, (b) core polarization (cp), (c) orbital 
interaction (orb), and (d) spin dipolar interaction (dip), 
and then compare the sum of the rates with the experi­
mental value. It was shown above that processes (a) 
and (b) give no interference terms. Likewise the orbital 
interaction gives no interference terms because, unlike 
the other processes, it leaves the electron spin un­
changed. Process (d) does interfere with processes (a) 
and (b). However, if the band states at the Fermi sur­
face can be separated into s-p bands and d bands, the 
interference terms vanish. Since very little is known 
about the degree of s-d mixing except that it is believed 
to be small, we shall neglect it. Our model is then the 
usual one of separate s and d bands with the mass of 
the s electron assumed to be that of the free electron. 

We shall express the relaxation rates for the contact, 
core polarization, and orbital processes directly in terms 
of the appropriate hyperfine fields and the density of 
states. We do this rather than use Eq. (25) for two 
reasons: (1) No Korringa-like relation exists for the 
orbital interaction and (2) even for the contact and core 
polarization processes a Korringa relation loses its use­
fulness whenever an unambiguous separation of the 
contributions to the Knight shift cannot be effected. 

The relaxation rates due to the four processes are 

1 4TT /7?A2 

- = — LynhHkf (sm - ) kBT^RsT, (30a) 
rs h \A/ 

1 4TT A A 2 

—=-zynMhf(d)ji~-)kBmf+ui-m 
Top ft \A/ 

-*c P r [ i / 2 +KW) 2 ]> (30b) 

13 J. Butterworth, Phys. Rev. Letters 5, 305 (1960). 
14 K. Asayama and J. Itoh, J. Phys. Soc. Japan 17, 1065 (1962). 
15 J. Butterworth, Phys. Rev. Letters 8, 423 (1962). 

TABLE I. The atomic hyperfine fields of the s and d electrons 
of V, Nb, and Pt. Columns 1 and 2 give the hyperfine field per 
spin resulting from the ,? contact and d core polarization inter­
actions, respectively. (To obtain the corresponding hyperfine 
fields per electron spin multiply by | . ) Column 3 gives the hyper­
fine field per unit angular momentum resulting from the orbital 
interaction. Appropriate reduction factors for the fields in the 
metals are given in the text. The sources of the following values 
are specified in the lettered references. 

V 
Nb 
Pt 

2Hhf(s) 

3.2* 
7.1* 

33.9b 

2Hhf(d) 

in 106 Oe 
-0.234 c 

-0 .42 d 

-2 .36 b 

JJv(orb) 

0.25e 

0.38e 

1.47b 

a Use was made of the Fermi-Segr6 formula (E. Fermi and E. Segr6, 
Z. Physik 82, 72, 9 (1933) and the term values for the V configurations 
3dHsi and 3d*5si and for Nb 4d*5si and 4:d*6si. 

b All fields for Pt are given in Ref. 2. 
0 The electron paramagnetic resonance measurements of the hfs of V2+; 

3d3 in ionic crystals was used. K. D. Bowers and J. Owen, Rep. Progr. Phys. 
18, 304 (1955). 

d No measurements comparable to c exist for Nb2+. The value given is 
for the isoelectronic ion Tc4+; 4d3 and the sign has not been determined. 
W. Low and P. M. Lewellyn, Phys. Rev. 110, 842 (1958). 

e Hartree-Fock calculated values by A. J. Freeman and R. E. Watson 
were used to obtain (l/r3). We are indebted to these authors for private 
communication of their work prior to publication. 

=-ZynhHhf(orb)j(-) kBT\-f(2—/)] 
Torb * \A/ L3 \ 3 / J 

^ROThT \-f (2—f , (30c) 

cxR^rf—Y (30d) 
Tdip \ 2 5 / 

where 

Hhf(s)= (8/3)7r£<^(0)2>, Hhf(d)= (8/3)7r/^cp(0)2>, 

and Hhf(orb) = 20(l/rz) are the averages at the Fermi 
surface of the hyperfine fields produced by the spin of 
one unpaired s electron, one unpaired d electron, and 
by one unit of orbital angular momentum, respectively. 
A is Avogadro's number and ijs and rja are the density 
of states per mole (for one direction of the spin) of the 
s and d bands. To calculate the relaxation rates we 
need to know, aside from the fraction / , only the three 
hyperfine fields and the two densities of states. 

The atomic hyperfine fields of the s and d electrons 
are given in Table I. In every case except that in which 
Hhf(d) is obtained from the temperature dependences 
of the Knight shift and the susceptibility2 a major un­
certainty enters insofar as one does not know the 
amount by which the field in the atom (or ion) differs 
from that in the metal. This question has been given 
some consideration for the contact interaction term.16 

We have arbitrarily taken £*=[#&/(s)metai/#7*/(s)atom] 
= 0.7, the measured value for silver, and 

£d=[77ft/ (d)met&i/Hhf(d)&tom'}— 1 • 

16 W. D. Knight, Solid State Phys. 2, 93 (1956). 
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TABLE IT. The nuclear relaxation rates in V, Nb, and Pt. The first three columns give the estimated hyperflne fields in the metals. 
The fourth column gives the calculated s density of states for one direction of the spin assuming one s electron/atom in V and Nb 
and 0.2 s electron/atom in Pt. The fifth column lists the difference between *?8p-ht, the value deduced from the measured specific heat, 
and r)a. The values of y„ are from W. D. Knight, Solid State Phys. 2, 93 (1956). The next three columns give the calculated values of 
Rs, i?cp, and i?orb. Columns 10 and 11 list calculated values of R~1/TT for 2 values of / , and the last the measured values (all in 
sec-i °K-!). 

Vs ??sp-ht—Vs 

A A 
Hhf(s) Hhf(d) Hhf (orb) m i0ii yji Rs RQP R0Th Rc&\e i?exp 

in 106 oersteds cgs/atom in 10~24 cgs in sec -1 °Kr1 / = | / = 1 =*1/TT 

V U 2 -0.117 019 oTs i l > 7^43 0.642 L65 4 3 5 2.86 2.33 1.27d 

Nb 2.48 -0 .21 0.285 0.89 10.4b 6.91 3.76 3.74 6.9 7.55 6.80 5.26e 

2 8s 
Pt 11.9 -1 .19 1.1 0.45 8.05° 6.06 17.5 54.2 47.5 49.2 48.1 34*f 

a W. S. Corak, B. B. Goodman, C. B. Satterwaite, and A. Wexler, Phys. Rev. 102, 656 (1956). 
b A. Brown, M. W. Zemansky, and H. A. Boorse, Phys. Rev. 92, 52 (1953). 
« D. W. Budworth et aL, Proc. Roy. Soc. (London) A257, 250 (1960). 
<* See Ref. 13. 
« See Ref. 14. 
*See Ref. 15. 
e This is a recent unpublished value obtained for very high purity Nb by J. Butterworth. We thank Dr. Butterworth for communicating this result to 

us prior to publication. 

For £<>rb= ((r~3)metai/(̂ ~3)atom), we have taken the value 
f previously used in the orbital Knight shift analysis 
of V and Pt.2 It should be remarked that the (r~3) to 
be used in the orbital Knight shift differs from that 
which enters into the orbital relaxation; the former is to 
be averaged over all the occupied states of the d band 
whereas the latter involves only the average over 
states at the Fermi surface. Obviously if the radial 
extent of the wave functions is strongly energy de­
pendent the two averages need not be the same. 

The density of states which appears in the expression 
of the relaxation rate would seem to be that which is 
determined from a measurement of the electronic 
specific heat. The latter quantity reflects the spectrum 
of the quasiparticles which has contributions from the 
self-energy of the electron (arising from the electron-

0 0.2 0.4 0.6 0.8 1.0 

f 
FIG. 2. The factors j>= ( 2 / 3 ) / [ 2 - (5/3)/] (from Ref. 5) and 

<?=t / 2 +i( l—/) 2 occurring in l/r0rb and l /r c p plotted as a func­
tion of / . The two parabolas have their maximum and minimum 
at the value / = 3/5 corresponding to equal probability for each d 
orbital at the Fermi surface. 

phonon and Coulomb interactions). However recent 
theoretical work17 has shown that the self-energy makes 
no contribution to the relaxation rate, the latter being 
determined by the density of states of the "bare" 
electrons. This quantity is not known experimentally 
but theory18 supported by some experimental evi­
dence19 indicates that the electron-phonon interaction 
by itself leads to an increase in the density of states 
over the "bare" electron value. The Coulomb.inter­
action seems20 to have an effect in the same direction. 
For lack of a measured value we shall make use of the 
density of states as determined from the specific heat, 
expecting that the relaxation rates thus calculated will 
probably be too large. 

As the measured specific heat is the sum of the con­
tributions from the s and d bands we must estimate the 
fraction that is associated with the s band. For the 
number of s electrons per atom we arbitrarily take 1 for 
V and Nb, while in Pt we take 0.2 as calculated in 
Ref. 2. 

The factors Rs, Rcp, and ROIb of Eqs. (30) calculated 
in this manner are shown in Table II. In order to obtain 
the total relaxation rate 

#r= (i/r8+i/Tcp+i/Torb+i/rdip), 

it would be necessary to know the value of / , which is 
not available for any transition metal. A calculation in 
nickel21 suggests that T3 and F5 occur in comparable 
amounts at the Fermi surface. We made two estimates 
of R, one for / = 3/5 and one for / = 1 or equivalently 
/ = 1/5 (see Fig. 2); it is very likely that / is actually 

17 L. P. KadanofT, Phys. Rev. 132, 2073 (1963). We are indebted 
to Dr. Kadanoff for sending a preprint of this work to us. 

18 M. J. Buckingham and M. R. Schafroth, Proc. Phys. Soc. 
(London) 67, 828 (1954). 

19 K. Krebs, Phys. Letters 6, 31 (1963). 
20 E. A. Stern, Phys. Rev. 121, 397 (1961). 
21 J. G. Hanus, Quarterly Progress Report, Solid State and 

Molecular Theory Group MIT, April 1962, p. 29 (unpublished). 
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FIG. 3. The temperature dependence of 1/TT. The circles show 
the values measured by Butterworth (Ref. 5). The solid line is a 
theoretical curve for a parabolic band with a Fermi temperature 
of 1096°K. 

in the range 1/5 to 1. For the particular values Rorh 
= fi?cp the sum l/rCp+l/rorb would be independent of 
/ , which is reflected in the insensitivity of R to the 
value of / in platinum. The experimental values of 
1/TT are given in the last column. They are consistently 
smaller than the calculated R values. 

For all three metals, the d electrons contribute 
significantly to the relaxation. Because of this, as 
mentioned in Sec. 4, 1/TT is expected to vary with 
temperature if the susceptibility is itself temperature-
dependent. This was found to be the case in Pt15 as is 
shown on Fig. 3. Although the accuracy of the measure­
ments is not sufficient to warrant a detailed comparison 
with theory, we have, for the purpose of reference, 
indicated by the solid line, the predicted variation of 
1/TT for a parabolic d band having a Fermi temperature 
of f = 1096°K (see Ref. 2). The matrix element of the 
hyperfine interaction has been assumed to be constant, 
independent of the electron's energy. 

This comparison between experiment and theory 
should not be taken very seriously because (a) only a 
fraction of the relaxation rate, probably \ to f, is associ­
ated with d electrons, (b) the change in the fraction / 

with energy was not considered, and (c) the parabolic 
band approximation has only qualitative significance. 
For a general band shape, {rT)~1/{TT)^K~1 and X(jH)/ 
X(0) have different coefficients in front of the T2 terms 
that determine their temperature variations. For a para­
bolic band of noninier acting electrons, these coefficients 
are fortuitously identical and the temperature variation 
is given by 

X0(T) 7 r 2 / 7 \ 2 

= 1 ( - ) . (31) 
X0(0) 12\f / 

However even in a parabolic band the modification of 
X0 by the exchange terms destroys this similarity and 
to compare the temperature dependences of 1/rT and 
X it is necessary to know the contribution of exchange 
to X and to correct for it. 

6. CONCLUSIONS 

We have shown that the contribution of the core 
polarization hyperfine field to the nuclear relaxation is 
considerably reduced with respect to that which the 
Korringa relation would have predicted. Furthermore 
there are no interference terms between the contact and 
core polarization. Thus the total relaxation rate is given 
by the sum of the contributions of the contact, core 
polarization, and orbital interactions. It is found that 
there are substantial contributions to the relaxation 
rate from all three processes and no single one is domi­
nant in all metals. Qualitative agreement with experi­
ment is obtained for the cases examined. 

As to detailed agreement it was noted that the 
calculated rates for V, Nb, and Pt somewhat exceed the 
measured ones. Possible reasons for this are as follows: 
(1) Uncertainties in the £g factor which arise from two 
sources; (a) the normalization of s function in the solid 
and (b) the degree of s-p mixing at the Fermi surface, 
(2) uncertainties in (1/r3) in the metal, (3) uncer­
tainties in the core polarization hyperfine field in the 
metal, except for Pt where it is obtained directly from 
the temperature dependence of the Knight shift and 
susceptibility and (4) the use of the electronic specific-
heat density of states rather than that of the noninter-
acting electron gas. As noted in the text, the former is 
larger than the latter, which should result in our having 
overestimated the relaxation rates. 
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