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potential depth; but a regorous explanation of a common 
reaction cross section for the two sets of curves is 
hindered by the present limited understanding of the 
physical significance of the optical model parameters. 

The different sets of values of optical model parame­
ters obtained by Perey and by Wilkins apparently 
originate in the basically different search programs used 
by each investigator to obtain best fits to elastic scat­
tering and reaction cross section data. Since both sets of 
parameters give convergent fits for the reaction cross 

I. TRITIUM WAVE FUNCTIONS 

IN this paper the triton will be treated as a deuteron-
neutron bound pair. The ground-state wave function 

of tritium may be written as the product of a spatial 
part symmetrical in all three coordinates 123 times an 
antisymmetrical spin function 

*=*(123)Xa«. (1) 

Since J1 is a spin-J particle, the spin functions are 

1 
X f l

1 /2=-(aift-fta2)a3 (2) 
v2 

and 
1 

Xa~W = —M2-/3ia2)fo. (3) 
v2 

The space function after elastic scattering is 

*( r ) / (q)+*(q+!r ) /<- (g/2)+fr) 

* This work done under the auspices of the U. S. Atomic Energy 
Commission. 

f Present address: Texas A & M University, College Station, 
Texas. 

% Present address: Oak Ridge National Laboratory, Oak Ridge, 
Tennessee. 

section data of this work, a more stringent test must 
await the availability of experimental elastic scattering 
angular distributions in the uranium region. 
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where <p(t) is a function of the deuteron coordinates and 
f(q) is a function of the relative coordinates of the 
triton. The factor (3.344)1/2 is obtained by normalizing 
the integral 

[\$\2dr, 

using 
^(f) = 6r-«r/f) a== o.23182F"1 (5) 

f(q) = e-P«/q, /3=0.44743F"1 (6) 

and the triton is made up of neutrons at n and r2 and 
a proton at r3. It is bombarded by a neutron at f 4. The 
following coordinates are used: 

r = r 2 - r 3 , (7) 

q = r i - i ( r 2 + r 8 ) , (8) 

Q = r 4 - i ( r 1 + r 2 + r 3 ) , (9) 

8 = i ( r i+r2+r 8+r 4 ) . (10) 

With one of its neutrons excited, the triton could either 
have spin § or \. 

The S = f Case 
*=?(r ) / ib '* (q)Xs/2 w 

- ^ ( q + i r ) ^ ^ - k + - r ) r 3 / 2 - , (11) 
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Assuming that the range of nuclear forces is small compared to the size of the triton and the wavelength 
of the incoming neutron ("zero-range" approximation), we derive a connection between the cross sections 
for elastic and inelastic n-t scattering by calculating the ratio of the first Born approximation for inelastic 
to that for elastic scattering. A calculation of the inelastic scattering cross section is made for an incoming 
neutron energy of 14 MeV. Since experimental elastic angular distributions are not available, we use values 
calculated by Bransden and Robertson for p-He? assuming Serber interaction. Inelastic angular distribu­
tions are calculated for the ejected deuteron, the ejected neutron, and the scattered neutron. Integrating over 
the distribution of the ejected deuteron, we obtain a value for the total n-t inelastic cross section of 343 mb. 
We realize that the calculations are very crude, but hope that the work will be helpful in planning future 
experiments. 
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two neutrons into account 

r3/2M=(12)<rX3/2W=X3/21 

The spin functions are 

where the superscript of /*,« means the quartet case is II. TOTAL SPIN FUNCTIONS 
present and the subscript refers to the tritonmomentum s i n c e t h e g r o u n d s t a t e of t r i t i u m h a s ^ i a n d t h e 

m center-mass. The r8/2" takes the spin exchange of the i n c o m i n g n e u t r o n h a s s p i n i? t h e triton-neutron system 
must have a total spin of either 0 or 1. In the ground 

(12) state, 
ST=0, ( l /v2)(X a^ /34-xo- i /2a4) = Xi0 (26) 

ST=1, Xa1/2a4=X/. (27) 

In the continuum states, 

ST=0, Xo 0=(lM)(X 1 / 2^/3 4-X 1 / 2- i / 2« 4) , (28) 

r0°=(12),Xo0 , (29) 

1 
( X 0 ° ) ' ^ - [ ( X 1 / 2 ^ ) ' / 3 4 - (XVS-VS)'«4] (30) 

v2 
(To»)'= (12),(X0<>)' (31) 

ST=1, Xi^a^Xj (32) 

r1
1=(12),X1 i (33) 

(X1i)'=(X1/2i'2)'a4 (34) 

(T^y=(l2Ux^y, (35) 

X3/2m=ctioi2as, 

1 
%2l/2=—(ai/32a3+i8ia2a3+aia2/33), 

V3 
1 

X 3 / 2 - 3 / 2 =/3i /3^ 3 . 

The S = | Case 

(13) 

(14) 

(15) 

(16) 

or 

t= <p(T)f»d(q)Xv2'*- <p(q+iT)f»*(-iq+lr)T1/2™. (17) 

Where the superscript of yVd refers to the doublet case, or 

X1/2i/2==6-1/2(«i^3+ai/32«3-2^1a2a3) (18) 
and 

X1/2 1/2= - 6 1/203î 2a3+/5ia2/33-2Q:i/52/53). (19) 0r for the case in which a state of tritium has spin f, 

When two neutrons are excited, there are two possible 
cases, 5 = f and 5=f . 

5 = f : The deuteron must be in a triplet state and will 
be denoted by (pKl{r). The subscript K refers to the 
deuteron momentum. Then the triton wave function 
may be written as 

$=<PKt(*)fk',Kq't(sdXwm 

3/2 (20) 

ST=l, Xxi = — X V J W ^ - J X , / , 1 ' ^ (36) 
2 

r^a^x^xxi. (37) 
III. CALCULATION OF n-2n CROSS SECTION 

Conservation of energy requires for the n-2n process 

kfi = ki"-(9/S)k'i-(9/S)ar
2, (38) 

where 

S = J : Now the deuteron may be either triplet or 
singlet. 

^=^x'(r)/^,K''.,(q)X1/2™ 

-W(q+ir) /^ d Y-^+!r)r i /2 m (21) 

or 

*=**'(r)/*M , ,-'(q)(X1 / ,») / 

- 9Ks{*+hr)fk,,K*>°(--+i^J(Tyr)', (22) 

9M 
k?= Euh. (39) 

where the spin functions are 

1 

£iab is the energy of the incoming neutron in the lab 
system. 

aT
2 = - —Z(BE)triton- (5£)deuteron] • (40) 

ki is the initial wave vector of the neutron 4 in the total 
center-of-mass system, k' is the final wave vector for 
relative motion of neutron 3 in the center-of-mass 
system defined by particles 1, 2, and 3. k/ is the final 
wave vector of the scattered neutron in the total 
center-of-mass system. 

The differential cross section for the n~2n process is 

(Xi/21/2)' =—(aiatfr-aiPxxz) 

V2 

(XV2-1/2)' =—GMs- f t f t aa ) 
v2 

(lW0'=(12),(Xv2m)'. 

(23) 

(24) 

(25) 

2TT 

Arin=Z*— | Min | *pE(yMdk'dkf, 
hv 

where & is the normalization volume and 

(41) 

PE (k',kf)dk'dkf=(—)k/(-—) dQf(—)dk' (42) 
\2w/ \dE l v \lJ 
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is the energy density of final states. E is the final energy approximation 
in the lab system. 

£=-( )(-2a2+p'2+#/), 
3\2M/ 

M 
a2 = — (5£)deuteron, 

(43) 

(44) 

and v= (4:/3)hki/m is the initial velocity of neutron 4 in 
the lab system. 

The differential cross section for elastic scattering is 

JcTel = L8 1 Mel | 2pE(kf)dkf , 
fiv 

where 

/ZA« /dkf\ 
pE(kf)dkf=l—j kM—JdQf, 

4 tiki 4 hkf 

3 M 3 M ' 

M={(l-Pu-Pu)*fXh [Vnn(rx-n) 

+ Vnn(r2-n)+Vnp(rz-n)2^iXi}, (50) 

where Pij is an operator which exchanges space and spin 
coordinates of particles i and j . A Serber potential is 
assumed: 

(45) 

The initial wave function is 

fcX<= exp(*i- Q) 0 . ( 1 2 3 ) V , (52) 

and the final wave functions are, for elastic scattering, 

^/X/=exp(—Jk/-Q) 

* » ( r ) / ( q ) + v ( q + 4 r ) / ( - i q + i r ) 

(46) 

(47) 

and 

E = -
8 mf

2 

x 
L (3.344)1'2 

and for inelastic n-2n scattering, 

-]x/*r, (53) 

9 Af 

The ratio of inelastic to elastic cross sections is 

d(7 in I j f i n 

(Tei 1 Af e l 

1 

(2TT)3 

*/ 

V 

(48) * /X ,=exp( -*k / -Q) 
X [ > ( r ) / ( q ) X - * ( q + i r ) / ( - | q + f r ) r ] . (54) 

Applying the zero range approximation,1 5(r3—r4), in 
which it is assumed that the range of two-body nuclear 

(49) forces is short compared to the size of the triton and the 
wavelength of the incident neutron, and neglecting all 
terms except those in which the arguments of (p and U 

where the matrix elements are to be calculated in Born overlap, we get for elastic scattering: 

6 i I r 
J= ^ ^ ^ / ( O W ^ M 

(3.344)1'2 h2 

6T M 

X { [ ( 1 4 ) , + (24)JX*,X*}drdq ( S r = 0 ) , (55) 

/ = e F 3 4 + > o ^ ( 0 ) r o 2 ^ o f { e x p [ - t k / . ( - ( l / 3 ) Q + ( 8 / 9 ) q ) ] / ( r ) e x p ( ^ 
(3.344)1'2 ft J 

X { [ ( 1 4 ) < r + ( 2 4 ) J X ^ X / } ^ q ( 5 r = l ) , (56) 

and for inelastic n~2n scattering: 

M r 
/ = - 6 7 r - e F 3 4 + > o ^ / ( 0 > o 2 ^ o / { e x p [ - * / . ( - ( l / 3 ) Q + ( 8 / 9 ) q ) ] / ( r ) exp(ft<-Q)*(123)} 

fi2 J 

X{[(14)ffT-(24)ffx],Xio}rfrdq ( 5 r = 0 ) , (57) 

Vu+)ro<Pf(QWUof{expl-fcr(- (1 /3)Q+ (8/9)q)]/(r) exp(*<.Q)*>(123)} 

X{C(14),r-(24),X],X^}rfrdq ( 5 r = l ) . (58) 
1 R. M. Frank and J. L. Gammel, Phys. Rev. 93, 463 (1954). 

M 
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TABLE I. Initial- and final-spin functions before and after 
scattering, and the spin matrix elements obtained by performing 
the spin sums. In the notation (A,B)ct A refers to the state of the 
triton, B to the state of the deuteron, and C to the total spin of the 
neutron-triton system. 

Spin 
function 

Elastic Scattering: 
(d,t)0 Xi° 
(d,t)0 Xi1 

One neutron excited: 
(d,t)0 Xo° 
(q,t)i xV 

(<M)i xi 1 

Two neutrons excited: 
(d,t*)Q xo0 

(<*,**)o (xo0)' 
(q,t*h Xi1 

(d,t*h xi1 

(<*,**)i ( x i 1 ) ' 

Statistical 
weight 

i 
2. 
3 

£ 
2 
3 
2 
3 

1 
3 

i 
2 
3 
2 
3 

I 

Initial 
spin 

function 

X*° 
Xi1 

Xi° 
Xi1 

Xi1 

Xi° 
Xi° 
Xi1 

Xi1 

Xi1 

Spin 
matrix 
element 

(3.344)-1/2 

(3.344)-i/2 

0 
- 2 v 2 / \ 3 

- 2 / v 5 

0 
2 

- 2 v 2 / \ 3 

0 

The spin sums are calculated and listed in Table I. 
After scattering we take as the wave function of the 
ground state of the triton 

/aT\112 e~aTQ 

\2w/ q 

and for the continuum state, 1=0 

/g2i5o(fc') \\eih,q 
/e*iW*')—\\e 

= 0<k'.q+f )_ 
\ 2W / 

(60) 

(61) 

= cos5i tsm# q cos& q~\ 
+tan5o(*/) . (62) 

k'q k'q J 

The calculation will be performed for an incident 
neutron energy of 14 MeV. <p(123), a symmetric func­
tion of particles 1, 2, and 3 is taken to be 

<p(123) = e^^2r2+2^K (63) 

For elastic scattering |k/ | = | k j while for inelastic 
scattering k/ is determined by Eq. (38). However, using 
the method of the impulse approximation1,2 the k / s 
appearing in Eqs. (55)-(58) are taken to be the same. 
The ratio of the first Born approximation for inelastic 
scattering to that for elastic scattering is calculated in 
the following way: The coordinate Q is eliminated in 
terms of q and r, and q is integrated analytically. The 
wave functions /(r) which could be either quartet or 
doublet have been calculated previously for n-d 
scattering by Christian and Gammel.3 Their doublet 
wave function did not vary much with relative n-d 
energy for the important region. A factor of 

ta,nd0(k
f)\ / tan50(A!')\ 

\ k'a* ) 

is removed from /4(r), the quartet function, making it 
more nearly a constant as a function of energy. Since 

r - t a n S o ^ O T 1 

= — a$ cot50= 1—Jp4#4&'2, 
L k'a* J 

(64) 

with 
04=6.2 F , ^ = 0 . 8 F,8 

P4=3.582F, p2=45.1F, 

we must then multiply f*(r) by [1—0.23807E], where 
E is the energy of neutron 1 relative to the deuteron. 
The ratio of | J A/J 2 |2 is integrated numerically on the 
IBM-7094 for several values of E and the following fit is 
obtained: 

74(inel)|2 /27r\rsin2$0 (&')"! ^2 

/2(d) 

/2v\rsm*5o(Arn 

" w / L v2 J4< k'2 J 4 af 

X[(20.23)(l+20.52&'2+105.3&'4)] (65) 

/2(inel)|2 

/2(el) 
[cos2S0(ife

,)]2X2(3.344), (66) 

where X = 1.332 F appears because the Christian-Gammel 
functions are plotted in gauss range units. The resulting 
cross section for inelastic scattering is 

da in 

2/2v2\2/27r\/sinV& /)\ X2 

-( ) (— If J — (20.23) (l+20.52£'2+105.3&'4) 
3 \ v J / \ a r A k'2 J, a,2 

3 \ W " ' W 

The sin28o(k') and cos2$o(&') terms are calculated from 

V cot«0(*') = - (l/a)+iPk'2 

+-(—1 (3.344)(— )X2[cos25o(^)]2 K-r (e l ) k'Hk'dtfd&r- . (67) 
1 

W 3 

2 G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952). 
3R. S. Christian and J. L. Gammel, Phys. Rev. 91, 100;(1953). 

(68) 
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and in place of the experimental n-T elastic angular distributions which are not available, calculated values by 
Bransdon and Robertson4 assuming Serber interaction for ^-He 3 are used. Their 14-MeV curve has not been 
verified experimentally, but results of Artemov, Kalinin, and Samoilov5 for energies up to 9.6 MeV indicate that 
for the higher energies the theoretical curves fit the experimental angular distributions fairly well. 

IV. ANGULAR DISTRIBUTION OF DEUTERONS EMITTED IN THE LAB SYSTEM 

In order to calculate angular distributions for deuterons in the lab system, we make the following 
transformations: 

P i = —%ki+jP8 initial momentum of neutron 1, 

= k / - | k / + i P 3 final; 

P 4 = k ; + J P s initial momentum of neutron 4 , 
= k / + | P 8 final; 

P j = — f k i + | P s initial momentum of the deuteron, 

= - k ' - f k , + | P . final; 

dk'dkf r / 9 9 \1 / 2" 

dPddP4r / 9 9 V' 2 -

Substituting in kf and kr in terms of Pd and P4 according to Eqs. (70) and (71), we get 

do-inei f /sin250 \ 
- = | (0 .08353)[ l+20.52(^) 2 +105.3(^) 4 ] (——J + [0.26538(cos250)2] 

dEdd&d 

where 

(69) 

(70) 

(71) 

kf dk'dkf r / 9 9 V ' H 
k'2dk'dtt'dttf-= -5\ kf-l h2 k'2 aT

2 I 
ki hkf L A 8 8 / J 

'P4r / 9 9 V ' 2 ! r / 9 9 \ n 
— kf+lk*—k'2—aT

2J 5 kf
2-lki2—k'2—aT

2J . (72) 

(0.1553) PfdPt " r 1 1 "I 
X(vn-T)Pd2 — s i n M M H : 5 ( P 4 - r i ) + 5 (P 4 -^ i ) 

•• Ed1'2 (PMkf) L | P 4 - n l IP4-T2I J 

x[ft/+(w— k'2—aA 1, (73) 

4 8 4 
k'2=Pd

2+iPdPi($mdd sin04 cos^4+cos(9d cos04)-fPdPa c o s ^ + - P 4
2 — P 4 P S cos6A+-Ps

2, (74) 
9 9 9 

kf=(P,2-iP,Pscos6,+^Ps2)112, (75) 

9 
^ 2 = 0.37989, -aT

2=0.22522, 
8 

A = PS cos^4—Pd(sin^d sin^4 cos<p4+cos#d cos^4), (76) 

JB= ( ,4 2 +P d P s cosdd-0.150146-0.75P/)1'2, (77) 

r i = 4 + 5 , (78) 

r 2 = ; 4 - S . (79) 

When integrating Eq. (73) numerically, we must be careful to take only the range of integration for which either 
fi or r4 are real and positive. Integrating Eq. (73) using the data of Bransden and Robertson, we obtain a total 
inelastic cross section of 381 mb. This value is modified in order to be consistent with the known total n-t cross 
section of 980 mb. The elastic angular distributions were lowered by 10%, giving a total elastic cross section of 
637 mb. We then obtain the angular distributions shown in Figs. 1 and 2, and a total inelastic cross section of 
343 mb. 

4 B . H. Bransden and H. H. Robertson, Proc. Phys. Soc. (London) A72, 770 (1958). 
5 K. P. Artemov, S. P. Kalinin, and L. N. Samoilov, Zh. Eksperim. i Teor. Fiz. 37, 663 (1959) [English transl: Soviet 

Phys.—JETP 10, 474 (I960)]. 
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FIG. 1. Inelastic differential scattering cross section expressed in FIG. 2. Inelastic differential scattering cross section expressed in 
mb/MeV-sr as a function of energy of the ejected deuteron in the mb/sr as a function of lab angle of the scattered deuteron. This 
lab system plotted for several deuteron lab angles relative to the curve is obtained by integrating the curves in Fig. 1 over the 
incoming neutron. deuteron energies. 

V. ANGULAR DISTRIBUTIONS OF NEUTRON 4 AND NEUTRON 1 

Using the same methods as the previous section, we obtain for neutron 4, 

d<Tinei ( rsm280(k') 
= (0.002687)[l+20.52&/2+105.3&'4] • 

dEtd&i 
-1 +(0.008536)[cos250(&01 
J4 

where 

k'2 

L. R, " -J4 ) 

: PAPNPI unBidOidipi + */+( M—k'2—aT
2) , (80) 

L Pskf J L | P i - r i | | P i - r 2 | J L \ 8 8 / J 

1 2 1 
= Pi2+fPiP4(sin(94 sin0i+cos04 cos0x)-fPiPs cos0i+-P4

2—PAPS cos(94+-Ps
2, (81) 

9 9 9 

rr-

* V 

B+(B2-C)112 

B-{B2-C) ,1/2 

P = f [P s cos#!—P4(sin^i sin04 cos<pi+cos#i cos&O], 

C=4(P 4
2 - fP 4 P s cos0 4 - |P s

2HW). 

(82) 

(83) 

(84) 

(85) 

And for neutron 1, we obtain a similar expression 

rsin2$0(jfe') ddinel f 

= (0.002687)[l+20.52£'2+105.3&'4] 
dEidtti [ 

(Tn-TPlP£ 
X 

k'2 - +(0.008536)(cos250(^))^ 
J4 

Pskf 

p 
-dPi sin#4^M<£>4 • 

•5(P4-r2) $ (P 4 -n) 

P^-nl |JP4—r2| J 

P + ( P 2 - C ) 

/ 9 9 V'2! 
A/+fW— ft'3—«rM J , (86) 

1/2 

(87) 

f2 = -
B-(B2-Cyi2 

B = %[PS cos04— Pi(sin9i sin04 cosipi+costfi cos04)], 

C=4(P1
2- | JP1P3 cosfc-iP.H-ar*). 

(89) 

(90) 
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Integrating Eqs. (80) and (86) numerically we get the 
angular distributions shown in Figs. 3, 4, and 5. The 
total n-T inelastic cross section obtained from the 
neutron 1 angular distributions is 349 mb which com­
pares with 343 mb obtained from the deuteron angular 
distributions. The cross section obtained from the 
neutron 4 angular distributions will be the same since 
the neutron 1 and neutron 4 curves coincide except for 
small variations. 
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FIG. 3. Inelastic differential scattering cross section expressed in 
mb/MeV-sr as a function of energy of the scattered neutron 4 in 
the lab system plotted for several neutron 4 lab angles. 

VI. ESTIMATE OF n-3n CROSS SECTION AT 14 MeV 

An order of magnitude estimate of the n-3n cross 
section can be made by calculating 

dainel= 13.38( )( )( 
\ 4TT A 2aT A 2a / 

1 kf 
X (4iryK2dKk'2dkf— , (91) 

(2TT)6 kt 

using the conservation of energy equation, 

9 9 
kf

2=ki2 & ' 2 -p : 2 a r 2 - V . (92) 

The answer obtained is 0.4 mb which indicates that the 
n-3n inelastic scattering is insignificant. Therefore, a 
more careful evaluation will not be made. The same 
kind of estimate can be made for n-2n scattering by 

FIG. 4. Inelastic differential scattering cross section expressed in 
mb/MeV-sr as a function of energy of the ejected neutron 1 in 
the lab system plotted for several neutron 1 lab angles. 

calculating 

3.344 

3TT 

/0"totalnA 
(crtotaiw-r)( J 

X (47r)2£'W—, (93) 
(2TT)3 hi 

with the conservation of energy equation (38). 
The result obtained is 217 mb which is a factor of 1.6 

less than the more careful calculation but significantly 
greater than the n-3n cross section. 

8, 
FIG. 5. Inelastic differential scattering cross section expressed in 

mb/sr as a function of lab angle of the scattered neutron 4. This 
curve is obtained by integrating the curves in Fig. 3 over energy. 

VII. DISCUSSION 

We realize that the calculations in this paper are very 
crude and many unjustifiable approximations have been 
made. We hope, however, that the work will be helpful 
in planning experiments and possibly serve as a guide 
for future theoretical work. 


