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Several examples of the effect of pairing correlations on nuclear gamma-ray transitions are presented. I t 
is shown that even if collective coupling exists, gamma-ray transitions of electric multipole type between 
low-lying quasiparticle states whose free shell-model orbit energies are symmetrically related to the Fermi 
energy may be extremely retarded. In this work the factor (UiUf—ViV/) which arises from the pairing 
correlation is directly estimated from empirical even-odd mass difference data. The agreement of the 
calculated transition probabilities with experimental results is good. A shell-model calculation taking into 
account the pairing correlation has also been made for transitions of E2 type between d%ii and Sif2 orbits 
in Sn117 and Sn118 and the results are compared with that of the quasiparticle approximation. I t is shown that 
the quasiparticle approximation is more improved by using renormalized wave functions which are obtained 
by projecting out only the terms having the correct number of particles than by taking into account only the 
blocking effect except for special cases. 

I. INTRODUCTION 

THE theory of superconductivity has also been 
successfully applied to investigation of the effect 

of the pairing correlation on various properties of 
nuclei. One of the most interesting effects is a hindrance 
of certain nuclear gamma-ray transitions of electric 
multipole type by the pairing correlation, since this 
effect is quite different from what would be predicted 
by the pure shell model (or the shell model with a 
diagonal pairing energy). If the initial and final quasi
particle states are both near the Fermi energy, the 
gamma-ray transitions may be seriously hindered.1 This 
was suggested by Grin and independently by Kisslinger 
and Sorensen.2'3 Experimental evidence for this effect 
has been found for E2 transitions in Sn118, Sn120, and 
Sb122.4-6 Such evidence is, however, still limited to the 
single closed shell (SCS) or SCS-plus-one nucleon nuclei. 
Therefore, it would be of great value to make a more 
systematic investigation of this effect for more general 
non-SCS nuclei. 

* Supported by the U. S. Atomic Energy Commission. 
f On leave from Institute for Nuclear Study, University of 

Tokyo, Tokyo, Japan. This work was partly prepared during a 
stay at the University of Tokyo. 

1 Preliminary reports on the effect of pairing correlation on 
gamma-ray transition probabilities are found in H. Ikegami and 
T. Udagawa, Japan Atomic Energy Research Institute Report No. 
JAERI-1020, 1962, p. 129 (unpublished); T. Udagawa and H. 
Ikegami, Japan Atomic Energy Research Institute Report No. 
JAERI-1020, 1962, p. 138 (unpublished). 

2 Yu T. Grin, Zh. Eksperim. i Teor. Fiz. 39, 138 (1960) [English 
transl.: Soviet Phys.—JETP 12, 100 (1961)]. 

3 L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Medd. 32, No. 9 (1960). This paper will be 
referred to here as KS. 

4 H. Ikegami and T. Udagawa, Phys. Rev. 124, 1518 (1961). 
6 H. H. Bolotin, A. Li, and A. Schwarzschild, Phys. Rev. 124, 

213 (1961). 
6 E . der Mateosian and M. L. Sehgal, Phys. Rev. 129, 2195 

(1963). 

Under the pairing correlation theory, intrinsic ex
citation spectra of nuclei are described in terms of 
independent quasiparticles.3,7 Any quasiparticle state, 
however, may not always remain as a pure one, but 
may couple to other quasiparticle states or to collective 
excitation modes through certain kinds of residual inter
actions. The latter coupling plays an especially im
portant role, since it may cause large enhancement 
effects for gamma-ray transitions. Moreover, this cou
pling effect is expected to increase as one moves away 
from closed-shell regions because of a decrease of the 
nuclear rigidity (or stability) for the collective oscilla
tion. As was noted by KS, however, this coupling is 
strongly reduced by the pairing correlation for quasi-
particles near the Fermi surface.8 Thus, as far as the 
low excited quasiparticle states are concerned, it may 
be reasonable to treat the collective coupling by per
turbation theory (Sec. II). Other residual interactions 
between quasiparticles are ignored in the present work 
for simplicity. This approach may be too simple for the 
treatment of the real problem to be quantitatively 
correct; however, in view of our scanty knowledge 
about the residual interaction, it seems to be worth
while to compare such a simple calculation with 
experiment. 

In order to minimize ambiguity of the calculation 
caused by unsuitable choice of parameters, the hin
drance factor (UiUf— ViVf) of the pairing correlation 
is determined in this work from empirical data on even-
odd mass difference. The nucleon effective charge, an 
additional positive charge arising from the collective 
coupling, is also estimated from the empirical data 

7 S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 32, No. 9 (1960). 

8 This is a special case of a more general one [see Eqs. (18) 
and (22)]. 
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(Sec. III). Then the calculated results are compared 
with experimental data on E2 and E3 transitions (Sec. 
IV). Although the approach is simple, the calculation 
agrees well with experimental results. 

A shell-model calculation using the pairing Hamil-
tonian has also been made for Sn117 and Sn118. Transi
tion probabilities for the E2 transitions between dZ/2 
and S1/2 neutron orbits have been calculated and the 
results compared with those of the quasiparticle ap
proximation. The effects of blocking are also discussed 
(Sec. V). 

II. EVALUATION OF THE NUCLEAR GAMMA-RAY 
TRANSITION PROBABILITY 

The transition probability for radiation of a photon 
of multipole order X and of the frequency co is given by9 

8TT(X+1) l/coX2^1 

r ( X K _ ^ T T ( - ) S(X), A[(2\+l) ifftAJ CD 

where B(X) is the reduced transition probability and is 
written as 

5(X)=-
1 

Ktf/HaircMI*,)!' (2) 
2/rf-l 

£(rc(Aju) is the electric multipole operator of order (Ap); 

31Z(XM) =3Kp(Xn)+ffHmu(\n), (3) 

3TCCO1I(AM)= (3/4x)ZeJ?0
xaxM. 

(4) 

(5) 

Here Wlp(\n) and 3TCCoii(Xju) are the single-particle part 
and the collective part of the multipole operator, 
respectively, d is the charge of the ith. nucleon; i.e., 
ei=e for protons and ez=0 for neutrons. Ro is the nu
clear radius; in making numerical estimates we have 
made the conventional assumption 

tfo-UA^XlO-^cm. 

In Eq. (5), a\M indicates the collective deformation pa
rameter of the multipole order (X,ju) which may be 
rewritten in terms of creation and annihilation operators 
&xM* and b\n for phonons as follows: 

axM= (h^/2C^*[b^+ ( - ) ^ X - / ] . (6) 

Here hoo\ and C\ are the energy associated with each 
phonon and the rigidity of the collective oscillation of 
order X, respectively. 

Now, we consider a gamma-ray transition whose 

9 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Medd. 27, No. 16 (1953). This paper will be 
referred to here as BM. 

initial and final states are quasiparticle states coupled 
to the collective oscillations. We assume with KS that 
the coupling Hamiltonian has the following form: 

1/2 3 /fetfxY 
# = E # x = — E#oxXx(—-) 

x 4TT x \2Cx/ 
X E (iiffiil rxFx„| J2m2)(UjlUJ2~ VnVj2) 

X [ ^ m i Wjimaftx/i+CC.] . (7) 

Here Xx is the coupling constant, while djj and d3m are 
creation and annihilation operators of a quasiparticle 
in a state | jtn), respectively. The quantities U3- and Vj 
are usual fractional occupation parameters given by 

CV=i[l+(*-V£y)] , T7=i[l-(«y-V£y):L (8) 

with 

£y=[(«y-X)H-A*J». (9) 

Ej and ey are single quasiparticle and the (free) particle 
energies of orbit j , respectively, while X and A are the 
Fermi energy and half the energy gap, respectively. 
The Hamiltonian has exactly the same form as the 
last term of Eq. (39) of KS except that Eq. (7) includes 
the collective coupling of all multipole orders. Besides, 
KS disregarded the excitation of the closed-shell core in 
their coupling Hamiltonian but rather took into ac
count this core excitation effect by renormalizing the 
parameters of the residual interaction. In the present 
investigation, however, Eq. (7) is derived by consider
ing the excitation of the whole nucleus. Then, the 
Hamiltonian [Eq. (7)] is essentially equivalent to the 
BM Hamiltonian for a single particle coupled to a 
surface oscillator and thus one can set 

^x=(3/47rM^oxXx(i|^|i) t t, (10) 

where k\ is the coupling constant defined by BM. The 
Hamiltonian (7), however, differs from the one in BM 
by the factor (UjiUj2~ FyiFy2)<l, as we are consider
ing the coupling of quasiparticles (rather than that of 
free particles). 

The basic wave functions are denoted by \j, RP\;I) 
in which the quasiparticles are coupled to give a spin 
of j ; P\ phonons of spin X are coupled to give a spin R; 
and then j and R are coupled to give a total spin of / . 
The initial- and final-state wave functions are given in 
perturbation theory limited to perturbation of one-
phonon states. 

</Xl/,|#x|i,00J,> 
*=li ,Q0;J ,>+E— _ , . N l/M^), ( 11 ) 

If we set 

/' E/,-(i2/'+*wx) 

Ejt-Ejf=tua9 (12) 
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FIG. 1. (UiUf- • ViVf)2 factor of El proton transitions of /8/2 <=* £3/2, /B/2 ^ £1/2, £3/2 <=* £1/2, and of ^3/2 <=̂  £9/2 in nuclei around the 
region N = 50. The values of X, A, and of free shell-model orbital energies are taken from Ref. 13. 

where co without subscript is the frequency of the 
emitted gamma ray; then the reduced matrix element 
for the transition between single quasiparticle states is 

{%;\\WCQiv)\\%{) 

epiitVYuWiiWiiUit-VuVu) 

Xx wx2 

C\u>\2—w: 
pjVY^WjWuUif-VvVH); 

(13) 

ep=e for proton transition, ep — 0 for neutron transition. 
As can be easily seen, the result is essentially the same 
with those derived by BM and by Raz10 except for an 
additional factor caused by the pairing correlation. The 
first term of the above formula represents the transition 
matrix element of single quasiparticle while the second 
term represents the collective influence due to the inter
action of the quasiparticles with the collective modes of 
the nucleus. Then the term 

/ 3 # o \ 2 Xx cox2 

eeffOO^M )AZe >=©* Cxcox2—co2 

3#ox Ze kx cox' 
(14) 

4TT Cx<H>Wcox2-to2 

fills the role of an additional positive effective charge 

"> B. James Raz, Phys. Rev. 120, 169 (1960). 

given to each quasiparticle and causes an enhancement 
of the electric gamma-ray transition of multipole order 
X. As is seen from Eq. (13) there may be some competi
tion between the pairing correlation and the collective 
effects. The fact that the collective effect is weak for 
the closed-shell nuclei is just the reason why evidence 
on the effect of pairing correlation on gamma-ray transi
tions has previously been limited to SCS nuclei. I t is of 
value to note here that the factor (UjiUjf— VjiVj/) 
may change rapidly with neutron or proton number in 
many cases (see Sec. I l l ) , while the effective charge 
varies gradually. Thus, even if there is some cancella
tion between effects of pairing correlation and of col
lective coupling, still one can isolate the effect of pairing 
correlation by investigating the neutron or proton 
number dependence of transition matrix elements. 

In the same way as for Eq. (13), the transition 
matrix element between double-quasiparticle states is 
also given by 

= (2 /H- l ) 1 / 2 (2 / /+ ly^UfiUv- VjiVjf) 

XW(JojiJf\; Jijf)(ep+eeii(\)XJf\\r*YxM), (15) 

Here, two quasiparticles of spin j 0 and ji are coupled 
to give a spin of Ji} while spin jo and jf are coupled to 
give a spin of / / . Equation (15) is also applicable for 
the case jo=ji or j / , while in the case of ji=jf=ji the 
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FIG. 2. (UtUf-
region 

- ViV/)2 factor of E2 neutron transitions of d5/2 ?=* sw, dbj2 <=* hu/2, si/2 <^ ^3/2, and of S1/2 <=* 1̂1/2 in nuclei around the 
Z = 50 [Pd (a), Cd (b), Sn (c), Te and Xe (d)]. Curves are obtained by taking parameter values of Ref. 13. 
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FIG. 3. (UiUf— ViV/)2 factor of proton transition of g7/2 <=* ^5/2, 
£7/2 <=* ds/2f dzj2 *=* huj2, Si/2 <=* c?3/2, and of S112 <=* An/2 in nuclei 
around the region iV«82, 124. The values of X, A, and of free 
shell-model orbital energies are taken from Ref. 13. 

transition matrix element has the form: 

M\mQw)\\*jt) 
= (2ji+iy"(2jf+iyi^(u^v^ 

XW(jojJf\; Jij)UVY^\\j)+ (U*?- Vj0
2) 

XWUjoJf\;JijoXM\r^YXfl\\joK-yi+JQ 
X[>p+tfeff(X)]. (16) 

Equation (16) is also applicable for the case jv—j.n 

III. EVALUATION OF (UiUf-ViV/)2 FACTOR 
AND EFFECTIVE CHARGE 

A. (UiUf-ViVf)2 Factor 

The factor (UiUf— ViV/)2 can be written in a more 
explicit form as follows: 

i + ( „ - x ) f a _ x ) . A ^ 
(UtUf-ViV^A 1+ . 

2L EiEf J 
If 

€ » + « / = 2 X , (18) 

then the factor (UiUf— ViV/)2 vanishes for any value 
of A, and the nuclear gamma-ray transition of electric 
multipole type between these states is expected to be 
extremely hindered [see Eq. (13)]. Several examples of 
the calculated values of this factor are illustrated in 
Figs. 1 to 3 for the nuclei in the regions N~50, 

11 Equations (15) and (16) are similar to results obtained by 
Ford and Levinson except for the (UiUf—ViV'/) factor and 
eeff(X) [K. W. Ford and C. Levinson, Phys. Rev. 100, 1 (1955)]. 
By putting ji — jf^j and co = 0 and by taking into account of the 
projection factor, the Eqs. (13) and (16) can be used to calculate 
the electric 2x-pole moment of single and double quasiparticle 
states. 

Z«50, 7V~82, tf«124. When €<+€/~2X, the factor 
(UiUf—ViV/)2 varies very rapidly with neutron (or 
proton) number through the variation of X. Thus, for 
the corresponding nuclei, one can expect sudden changes 
of the reduced transition probabilities from nucleus to 
nucleus. Moreover, in general, slight changes of the 
values of the parameters e, X, and A causes a consider
able variation of the factor. Since it is not always clear 
what values of these parameters to use, especially, for 
non-SCS nuclei,12,13 it seems to be reasonable to esti
mate the factor (UiU}— ViV/) as directly as possible 
from the empirical data. In the present investigation, 
we have extracted the values of X and A from the 
empirical even-odd mass difference data and the gamma 
transition energy in the following way. 

The even-odd mass difference Pv or Pn is given in 
terms of the total binding energy E(Z,N) of the nucleus 
(Z,A0by 

Pp(Z,N) = E(Z,N)+E(Z-2, N)-2E(Z-l, N) 

Pn(Z)N) = E(Z>N)+E(Z) N-2)-2E(Z, N-\) 
= Sn(Z,N-l)-Sn(Z,N), 

(19a) 

(19b) 

where Sp and Sn are separation energies of proton and 
neutron, respectively, and are tabulated in detail in the 
paper by Yamada and Matsumoto.14 

On the other hand, Pp (or Pn) is related to the lowest 
quasiparticle energy E of the proton (or neutron) as 

E^Pp{n)(Z,N). 

Then, if the final state of the gamma transition is the 
ground state of an odd-mass nucleus, one can set 

and 

Ef^Pp(n)(Z,N) 

£SjPp(»)(Z,iV)+«co. 

(20) 

Here the subscriptions p and n correspond to the lowest 
lying proton and neutron states, respectively. By using 
above quantities one can estimate the value of the 
factor (UiUf- ViV/)2 as follows: 

{Ei-EfY^fEi+Efs* 

^D(EhEf). (21) 

N % .-Efyr/Ei+Ef\* -1 
(UiUf-ViVfy= ( ) - 1 

4:EiEf L\ei-ef/ J 

12 The values of parameters X and A of non-SCS spherical nuclei 
are tabulated by Tamura and Udagawa and very recently by 
Kisslinger and Sorensen (Ref. 13). T. Tamura and T. Udagawa, 
Progr. Theoret. Phys. (Kyoto) 26, 947 (1961). 

13 L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. 35, 
853 (1963). 

14 M. Yamada and Z. Matsumoto, J. Phys. Soc. Japan 16, 1497 
(1961). 
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TABLE I. Single-particle energies of proton and neutron orbits (MeV). 
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Orbit pair 

(dhj2 — gll2)p 

(g9!2 — p3/2)p 

(hni 2—^5/2)7* 

(^l/2 — ̂ 5/2)n 

(^3/2 — Sl/2) n 

a See Ref. 3. *> See Ref. 

Nuclei 

La, Pr 

As, Br, Rb 

Pd, Cd 

Cd 

Sn, Te 

12. "See Ref. 

Present 
calculation 

0.70 

2.85 

2.60 

1.41 

0.30 

13. d See Ref. 15. 

K S a 

1.00 

2.8 

2.8 

1.9 

0.30 

T U b 

0.78 

2.8 

2.4 

1.9 

0.30 

KS° 

0.62—0.63 

2.83—2.93 

2.57—2.62 

1.38—1.36 

1.46—1.56 

(d,p) d 

(d,t) 

1.41 

0.95 

0.28 

It is easily seen that the factor vanishes when 

Ei-Ef=0, for e ^ e / , (22) 

which is equivalent to the condition (18). 
The energies ey used in the present paper are listed 

in Table I, together with those used by Kisslinger and 
Sorenson3-13 and Tamura and Udagawa.12 Some values 
ej derived from (d,p) and (d,i) experiments15 are also 
listed. For most cases, these sets of energies yield 
similar results when used in Eq. (21), but the large 
energy difference, ed3/2— en/2, of Ref. 13 makes an im
portant difference. 

The equation Ef—Ef^ifua which comes from Eq. 
(20) assumes that the dominant parts of PP(Z,N) and 
Pn(Z,N) are due to the short-range pairing correlation. 
Pp and Pn will be affected, of course, by other residual 
interactions, but it may be expected that the effect of 
these shifts (AE{ and AE/) on Eq. (21) will be small. 
The agreement of the estimates made on this assump
tion (AEi~AEf) with experimental results may indi
cate that the assumption is rather good. The assump
tion must be, however, corrected in the case of double 
quasiparticle states in even-even nuclei. Figure 4 shows 
the observed 3̂/2— 1̂/2 level energy differences in Sn 
nuclei. The points for Sn118 and Sn120 correspond to 
(̂ 3/2̂ 11/2)7-— (51/2/̂ 11/2)5- level energy differences. In
terpolated16 effective 3̂/2— 1̂/2 energy spacings from 
those for odd-mass nuclei indicate an energy shift of 
the order of 0.18 MeV in Sn118 and Sn120. The shift may 
be caused by other kinds of residual interaction, such 
as the neglected multipole components of the inter
action of the An/2 quasiparticle with the 3̂/2 and S1/2 
quasiparticles. For consistency, we use the corrected 
level energy differences rather than the experimental 
values for double quasiparticle states. The agreement 
of the calculated transition probabilities with the ex
perimental ones, suggests the present discussion is 
reasonable. (See Sec. IV a.) 

B. Effective Charge 

The effective charge defined by Eq. (14) plays an 
important role, especially in the case of E2 transitions, 
because of rather large values of X2/C2 and low phonon 
energies [see Eq. (13)]. In the original paper by Bohr,17 

it was suggested that the coupling constant &2 is of the 
order of 40 MeV. Later, Glendenning obtained a value 
of about 20 MeV from an analysis of level spacings of 
low-lying states in Te nuclei,18 while the KS value for 
the strength parameter, X2= (110/A) (Air/S)(j\r2\j)u~

2
y 

corresponds to £2=66 MeV. As was noted in Sec. II, 
the KS value for X2 is too large for our purposes, since 
this value was obtained by renormalizing the closed-
shell core effect into this coupling constant. In this 
connection, it is easily shown that the experimental 
values of C% obtained in the manner of KS are always 
larger than those obtained in the manner by BM by a 
factor of about (A/Z)2. In fact, it was shown by 
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FIG. 4. Observed 3̂/2— 1̂/2 level energy differences in Sn nuclei. 
Open circles show the experimental values. The points for Sn118 

and Sn120 correspond to (̂ 3/2^11/2)7-— ($1/2^11/2)5- level differences. 
Interpolated effective 3̂/2— 1̂/2 level energy differences from those 
for odd-mass nuclei are shown by closed circles. The factor 
(UiUf—ViVf) for the transition between the 7— and 5— states 
in Sn118 and Sn120 was calculated by use of the interpolated effec
tive dzi2—sn2 level energy difference. 

" B . L. Cohen and R. E. Price, Phys. Rev. 121, 1441 (1961). 
16 The interpolation is carried out so that the energy value of 

£(7--5-)sn118--E(7--5~)Sn120 = 4O keV is unchanged. 

17 A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 
26, No. 14 (1952). 

18 N. K. Glendenning, Phys. Rev. 119, 213 (1960). 
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FIG. 5(a), (b). Reduced E2 transition probabilities in the single proton transition scale, B(E2)/Bsp(E2), for neutron transitions 
dd/2 ^Si/2 in Sn and Te nuclei. Open circles show experimental values, while solid lines are calculated ones from Eqs. (13) and (15). 
Dotted and broken lines are obtained by taking parameter values X and A of Refs. 12 and 13, respectively. 

Yoshida19 that one must use about half the KS value of 
X2 if one takes into account directly the effect of the 
nuclear core as well as that of the nuclear cloud. Thus, 
in this paper, we take the value k2~S0 MeV, and use 
values of C% obtained from Coulomb excitation experi
ments.20 The phonon energies of odd-mass nuclei are 
assumed to be approximately the same as those of 
neighboring even-even nuclei. 

In the case of gamma-ray transitions of higher electric 
multipolarity, the energy factor cox2/o>\2—co2 associated 
with the effective charge can be set equal to unity, 
since phonon energies fco\ are much larger than the 
transition energies considered here. Now, information 
on k\ (or Xx) and C\ for X> 2 is very limited. It is known 
that the effective charge of one-phonon transitions of 
£3 type is about 0.5 for Ca, Ni, Sr, Sn, and Pb nuclei, 
while the effective charge for E4 transitions is of the 

19 S. Yoshida, Nucl. Phys. 28, 380 (1962). 
28 K. Alder, A. Bohr, T. Huus, B. R. Mottelson, and A. Winter, 

Rev. Mod. Phys. 28, 432 (1956); P. H. Stelson and F. K. 
McGowan, Phys. Rev. 110, 489 (1958). 

order of 1.2 for Pb208.21 Single-particle transitions in 
closed-shell-plus-unpaired-nucleon (or hole) nuclei may 
also supply information on the effective charges of 
nucleons, since in such cases one can neglect the effect 
of the pairing correlation on the transition. Bayman 
et al.22 found that the effective proton charges for £2, 
E3, and £5 transitions in Zr90 are 1.8^2.0. Analysis of 
the £4 transition between the 2.43- and 2.16-MeV 
states in Mo93 suggests that the effective neutron charge 
in that case is 0.75. Because of the very gradual change 
of effective charge for X>2 with nuclear mass number, 
it would seem to be reasonable to assume the value 
ee f f(\)~ in Eq. (14) for all nuclei. 

21 R. Helm, Phys. Rev. 104, 1466 (1956); H. Crannell, R. Helm, 
H. Kendall, J. Oeser, and M. Yearien, ibid. 123, 923 (1961); 
T. Tamura and T. Udagawa, Nucl. Phys. 35, 382 (1961); O. 
Hansen and O. Nathan, in Proceedings of the Rutherford Jubilee 
International Conference, edited by J. E. Birks (Heywood and 
Company, Ltd., Manchester, 1961), p. 267. 

22 B. F. Bayman, A. S. Reiner, and R. K. Sheline, Phys. Rev. 
115, 1627 (1959). 
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TABLE II. B(E2)/B8P(E2) for proton and neutron transition. 

Nuclide 

57Laltt 

69Pr141 

48Cd«» 
48Cd11l 

48Cd113 

5oSn117 

soSn118 

6oSn»» 

5oSn120 

52Te12i 

52Te123 

62Te125 

Energy (MeV) 

Initial state 

0.166 

0.145 

0.058 

0.247 

0.582 

0.160 

2.55 

0.024 

2.49 

0.214 

0.159 

0.035 

Final state 

g.s. 

g.s. 

g.s. 

g.s. 

g.s. 

g.s. 

2.29 

g.s. 

2.29 

g.s. 

g.s. 

g.s. 

Configuration 

Initial state Final state 

(a) Proton transitions 

^ 5 / 2 

(b) Neutron 

$1/2 

df>j2 

dh\i 

ds/2 

( ^ 3 / 2 ^ 1 1 / 2 ) 7 -

ds/2 

( ^ 3 / 2 ^ 1 1 / 2 ) 7 -

^ 3 / 2 

^ 3 / 2 

^ 3 / 2 

^7/2 

^ 5 / 2 

transitions 

^ 5 / 2 

5 i / 2 

S112 

Sl/2 

(51/2^11/2) 5 -

Sl/2 

(Slfthiift) 5-

$1/2 

$1/2 

Sl/2 

Be*p(E2)/Bsp(E2) 

<0.01a 

~0.17ft 

0.16b 

0.21b 

29b 

0.6,c0.1d 

0.0266 

< l f 

1.5X10-3g 

26h 

4.5h 

<2* 

Bcal(E2)/Bsp(E2) 

0.008 

0.005 

0.04 

0.28 

47 

0.08 

0.015 

2.2X10-3 

1.1X10-3 

4.8 

1.4 

0.04 

"G, T. Ewan, private communication to Nuclear Data Group, 1954; M. A. Grace, C. E. Johnson, R. G. Scurlock, and R. T. Taylor, Phil. Mag. 7, 
1087 U962); H. de Waard and T. R. Gerholm, Nucl. Phys. 1, 281 (1956). 

b Bull. Am. Phys. Soc. 1, 389 (1956); A. Maier and K. P. Meyer, Helv. Phys. Acta 30, 611 (1957); P. L. Simms and R. M. Steffen, Phys. Rev. 108, 
1459 (1957); F. K. McGowan and P. H. Stelson, ibid. 109, 901 (1958); M. Nozawa, unpublished data presented at Osaka meeting of J. Phys. Soc. Japan, 
April 1962. 

o R. K. Golden and S. Frankel, Phys. Rev. 102, 1053 (1956); H. D. Hamilton, Z. Grabowski, and J. E. Thun, Nucl. Phys. 29, 21 (1962). The lifetime of 
the 11/2 state is taken from M. Schmorak, A. C. Li, and A. Schwarzschild, [Phys. Rev. 130, 727 (1963)]. 

d From Coulomb excitation experiment, [D. S. Andreev, V. D. Vasilev, G. M. Gusinski, K. I. Erokhina, and I. Kh. Lemberg, Izv. Akad. Nauk SSSR 
Ser. Fiz. 25, 832 (1961)]. 

e References 4 and 5. 
' J. L. Olsen, L. G. Mann, and M. Under, Phys. Rev. 106, 985 (1957), and from L subshell ratios, [J. W. Mihelich, ibid. 87, 646 (1952)]. 
K References 4 and 5 and H. Ikegami, Phys. Rev. 120, 2185 (1960). 
h N. Goldberg and S. Frankel, Phys. Rev. 100, 1350 (1955); R. L. Graham and R. E. Bell, Can J. Phys. 31, 377 (1953); M. Schmorak, A. C. Li, and 

A. Schwarzschild, Phys. Rev. 130, 727 (1963); Y. Y. Chu, O. R. Kistner, A. C. Li, S. Monaro, and M. Perlman, Phys. Rev. 133, B1361 (1964). 
» J. S. Geiger, R. L. Graham and I. Bergstrom (to be published in Nucl. Phys.). 
Note added in proof: Dr. Graham reanalyzed their data and got £oxp(.E2)/.BSp(.E2)^4±2.5 for Te125. 

IV. COMPARISON WITH EXPERIMENTAL DATA 

All quoted experimental data on nuclear lifetimes are 
corrected for competing internal-conversion electron 
emission and for branching. Theoretical conversion co
efficients tabulated by Rose23 are used except for the 
if-shell conversion coefficients, for which half the 
values of Rose are used. Then the experimental transi
tion probabilities are represented in the scale of single-
proton transitions, BBV(E\) = (e2/^)(3/3+\)2R0*\ and 
compared with calculated ones. 

A. E2 Transitions 

There are several experimental data on E2 transi
tions between d3/2 and S1/2 neutron orbits in Sn and Te 
nuclei. The data illustrated in Figs. 5(a) and 5(b) show 
rather sudden variation of reduced transition proba
bility with increasing neutron number. From Fig. 2, 
one would expect minimum transition probability for 
Te121 or Te122 whose neutron numbers are equal to those 
of Sn119 and Sn120, respectively. However, the minimum 
point occurs for Te124 or Te125 rather than for Te121 or 
Te122.24 The semiempirical calculation as presented in 

23 M. E. Rose, Internal Conversion Coefficients (North-Holland 
Publishing Company, Amsterdam, 1958). 

24 It is of value to investigate the transition probability for 
E2 transitions between J3/2 and si/2 orbits in Te124 and Te125. 

the previous section predicts well these experimental 
results on E2 transition in Te nuclei. This suggests that 
the parameters A and A obtained by Tamura and 
Udagawa12 and by Kisslinger and Sorensen13 must be 
slightly corrected in the case of non-SCS nuclei. 

Another example is presented for E2 transitions be
tween 5̂/2 and si/2 states in Cd nuclei (Fig. 6). For 
Cd113, a simple perturbation calculation now cannot be 
applied, since the transition energy is of the same order 
as the one-phonon energy. Thus, we assume tentatively 
that the reduced transition probability may be of the 
order of that of the one-phonon transition in neighbor
ing even-even nuclei. Experimental points scatter to 
some extent from calculated results but are in reasonable 
agreement. Some other experimental data which also 
indicate pairing correlation effects on gamma-ray transi
tions of El type are given in Table II with those for 
Cd, Sn, and Te. 

B. E3 Transitions 

As typical examples of the pairing correlation effects 
on single-proton and neutron transitions of E3 type, 
experimental results on the transitions between g9/2 and 
ps/2 states in As, Br, and Rb nuclei and on the transi
tions between hn/2 and 5̂/2 states in Pd nuclei are 
presented in Table III and illustrated in Figs. 7 and 8, 
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TABLE III . B(E3)/BBP(E3) for proton and neutron transitions. 

Nuclide 

33As75 

33AS" 

3 5 B r " 

35Br™ 

3 7Rb8 1 

46Pd105 

46Pd107 

46Pd109 

4 6 Pd m 

4 8 Cd m 

Energy (MeV) 

Initial state 

0.305 

0.475 

0.107 

0.208 

0.085 

0.489 

0.216 

0.188 

0.170 

0.397 

Final state 

g.s. 
g.s. 

g.s. 

g.s. 
g.s. 

g.s. 
g.s. 

g.s. 

g.s. 

0.247 

Configuration 

Initial state Final s ta te 

(a) Proton transitions 

£9/2 

£9/2 

£9/2 

£9/2 

£9/2 

^3/2* 

pzli 

Pm 
p3/2 

pztt 

(b) Neut ron transitions 

All/2 

A11/2 

All/2 

An/2 

An/2 

db/2{ 

db(2 

dsii 

dsi2 

db/2 

B*xp(E3)/Bsp(E3) 

0.15^ 

<1 .0 C 

1.4X10-2 d 

3 . 0 X 1 0 ^ d 

2.5X10" 3 e 

<3.5X10-2« 
2.6X10~3 * 

3.9X10~4h 

8.3X10-5 i 

1.0X10-4 i 

BeAl(E3)/B&p(E3) 

2.1X10-3 

6.0X10-3 

2.6X10-4 

1.0x10-3 

1.7X10"* 

1.7X10-3 

2.8XIO-4 

1.9X10-4 

I.8XIO-4 

1.9X10-^ 

a The ground states of these nuclei were assigned (mainly) as £3/2 rather than /e/2 from experimental results on magnetic moments (Ref. 25). 
b O. I. Leipunskii, A. M. Morozov, Yu. V. Markarov, and P. A. Yampolskii, Zh. Eksperim i Teor. Fiz. 32, 393 (1957) [English transl.: Soviet Phys.— 

JETP 5, 305 (1957)3. 
« A. W. Schardt, Phys. Rev. 108, 398 (1957). 
d A. Goodman and A. W. Schardt, Bull. Am. Phys. Soc. 4, 56 (1959). 
• D. G. Karraker and D. H. Templeton, Phys. Rev. 80, 646 (1950); W. O. Doggett, Lawrence Radiation Laboratory Report No. UCRL-3438, 

1956 (unpublished). 
f The assignments are confirmed from experimental values of magnetic moment rejecting the possibility of (g7/2±3)5/2 configuration. 
8 S. H. Vegors and P. Axel, Phys. Rev. 101, 1067 (1956); R. B. Duffield and S. H. Vegors, Phys. Rev. 112, 1958 (1958). The upper limit of the 489-keV 

£3 transition branch in Pd^B is estimated from original data by T. Suter, P. Reyes-Suter, W. Scheuer, E. Aasa, and G. Backstrom, Arkiv Fysik 20, 431 
(1961). 

>»T. Stribel, Z. Naturforsch. 129, 939 (1957); A. Flammersfeld, Z. Naturforsch. 7a, 296 (1952); J. W. Starner, Bull. Am. Phys. Soc. 4, 99 (1959). 
J C . L. McGinnis, Phys. Rev. 87, 202A (1952); B. G. Dzantiev, V. N. Levkovskii, and A. D. Malievskii, Dokl. Akad. Nauk SSSR 113, 537 (1957) 

[English transl.: Soviet Phys.—Doklady 2, 135 (1958)]. 
i M. L. Wiedenbeck, Phys. Rev. 67, 92 (1945); A. C. Helmholz, R. W. Hayward, and C. L. McGinnis, ibid. 75, 1469A (1949); N. Hole, Arkiv Mat. 

Astron. Fysik 36A, No. 9 (1948); J. J. Kraushaar and R. V. Pound, Phys. Rev. 92, 523 (1953). 

respectively. The principal parts of the configurations 
of the ground states of As, Br, and Rb nuclei are as
signed as P3/2, from experimental data on magnetic 
moments.25 In the same way, configuration assignments 
of ds/2 to the ground states of Pd nuclei are confirmed, 
rejecting the possibility of the (g7/2±3)5/2 configuration. 
The changes of the reduced transition probabilities from 
isotope to isotope are well explained on the basis of the 
present calculations. This evidence supports strongly 
the pairing correlation theory. Other unsystematic data 
on E3 transitions are also tabulated in Table III. 

There are many hindered E3 transitions which are 
not considered to be direct evidence of the pairing 
correlation effect on gamma-ray transitions. For ex
ample, many E3 transitions of 7/2+ <=± pi/2 in the 
region Z, N=S0 are hindered (10~2~10-4 of single-pro-
ton transition scale).26 In this case the 7/2+ states can 
be ascribed to (g9/2±3,5)7/2 configurations and the transi
tions of 7/2+ <=± py2 are forbidden as single-particle 
transitions. The residual interaction, however, causes 

26 H . Noya, A. Arima, and H. Horie, Progr. Theoret . Phys . 
(Kyoto) Suppl. 8, 33 (1958). 

26 M. Goldhaber and A. W. Sunyar, Beta- and Gamma-Ray 
Spectroscopy, edited by K. Siegbahn (North-Holland Publishing 
Company, Amsterdam, 1955), Chap. XVI. Note added in proof. A 
quantitative discussion on the hindered E3 transitions of 7 /2+ <=* 
1 /2 - (in Z, N^50 nuclei), 11/2 > 5 /2+ (in Au and Tl nuclei) 
and 9/2 • 3 /2+ (in Tl nuclei) will be given later. H. Ikegami 
and S. A. Moszkowski, Phys. Rev. (to be published). 

an admixture of the configuration g7/2 into the 7/2+ 
states and mixtures of the configurations 3̂/2 and/or 
/6/2 plus one phonon of E2 type into the 1/2— states and 
gives rise to E3 transitions of 7/2 +± p1/2. As was shown 
previously (Sec. II), the pairing correlations reduce the 
collective coupling effect and this turns out to decrease 
the configuration mixing and to retard the transitions 
strongly. One may thus conclude that most of the E3 
transitions between low-lying states in medium weight 
nuclei are retarded directly or indirectly by the pairing 
correlations. 

In the heavier mass region, e.g., in Ir and Au nuclei, 
there are also many hindered E3 transitions between 
A11/2 and 5/2+ states. These 5/2+ states are, however, 
better explained as states of J3/2 plus one phonon of E2 
type, because of the enhancement of the E2 transitions27 

from these states to d3/2 ground states. In this case, the 
E3 transitions between A11/2 and the 5/2+ states are 
forbidden as either single-particle transitions or as one-
phonon transitions. 

C. £4 and ES Transitions 

Experimental data on E4 and ES transitions are few; 
some examples are the 0.622- and 0.912-MeV ES 
transitions in Pb204, the 0.547- and 0.787-MeV ES 

< A. de-Shalit, Phys . Rev. 122, 1530 (1961). 
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transitions and the 0.129-MeV £ 4 transition in Pb202, 
the 0.265-MeV ES transition in Cd113, the 0.18-MeV 
E5 transition in Cd115, and so on. These examples have 
some ambiguities in configuration assignments. More
over, the calculated lifetimes are too sensitive to the 
assumed nuclear radius to enable us to conclude any
thing about the effect of pairing correlations on E4 
and E5 transitions. 

V. SHELL-MODEL CALCULATIONS AND 
THE BLOCKING EFFECT 

In the above discussion, we have assumed the quasi-
particle approximation. To test the accuracy of this 

I02 

10 

> 
1 

10-1 

n-2 

~ 
Z 

_ 

1 

" 

-
~ 

— 
-

1 1 1 i 

\ \ \ \ \ 
V \ \ 

\^ 
l\ 
1 \ 
1 \ 
1 \ 

/ / 
/ / 
/ 
/ 
/ 
I 1 1 1 

1 

•*" ~i 

j / 

/ / 

1 

1 i i 

/ 
Q 

• 
• 

/ / / 
/ 

1 1 1 

-d 

H 

j 

] 

\ 

-~ 
-

— 
-
-

59 60 61 62 63 64 65 66 
NEUTRON NUMBER 

FIG. 6. Reduced E2 transition probabilities in single proton 
transition scale, B(E2)/Bsp(E2), for neutron transitions 5̂/2 «=* S1/2 
in Cd nuclei. Open circles and solid lines show experimental and 
calculated [from Eqs. (13) or (15), and (21)]] results, respectively. 
Dotted and broken lines are obtained by taking parameter values 
X and A of Refs. 12 and 13, respectively. 

approximation, we take as examples the £ 2 transitions 
between d3/2 and 51/2 orbits in Sn118 and Sn117 and make 
a more exact calculation to compare with that of the 
quasiparticle approximation. If there is no pairing cor
relation, the configuration of the ground state of Sn118 

may be (d5/2)6, (g7/2)8(^i/2)2(^3/2)2. The pairing correla
tion may, however, cause some configuration mixing. 
Because of large energy difference (^2 .0 MeV) be
tween the g7/2 and S1/2 orbits, particle jumps caused by 
pairing correlation from ^5/2 or g7/2 orbits to si/2, ^3/2, 

FIG. 7. Reduced E3 transition probabilities in the single proton 
transition scale, B(E3)/Bsp(E3) for proton transitions #9/2—^3/2 
in As, Br, and Rb nuclei. Experimental results are represented by 
open circles. Calculated results from Eqs. (13) and (21) are shown 
by solid lines while dotted line is obtained by taking parameter 
values X and A of Ref. 13. 

and/or hn/2 orbits may be neglected. Then it is suffi
cient to treat only four-particle configurations in the 
S1/2, dm, and hU/2 orbits. The 2.55- and 2.29-MeV 
states in Sn118 between which the E2 transition occurs 
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FIG. 8. Reduced E3 transition probabilities in the single proton 
transition scale B(E3)/Bsp(E3) for neutron transitions him —• ^5/2 
in Pd nuclei. Experimental results are represented by open circles, 
while calculated ones from Eqs. (13) and (21) are by solid lines. 
Dotted and broken lines are obtained by taking parameter values 
X andaA of Refs. 12 and 13, respectively. 
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hll/2 

••«-B-
±-

% d3/2 

S|/2 

*3 d3/2 

sl/2 

++"+ 

+-G-

-f 
O d3/2^2 

f 8|/2 

"4 f—f- hll/t 

d3/2 ^ j 

1 S|/2 

INITIAL STATE 7 " FINAL STATE 5 " 

(a) 

hll/2 

-M-

hii/a-

*2 d3/2 

sl/2 

hll/2 

*3 d3/2 

-M-+ 

-H-

hn/2 

d3/2 *2 

4 S | /2 

"f-> 

++ h l l /2 

d3/2 £3 

Sl/2 

INITIAL STATE 3/2* FINAL STATE 1/2+ 

(b) 

FIG. 9(a), (b). Schematic illustrations of configurations of 7 — 
and 5— states in Sn118 and of f + and | + states in Sn117 and of 
the effect of pairing correlation on nuclear electric gamma-ray 
transition. The pair of particles coupled with zero angular mo
mentum is indicated by the symbol j T. Possible particle transi
tions of E2 type between these configurations are indicated by 
arrows. The partial matrix element T12 corresponds to a particle 
transition of S1/2 —+ 3̂/2 while T22 and r3 3 correspond to particle 
transitions of S1/2 <— dz/2- If there is no pairing correlation, T22 
= r33 = 0 and then T12 becomes the ordinary single-particle transi
tion matrix element. When the pairing correlation is switched on, 
T22 and r83 become also finite and destructively interfere with Ti2. 

are considered to be (̂ 11/2,̂ 3/2) 7- and (^11/2,̂ 1/2)5-
states, respectively, as in our previous work.4'5,28 Thus, 
these states can be described by the following configura-

28 Later, the assignment was confirmed by the measurement of 
the magnetic moment of the 2.29-MeV state. E. Bodenstedt, 
H. J. Korner, E. Gerdau, J. Radeloff, K. Auerbach, L. Mayer, 
and A. Roggenbuch, Z. Physik 168, 370 (1962). 

tion mixing wave functions. 

¥(J\-,Af<)= E <y2i8W2^| / iMt)ayw tayw t (^^ y i4 y t ) |o> 

for the 7— state, (23a) 

¥ ( / / M / ) = £ ( i i i3W1m3|//^/)ay i m i tay3W 3 t (E^ J- t)(0) 

for the 5— state, (23b) 
j=jl,J2,J3. 

Here |0) represents a particle vacuum state while o,wt 
and <ijm are creation and annihilation operators of a par
ticle in a state \jtn), respectively. The subscriptions 
1, 2, and 3 refer to the S1/2, ^3/2, and hu/2 orbits, respec
tively. ^4yt is an operator making a coupled pair in the 
orbit j and may be expressed as 

m 
/ — \j-m 

= 2-1/2 £ ajjaj^. (24) 
m (2i+l)1/2 

The wave function (23a) means that two neutrons, of 
spin .72(=3/2) and jz(=11/2), are coupled to give a 
spin Ji(=7—), and the remaining two neutrons are 
coupled as a pair occupying the orbits $1/2, dz/2, and 
A11/2, with amplitudes \f/i, 1/% and \pz, respectively. The 
wave function (23b) means that two neutrons, of spin 
ji(=l/2) and y 8 ( = l l / 2 ) , are coupled to give a spin 
Jf(=5—), and the remaining two neutrons are coupled 
as a pair occupying the orbits ^3/2 and hu/2, with ampli
tudes <j>2 and fa, respectively. (In this case, <j>i vanishes 
because of the presence of an unpaired neutron in the 
$1/2 orbit.) These configurations are schematically il
lustrated in Fig. 9. The amplitudes are determined by a 
diagonalization of the pairing correlation Hamiltonian 
and are expressed as 

1 (i+i)1/2 

\f/j= , Ef= € j 2+e h+ 2ej; 
N Ej-E 

and 

<t>j— 
1 (i+|)1/2 

N' E/-E; ' 

for the 7— state, (25a) 

&j — €/i~r G331 £tj 5 

for the 5—state . (25b) 

Here N and N' are normalization constants. The eigen
values E and E' are obtained by solving the following 
dispersion equations 

2(5y;2+5#3) 
ej=l ; 

2j+l 

for the 7— state , (26a) 

2(fy/i+S#j) 

1 - G £ = 0 , 
j E3-E 

_ U+i)e/ 
l - G E — — - = o , 

y E/-E' 
e/=l-

2j+l 

for the 5 - s tate . (26b) 

Here G is the coupling constant for the pairing inter-
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action, and the quantities ej and e/ represent a decrease 
of the pair multiplicity in the orbit j because the 
presence of an unpaired particle in that orbit for 7— 

The meaning of partial matrix elements T12, T22, 
and Tzz are schematically shown in Fig. 9. Here 
(^^112^(2,^)11^) is a reduced matrix element of E2 
transition between two-particle states '^ji—^^jf and 
is essentially given by Eq. (15), except for (17*17/-— ViV/) 
factor.29 If there is no pairing correlation, \pi— 1, 
^2=^3=0, 0i=O, </>2=l, and ^3=0, thus, T,

22=r33=0 
and Eq. (27) becomes the ordinary single-particle 
transition matrix element. When the pairing inter
action is switched on, the partial matrix elements T22 
and Tzz are also finite. As is seen from Eqs. (25), (26), 
and (28), the lowest eigenvalue E and Er are always 
smaller than Ej and Ej>9 respectively, and thus \f/3- <fo'> 0 
for any j and / , so the signs of both T22 and ^ 3 are 
opposite to that of T12. Therefore, partial matrix ele
ments T22 and Tzz destructively interfere with that of 
jTi2. This means the configuration mixing caused by 
the pairing correlation gives rise to both particle 
transitions ^1/2-^^3/2 and J3/2—•» S1/2, resulting in a 
cancellation effect on the gamma-ray transition proba
bility as is illustrated in Fig. 9. 

From Eq. (27), one can obtain a quantity corre
sponding to the (UiUf—ViVf)2 factor as 

r —2^102 

L(2i1+i)^(2y2+i)1/2 

2J2-1 2y3—l I2 

+ 1M2+ iMs . (29) 
2./8+1 2./8+1 J 

If we use the values of KS for orbit energies ej1} €/2, 
and ey3, and for the coupling constant G, we obtain 
D— 0.009 for the E2 transition between the 7— and 

29 In this case, jo, ji, and j / in Eq. (15) are replaced by jz, j 2 , 
and j \ , respectively. 

and 5— states, respectively. Then the matrix element 
for the E2 transition between the 7— and 5— states in 
Sn118 is given as 

5— states in Sn118. The value is considerably larger than 
that D= 0.0012 obtained by the quasiparticle approxi
mation using the same parameter values. 

A similar treatment has also been carried out for the 
El transition between single-particle S1/2 and J3/2 states 
in Sn117.30 By putting 8jh=0 in Eq. (26) and by re
placing E3- and E/ in Eqs. (25) and (26) as 

ILj = €J2~T & £j j &j == € i i ~ r ^ €y , 

the formula (29) is made applicable to this case. The 
numerical result is Z>=2X10-4 which is 250 times 
smaller than that Z)=0.05, obtained by the quasi
particle approximation.31 

The discrepancies of the results evaluated by the 
two methods are fairly large. To improve this, further 
calculations have also been made for Sn117 by taking 
into account the effect of blocking32 in the quasiparticle 
description. The result obtained for this case is D— 3.2 
X10-2 which is slightly improved but is still different 
from the exact one by about a factor 100. It is, however, 
very interesting to note here that if the renormalized 
wave functions, obtained by projecting out only the 
terms that have the correct number of particles from 
the above BCS-type wave function taking into account 

30 The reduced matrix element <^||9TC(2^)||¥.^> in Eq. (28) is 
also replaced by (^r/1||2dT(2,iu)||^rj2), ordinary matrix element of E2 
transition between single-particle states ^ 7 1 —»SÊ - The reduced 
matrix element (^h\pd(2,fjL)\\^j2) is essentially in agreement with 
Eq. (13) except for the (UiUf—ViV/) factor. 

31 Since the calculated values of the parameters X, A, and of the 
D factor seriously depend on the free-orbit energies, in this case 
one should not place important meaning on the discrepancy be
tween these calculated D values and experimental ones. Most of 
this discrepancy is ascribable to an unsuitable choice of parameter 
values. In reality, the result is improved by the use of modified 
parameter values [Refs. 12, 13; see also Fig. 5(a)]. 

32 V. G. Soloviev, Kgl. Danske. Videnskab. Selskab, Mat. Fys. 
Skrifter. 1, No. 11 (1961). 

(^j /M / |9^(2,M)|^M i)= E E (jijzmmz\JfMfXJ2Jzfn2,mzf\JiMi) 

I ytl(2,n) I ahmitay„,t £ < ^ t 10)= Tu+ T2i+ T3Z, (27) 
i' i 

where 
(JOMiii\JfMf) - 2 < ^ 2 

T12= (*//||3TC(2^)||*/<>. (28a) 

(JaMm\J/Mt)/2ja-l\ 

Tsz— 

(2/,+1)„. (~y^^m^m,). (28« 
<«Jf* | / /Jf ,>/2>,- l \ 
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the effect of blocking, are used, the D factor becomes 
D= 1.6X 10~3 which is closer to the exact value, though 
a discrepancy of about a factor of 10 still remains. In 
this connection, we have also investigated the overlap 
of the above projected wave functions with the exact 
ones; the overlap integrals are greater than 99% for 
both S1/2 and d3/2 states. This fact clearly shows that 
the hindrance factor, when it is very small, is very 
sensitive to the details of the wave function; i.e., a 
small difference of the wave function causes a large 
difference of the D factor. This behavior of the D factor 
is expected from the fact that it is obtained as a small 
difference of two large positive quantities. 

I t can be shown that the effect of blocking depends 
on the free-orbit energies, and in certain cases the effect 
can play a more important role than indicated above. 
For instance, if one would take a lower energy value13 

for the S1/2 orbit, say €<*3/2— en / 2~1.5 MeV and e/i11/2 

— €S1/2«1.2 MeV, then the exact calculation shows 
Z>^0.02 for the E2 transition between the d3/2 and S1/2 
states in Sn117. In this case, the quasiparticle calcula
tion blocking included gives almost perfect agreement 
with the exact calculation. If one neglects the effect of 
blocking, the occupancy parameter value of the S1/2 orbit 
for the S1/2 state in Sn117 is fairly large (Y s l / 2= 0.924, 
U81/2= 0.383), because of the low and isolated S1/2 orbit. 
But when blocking is included, because of the presence 
of an unpaired S1/2 quasiparticle, these values must be 
Vn/2=0, U$l/2= 1. This large change is the reason why 
the effect of blocking plays an especially important 
role in this case. 

VI. DISCUSSION 

The effect of pairing correlations on nuclear gamma-
ray transition probabilities has been discussed on the 
basis of the pairing correlation theory. I t has been 
shown that even if collective coupling exists, gamma-
ray transitions of electric multipole type between low-
lying quasiparticle states whose shell-model orbit 
energies are symmetric related to the Fermi energy, 
i.e., €i+€f~2\, may be extremely retarded. In this 

case the transition matrix element varies very sensi
tively with nucleon number through the variation of 
the Fermi energy. Some systematic data which allow 
an investigation of the variation of transition matrix 
element have been presented. These data supply strong 
evidence of the effect of pairing correlation on nuclear 
gamma-ray transitions of electric multipole type. 

Some of the uncertainties in the theoretical estimates 
may be reduced if the hindrance factor (UiU/— ViV/)2, 
which arises from the pairing correlation is estimated 
from empirical even-odd mass differences. The transi
tion probabilities calculated in this way are more in 
agreement with the experimental data than ones calcu
lated by using now available parameter values of 
X, A, etc. 

Shell-model calculations taking into account the 
pairing correlation were also made for E2 transitions 
in Sn117 and Sn118 and it was clarified that the hindrance 
of the transitions occurs as a result of destructive inter
ference between particle transitions of j \ —> j / and 
3 s —* ji- The numerical results were, however, different 
from those obtained on the basis of quasiparticle de
scription. Taking into account the effect of blocking in 
the quasiparticle description improved the result espe
cially for an isolated level with low angular momentum. 
The result was more improved when the renormalized 
wave functions obtained by projecting out only the 
terms that have the correct number of particles from 
the BCS-type wave functions were used, but a dis
crepancy still remained. Since the hindrance factor, 
when it is very small, is very sensitive to the details 
of the wave function, at the present stage, it may be 
better to estimate transition probabilities in the semi-
empirical way described above. 
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