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I t is well known that in the Goldstone theory of many-fermion systems certain higher-order diagrams 
are included in the third-order diagrams if the hole self-energy is evaluated on the energy shell. In this 
paper a similar generalization of fourth-order diagrams is carried out. With this generalization, the Hartree-
Fock potential U which cancels the third-order diagrams no longer cancels the fourth-order diagrams as 
well as before. The lack of cancellation is evaluated in two simple cases using the reference approximation, 
and found to be large in one case, small in the other. 

IN the strict application of the theory of Goldstone1 

for many-fermion systems, irrelevant restrictions 
on the times of various interactions are imposed. The 
removal of these restrictions2'3 sometimes simplifies 
the calculation and always sheds light on its converg
ence. Consider the example given in BBP, the simple 
third-order diagram with a self-energy bubble on one 
hole line. In their notation and applying Goldstone 
theory strictly this bubble should be computed off the 
energy shell, in which case 

y2=m%2A+Ea+Eb-El-Em]-ko2 (1) 

must be inserted into4 

(ko\GR\h) = MUy2+ko2)c*+c(l+yc)}. (2) 

Since y2 depends on Ea and Eb this results in a large 
contribution to the Hartree-Fock energy of particles 
a and b. On the other hand, if the BrG scheme of 
evaluating this G on the energy shell is used, then 

y2=2Am*- (3) 

and there is no contribution to the energy of the particle 
lines. The difference can be regarded as either the result 
of summing an infinite set of diagrams or the result of 
removing an irrelevant restriction on the time ordering 
of the interactions. One sees that the lowest (3rd) 
order with the restriction is not a very good approxi
mation, and that every hole self-energy should be eval
uated on the energy shell. 

A similar problem arises in fourth- and higher-order 
diagrams such as those given in Fig. 1 where it is un
natural to prevent two intermediate G matrices from 
overlapping in time. Consider for example the expansion 
of Fig. 1 (a) in Fig. 2; it is clear that 

h>tv>tv-v - ->h>ta and h>sn>s^v • • >ta (4) 

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 

1 J. Goldstone, Proc. Roy. Soc. (London) A293, 276 (1957). 
2 K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207 

(1960). Hereafter this paper is referred to as BrG. 
3 H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev. 

129, 225 (1963). Referred to hereafter as BBP. The notation and 
the reference approximations introduced in BBP are used through
out the present paper. 

4 A small correction term has been omitted from this formula. 

but it is clearly undesirable to demand in addition that 

^i>^ o r si>tv (5) 

as one normally would in Goldstone theory. An heuristic 
argument for the importance of removing the restriction 
(5) might be the following: if h>Sn the energy denomi
nators between si and tv are 2E once and 3E, p+v—2 
times, where E is the difference in energy between a 
typical particle and a typical hole. Only one time order-

(a) (b) (c) 

FIG. 1. Fourth-order diagrams in which two G matrices 
have the same constraints on interaction time. 

ing of the interactions is possible. With the times inter
leaved, the energy denominators are 3E, X+2 times and 
4E, y+v—3 — X times, where X is some positive integer. 
But now there are (fx+v)l/(fxlvl) different orders. The 
number of different time orderings grows much more 
rapidly than the product of the energy denominators, 
and a simple calculation shows that the contribution 
excluded by the strict approach is equal to that included 
by the time fx= v — 2. For these reasons it seems worth
while to remove the restriction in general. To simplify 
the following discussion, no effort is made to evaluate 
a fourth-order diagram, only the second-order insertions 
into other diagrams are evaluated. 

Let Eo be the energy denominator after time ta, 8Dj 
the change in energy associated with time s3- and 8E3-
that associated with //. Then the product of the energy 

FIG. 2. Expansion in interactions of the potential of Fig. 1(a). 
The labels are the time of interaction and gerye to fix. the 
notation. 
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FIG. 3. Diagrams that should be treated with Fig. 1(a) if 
a Hartree-Fock potential U is used. 

denominators between ta and h is given by the following 
integral, which can be derived from the adiabatic 
approximation: 

/

tb f t b r tv 

-oo J ta J ta 

r>tl ftb /*«n 

</ dtiTbeWi-*'"* dsj ds^v 
J ta J ta J ta 

/•S2 

</ <feiILe"y(^/~~ia)/*. (6) 
Jta 

X 

X 

The order of integration has been changed slightly from 
the normal one to make it possible to impose the restric
tions (4). Note that (5) is not imposed. It is easily seen 
that this integral has the right value if either JJL or v 
or both are zero. Since 

f e"C**-««>/*j€=2irS5(/a—*a) 

the expression (6) can be written, changing the order of 
integration, 

lim / de 
*-° 2irh jLoo 

1* tb t*tb 

X] / diae^^-'-^^l dtv--
' —oo J ta 

X dsa' ' ' 

ta 

tb rtb 

dsae
iSaelh / t 

-oo J sa 

xf dsiUi*t"t">t-,am\ CO 
J sa ' 

where attention has been called, by the use of brackets, 
to the fact that the s and t integrations are now inde
pendent. The absence of a convergence factor from the 
sa integration is clearly trivial. The energy denominators 
that will appear after the integrations in the brackets 
are just those that are necessary to calculate the two 
(7s, off the energy shell by an amount Eo—e and e 
respectively, and in addition two factors of (Eg— e—ia)~l 

and two of (e—ia)~l. Instead of the Golds tone 
contribution 

1 1 1 
-2—G2(Eo)—G3(£o)— (8) 

Eo EQ JEQ 

one therefore gets 

1 
lim / de— 

2TT 
lim [ 

1 

(e— ia)2 (EQ— e—ia)2 

XG2(e-ia)Gz(EQ- e-ia), (9) 

where the argument of G gives the distance from the 
energy shell. 

Now 
y2(E) = (E0+A)m*-kf, (10) 

where ki or k2 are the initial relative momenta in the 
intermediate G matrices. If only the "core volume" 
(first) term of (2), which is important for large JEO, is 
used in G, then insertion into (8) gives 

4irczM*\22(A+E0)
2 

V 3 / £o3 

while integration of (9) gives 

/4irc*ni*\2
 E0

2+2AEO+2A2 
/^irc6nr\z 

(11) 

(12) 

which is only about half as big. The diagram just dis
cussed should be taken together with the three others 
in Fig. 3, in which one or both of the G's are replaced 
by the Hartree-Fock potential — U.U itself is an aver
age over the Fermi sea of G(Eo). In Golds tone theory 
these diagrams differ only in sign, depending on the 
number of U's involved. In the generalization the dia
gram with one U and one G becomes 

i r°° 1 
-G2(E0)— lim / 

2 T T ^ 0 7_oo (e-it (e—ia)2 

1 
X— —GZ(E0- e-ia)de 

Y 
) (13) 

(EQ-e~ia)2 

/±Trczfn*\2 2A2+3AE0+Eo2 

-n- 3 
while the diagram with only U interaction gives (11). 
The sum of the four diagrams is therefore 

/47rc3m*\2 1 

\ 3 / E0 

(14) 

while in Goldstone theory it would be exactly zero, and 
without a Hartree-Fock potential it would be (12), which 
is of the same order as (14). 

If both terms in (2) are used for G, the sum of the four 
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diagrams in Fig. 3 becomes TABLE I. Values of various expressions in the text. 

£o 

2K2KZ c*m*/Kz Ki <*m*/K% K2\ c7« 

2EQ\K2 Kj ( 

/ 1 1 \ c4w* f 4 

x(—+—)+— — 
/4C B\ 2C1'2 

+ [ — + — )C-112 tan-1 

W -Eo/ B 

/AC B' 
+(—+-

W Eo, 

\ 2C i '2 in 
•JC'-^tan-1—— , (15) 

where 

Ki=ci{P2
2+m*(2A-E(k)-E(a)+Eo)}112, 

^3=c2{P3
2+w*(2^-E(/)-£(6)+£o)}1 / 2 , 

B= (l/m*ci)(K2
2-Kz2)+Eo, 

B'=(l/»fi<*)(Kt-Kt)+Eo, 

C= (l/m*V) (Kf-m^EdKf, 

C'= ( l / w ^ f t ' - m V W . (16) 

Since the most important matrix elements of the hard 
core in the first G matrix give relative momenta 
ka

:=kb=ir/2c it is reasonable to take the initial relative 
momenta in G2 and G3 equal to &i=7r/4c. In this case 

E0=(4:k1
2/m)+2A. (17) 

We simplify further by taking 4̂ = 0 and m*=l, since 
these parameters are not well established. The values of 
various expressions with this choice of parameters are 
given in Table I, both for the core volume term alone 

Core volume 
term only 

All of expres
sion (2) 

Goldstone contribution (8) 
Residue, i.e., (14) or (15) 

-14.2c8 

-7 .1c 8 
-220 c8 

-16.3c8 

[the first part of (2)] and for all of GR. The first row 
gives the Goldstone contribution, expression (8), which 
one hopes the Hartree-Fock potential will cancel. The 
second row gives the residual contribution as given by 
(14) or (15) of this paper. When the second row is 
small, as it is when all of GB is used, the H-F potential is 
serving its function even in 4th order. When the second 
row is of the same order as the first, as with the core 
volume term, the H-F potential which cancelled the 
third-order diagrams exactly is not qualitatively de
creasing the fourth-order diagrams. 

Although the illustration may be somewhat artificial, 
since, as can be seen from the table, the core volume 
term is only a small part of the total hard-core contribu
tion ; it has been the purpose of this paper to show that 
rapid convergence of the Goldstone series^is by no 
means assured by making the third-order diagrams 
small. 
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A large, loaded-liquid scintillation counter has been used to measure the average number, v, of neutrons 
emitted in the neutron-induced fission of U235 as a function of the incident energy. Time-of-flight techniques 
were employed where necessary to select fissions induced by neutrons of the desired energy. Values at nine
teen energies in the range thermal to 8 MeV were determined; absolute values are based on v (Cf252, spon
taneous) =3.782 ±0.024, relative errors are about 1%. The variation of v with energy cannot be represented 
by a single straight line. A satisfactory fit to the experimental points is given either by the relationship 

v{E) = (2.423±0.008)+(0.088±0.008)E+ (0.0088d=0.0011)E2, 

or by two straight lines 

v{E) = (2.418±0.008) + (0.109±0.006)E from 0 to 3 MeV, 
v(E) = (2.200±0.023) + (0.181±0.005)E from 3 to 8 MeV. 

I. INTRODUCTION 

THE measurement of v, the average number of 
neutrons emitted in fission, is important from 

both the practical and theoretical viewpoints. Calcula

tions of the properties of fissile assemblies require pre
cise knowledge of v, while any proposed theory of fis
sion must show how this parameter is related to the 
excitation, mass, and charge of the fissioning nucleus. 


