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Direct-interaction techniques are applied to nucleus-nucleus rearrangement processes in which a nucleon 
is transferred from one nucleus to the other during the scattering. A formal expression is derived for the 
transition amplitude assuming a reaction mechanism different from that usually employed in direct-inter
action rearrangement processes (such as deuteron stripping). The mechanism in the usual theories is due 
to the potential between the transferred particle and one of the nuclear "core" systems; in the present 
treatment the interaction between the two nuclear cores is considered responsible in first order for the 
rearrangement scattering. Physical arguments support this view for the nucleus-nucleus scattering mecha
nism and are based on the overwhelming importance of the Coulomb interaction in low-energy processes. 
The amplitude for the rearrangement scattering is then expressed formally in terms of the complete ampli
tude or T matrix for the dominant core-core interaction. The specific example of the neutron transfer process 
is considered in a first-order treatment, where all purely nuclear-scattering interactions are ignored, and the 
only scattering arises from the Coulomb potential. The matrix element for the reaction is obtained in closed 
form and the results are compared both with experiment and with other treatments of rearrangement 
scattering. 

I. INTRODUCTION 

FOR many years direct-interaction concepts have 
proven extremely useful in the analysis of the 

scattering of a single particle by a system of particles 
(e.g., nucleon-nucleus scattering). The Butler stripping 
theory, the nuclear optical model, the distorted-wave 
Born approximation (DWBA), and the impulse ap
proximation are just some of the well-known methods 
that have been so remarkably successful in their pre
dictions for both elastic- and inelastic-scattering proc
esses. In addition, recent studies1,2 on the elastic and 
inelastic nonrearrangement scattering of nuclei by nuclei 
have shown that direct-interaction concepts are again 
quite good even with these more complicated systems. 
However, in the case of rearrangement scattering, the 
usual direct-interaction formulation that is so successful 
for the nucleon-nucleus case [e.g., for (p,n), (d,p), (p,d) 
reactions, etc.], does not appear to be as useful for 
rearrangement scattering or transfer reactions between 
two complex nuclei. Because of the rapidly growing mass 
of experimental information on such reactions, it is im
portant to review the usual theories in an attempt to 
reformulate the problem specifically for the nucleus-
nucleus rearrangement scattering case. It turns out that 
the formal results obtained for rearrangement scattering 
are almost identical to those for the nonrearrangement 
elastic and inelastic cases; hence, the methods provide 
a quite general description for all nucleus-nucleus scat
tering processes. A reformulation in terms of direct-
interaction concepts that employ the usual integral 
equation techniques3 will prove most useful in order to 
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1 J. S. Blair, Phys. Rev. 115, 928 (1959). 
2 R. H. Bassel, G. R. Satchler, R. M. Drisko, and E. Rost, Phys. 

Rev. 128, 2693 (1962). See also numerous references contained 
therein. 

3 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950); 
M. Gell-Mann and M. L. Goldberger, ibid. 91, 398 (1953). 

insure the completeness of the theory, i.e., in order that 
all interaction terms are included exactly in the formal
ism so that an explicit understanding of any subsequent 
approximations is possible. In addition, it may be 
feasible to compare the formal results with those of the 
familiar stripping theories for nucleon-nucleus rearrange
ments. The purpose of this paper is to show a physically 
reasonable way of formulating the nucleus-nucleus re
arrangement problem and to use the results in a typical 
calculation. The main results of the formal theory have 
been already presented elsewhere4; this paper will ex
tend and elaborate on the earlier work. 

It is important first to understand clearly the physical 
basis for the differences between nucleon-nucleus and 
nucleus-nucleus scattering. These latter processes differ 
from the former mainly in two ways: (1) Coulomb 
scattering is generally much more important in the 
latter case due to the large nuclear charge of each 
scattering partner, and (2) both partners have nuclear 
states that may become excited in the scattering; thus, 
for a given energy, there are a larger number of inelastic 
channels open for nucleus-nucleus scattering. It would 
appear that any general formulation would have to be 
built around these effects; in particular the strong 
Coulomb repulsion of the two nuclei is certainly a 
dominant process at lower energies and should be in
cluded as such in the formulation of the problem. In 
rearrangement scattering, for instance, where a nuclear 
particle is transferred from one nucleus to the other, 
both of these effects depend primarily on the properties 
of the nuclear "cores" and not of the particle trans
ferred. However, in the usual direct-interaction theories 
as formulated in deuteron stripping, for example, the 
potential between the transferred particle and one of the 
"cores," the deuteron binding potential, assumes para
mount importance as the interaction by which the 
rearrangement proceeds. The core-core effects, if con-
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sidered at all, are treated only approximately in 
the DWBA. 

Therefore, the usual "direct" process in which the 
transferred particle interacts strongly with one of the 
cores does not adequately represent the case at hand 
where the core-core processes are strong and dominate 
the scattering problem. One may conclude from these 
physical arguments that in first order the "indirect"5 

core-core interaction, rather than the "direct" core-
transferred particle interaction, dominates and is there
fore "responsible" for the rearrangement reaction. This 
approach is in principle the same as that used by Blair1'6 

and by Bassel et al.2 in the treatment of nonrearrange-
ment elastic and inelastic scattering and also is con
ceptually quite similar to the semiclassical Coulomb 
trajectory methods of Breit and Ebel7 for rearrangement 
scattering. 

In Sec. II an appropriate formalism for the nucleus-
nucleus problem is derived, with the rearrangement 
process (a+c)+b —> a+ (c+b) serving as the model for 
the reaction. The matrix element is formulated in terms 
of the "indirect interaction" between the two cores a 
and b, and the usual "direct" potentials Vac and Vbc 

appear in initial and final distorted-wave effects. Fur
thermore, the rearrangement scattering matrix is ob
tained in terms of the T matrix or scattering amplitude 
of the a—b interaction; thus all orders in the dominant 
a—b potential Vab are included in one term. In Sec. I l l 
the simplest application of the formalism is considered: 
the neutron transfer reaction at low energies. Here the 
scattering effects of all potentials except the Coulomb 
interaction are neglected and the reaction proceeds by 
the tunneling of the neutron wave function from one 
core to the other while the cores themselves scatter via 
the Coulomb T matrix. In Sec. IV the results of the 
neutron tunneling theory are compared with recent 
experiments of Becker, Jobes, and Mclntyre8 and a dis
cussion of these results is found in Sec. V along with 
several comments on the approximations used in the 
calculation. 

In the Appendix a more general formulation of the 
rearrangement scattering is given. The effects of both 

6 The choice of the word "indirect" is perhaps unfortunate in 
that it may be misleading. Certainly the methods here are those 
of direct-interaction theory; however, the word "indirect" is meant 
to distinguish the core-core interaction from the commonly desig
nated "direct" interaction of the core with the transferred particle. 

6 J. S. Blair, Phys. Rev. 95, 1218 (1954). 
7 G. Breit and M. E. Ebel, Phys. Rev. 103, 679 (1956); G. Breit, 

Handbuch der Physik, edited by S. Fltigge (Springer-Verlag, 
Berlin, 1959), Vol. XLI, Part 1, Sec. 48. See also, G. Breit and M. 
E. Ebel, Phys. Rev. 104, 1030 (1956); G. Breit, in Proceedings of 
the Second International Conference on Reactions between Complex 
Nuclei, Gatlinburg, 1960 (John Wiley and Sons, Inc., New York, 
1960); G. Breit, in Proceedings of the Third International Con
ference on Reactions between Complex Nuclei, Asilomar, 1963 (to 
be published); and G. Breit, in Proceedings of the International 
Conference on Direct Interactions and Reaction Mechanisms, Padua, 
1962 (Gordon and Breach, New York, 1963). 

8 L. C. Becker, F. C. Jobes, and J. A. Mclntyre, in Proceedings 
of the Third International Conference on Reactions between Com
plex Nuclei, Asilomar, 1963 (to be published). 

the nuclear and Coulomb core-core interactions are 
treated, and the exact matrix element is expressed in 
terms of the elastic wave functions for the nuclear 
interaction. A subsequent paper will consider a model 
introduced earlier4 that describes these purely nuclear 
interactions, and will present calculations for the general 
case of neutron transfer at energies below and above the 
Coulomb barrier.9 A third paper will discuss proton 
transfer and the scattering problems in the general 
many-particle transfer reaction. 

II. FORMAL CONSIDERATIONS 

Let Ha, Hb, Hc be the complete Hamiltonians for the 
internal structure of the systems a, b, and c, respectively, 
and Ka, Kb, and Kc, the corresponding kinetic-energy 
operators for the center-of-mass motion of each. The 
initial and final asymptotic plane-wave states <j>i and 4>f 
are defined by 

(K+H+Vac-E^O, (la) 

(K+H+Vhe-Ef)4>f=0, (lb) 

where K=Ka+Kb+Kc and H=Ha+Hb+Hc are the 
total kinetic-energy operator and the total internal 
Hamiltonian, respectively, for the entire system. Vac and 
Vbc may be considered as effective "two-body" po
tentials between a and c, and b and c, respectively, while 
Vai is an effective two-body core-core potential be
tween a and b. The complete wave function \p is an 
eigenfunction of the complete Hamiltonian 

K=H+K+Vac+Vbc+Vab. (2) 

The integral equation for the complete wave function 
ypi{+) asymptotic to <j>i at t= — °o is 

^ / + ) =0^+(^ -aC+ie ) - 1 (F a 6 + F&c)0,, (3a) 

and the corresponding integral equation for \f/f(~\ 
asymptotic to $/ at /= + °° is 

tt^tf+iEf-K-iey^V^+Va^f. (3b) 

If we expand the Green's function of Eq. (3a) in a 
complete set of states of ^/-~) in the usual way, we ob
tain the well-known exact expression for the matrix 
element for the rearrangement scattering previously 
derived by many others3'10: 

Tif=^f^\Vab + Vbc\^) (4a) 

= {<S>f\V*i + VaMM). (4b) 

Now Eqs. (4) are the usual starting points for the 
derivation of the various approximations that calculate 
Tif. In the usual direct theories either Vbc or Vac is 
singled out as the interaction "responsible" for the 

9 Several calculations based on Eq. (A7) for neutron transfer in 
the region of and above the Coulomb barrier have been reported 
previously by the author in Refs. 4, 14, and 28. 

10 B. A. Lippmann, Phys. Rev. 102, 254 (1956). For a fairly 
complete reference list, see T. Y. Wu and T. Ohmura, Quantum 
Theory of Scattering (Prentice-Hall, Inc., Englewood Cliffs, N. J.). 
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rearrangement while Vab is either ignored, as in the 
Born approximation treatments, or is included as the 
distorting potential in the DWBA methods. Following 
the physical arguments presented in the Introduction, 
we choose to single out Vab, the core-core scattering 
potential, as the dominant interaction in nucleus-
nucleus scattering. 

We define a partially interacting state X/+ ) which 
interacts via the scattering potential Vbc: 

X/+> = <^-
1 

Ei-K-H-Vac+ie 
- J W + ) , (5a) 

4>i=\l F & c l x /+ ) . (5b) 

We can alternatively write X/+ ) in terms of a wave 
operator 0 acting on the initial state, 

X/+) = [~1+ Vbc\ 
L Ei-K-H-Vac-Vtc+ie J 

= 0 b C
( + ) ^ . (6) 

Substituting <j>% of Eq. (5b) into Eq. (3a) we obtain an 
expression for the scattered wave 

ypi (scattered) (+) = ^ / + ) — <j) i = 
1 

Ei-W+ie 

1 

~(Vab + Vbc) 

Ei-K-H-Vac+ie 

Rearranging terms, we find 

1 

c X, .(+) 

'i(sc) 
Ei-3Q.+ie 

-VahX™ 

J-Ji-
- JC+ ieL Ei-W+ie\ 

(Vab + Vbc) 

1 
X-

1 

Ei-W+ie 

Ei-K-H-Vac+ie. 

Vabx^ 

Vbcx^ 

1 

Ei-K-H-Vac+ie 

where the operator identity 

1 1 1 1 
=-(b-a)-

a b a b 

-vbcx<+y, (7) 

(8) 

has been used to obtain the second term of Eq. (7). Now 
we are looking for states of ^i(SC)(+) that are asymptotic 

to 4>f at t= + oo. Such states are certainly contained in 
the Green's function of the first term above, but are not 
obviously in the Green's function of the second term 
since the potential Vbc that binds the asymptotic state 
0 / does not appear explicitly. In fact, for this reason one 
might think that this term does not contribute to final 
states <j)f defined by Eq. (lb). However, there are, in 
general contributions from unbound states of the (b+c) 
system that have the same relative momentum distri
butions as the explicitly bound (b+c) system, and are 
therefore indistinguishable from it.11 

We may be more explicit by expanding the Green's 
function of the second term of Eq. (7) in terms of the 
actual Green's function for outgoing states </>/. We find 

1 

Ei-K-H-Vac+ie 

1 

-Vbcx .(+) 

Ei-K-H-Vhc+ie 

X l+(Vac-Vbc) 
Ei-K-H-Vac+ieJ 

\VbcX .(+) 

1 

Ei-K-H-Vbc+u 

X 1+Va 

1 

Et-K-H-Vac-Vu+ie 
]Vbc(f>i, (9) 

where the operator identity Eq. (8) has been used to 
simplify the expression. The expansion of the Green's 
function in the usual way in terms of states asymptotic 
to <j>f yields the expression for the transition matrix 
element 

Tif^ttZ-^V^lx^+itflVaclx^). (10) 

The second term of Eq. (10) was obtained from Eq. (9) 
by use of the well-known relation12 

{<}>f\Vac\<t>i) = {<t>f\Vbc\<j>,). (ID 
Now Eq. (10) is analogous to the equations that lead to 
the formulation of the DWBA, except that in Eq. (10) 
the core-core potential Vab replaces the usual two-body 
(or nucleon-core) potential Vbc, Vac- Also X/+ ) here 
describes the distortion due to these nucleon-core inter
actions instead of the core-core interaction as in 
the DWBA. 

The dominant core-core scattering potential Vab 

which appears explicitly in the first term of Eq. (10) 
11 Terms of this type have been consistently neglected in 

deuteron stripping processes. See, for example, the author's deri
vation for the deuteron pickup case, K. R. Greider, Phys. Rev. 
114, 786 (1959). A discussion of this general type of term for 
knockout processes is presented by T. B. Day, L. S. Rodberg, 
G. A. Snow, and J. Sucher, Phys. Rev. 123, 1051 (1961), and by 
R. H. Basse! and E. Gerjuoy, ibid. 117, 749 (1960). 

12 E. Gerjuoy, Phys. Rev. 91, 645 (1953). 
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also is explicitly included in the total wave function 
^ / - ) [see Eq. (3b)]. I t is useful to factor the wave 
operator of Eq. (3b) into a V ab term and a Vac term. 
With the help of Eq. (8) we find, 

L Ef-H-K- V^ - Vbc- Vac-ie J 

x [ ~ l + -Vac\f (12) 

or 
^ / - ^ O o f t ^ ' O a c ^ / . (13) 

Direct comparison of Eqs. (12) and (13) defines the 
wave operators £2a&'(-) and ftoc

(~°. By using Eqs. (6) and 
(13) in Eq. (10), we obtain the exact expression for the 
transition amplitude,13 

^ 7 =<o a c <-><M* a & ' | a^ (14) 

where 

1 
= Vab + Vah Vah (15) 

Ef-H-K- Vab - Vac- Vbc+ie 

is the T matrix or amplitude for the a-b interaction in 
the presence of the potentials Vac and F&c. Without the 
prime, tab would denote the exact T matrix for only the 
Vab potential. 

The physical interpretation of the exact expression of 
Eq. (14) is quite straightforward. The first term de
scribes the effects of the dominant a-b interaction. A 
plane-wave state <f>% consisting of incoming systems b 
and (a-\-c) interacts via Vbc, the potential between the 
transferred particle and the core to which it will become 
attached. The two cores then scatter via V'«&; the com
plete core-core scattering is described since all orders in 
Vab, i-e., the T matrix or complete amplitude is used. 
The final-state systems a and (b+c) then scatter via 
Vac. In the second term of Eq. (14), the dominant core-
core interaction Vab does not appear; this term de
scribes the scattering by the potentials Vac and Vbc 
only. I t is apparent that the separation of 7\y into two 
terms, one of which describes all orders in V ab while the 
other has no V ab term, is designed for use in problems 
where Vab dominates the scattering. I t may be expected 
that in such problems the first term of Eq. (14) gives a 
good first-order approximation to the matrix element, 
and that the second term contributes only in higher 
orders. Thus, Eq. (14) apparently satisfies the require
ments of the Introduction for the reformulation of 
rearrangement scattering. Equation (14) may be com
pared with the more general result of Eq. (A7) of the 
Appendix. The latter formulation differs from Eq. (14) 
in that the purely nuclear core-core interactions are 
included, and the partially interacting states X/+ ) and 

13 An expression very similar to Eq. (14) was derived by Day 
$t al., Ref. 11, for the (n,f) knockout reaction, 

X/-) are defined in terms of the elastic part of the 
nuclear potential. 

Various other theories of heavy-ion nucleon transfer 
reactions exist. Breit and collaborators13a have worked 
out both semiclassical and quantum-mechanical theories 
of these processes. A detailed comparison between these 
methods and the present one is contained in a paper in 
preparation by the author. 

III. NEUTRON TUNNELING PROCESS 

For a specific example of a rearrangement collision 
that meets the requirements stated in the Introduction, 
i.e., that the core-core scattering dominate the process, 
we consider the neutron-transfer reaction in nucleus-
nucleus scattering. Undoubtedly the most complete 
treatment of this reaction to date is that of the semi-
classical theory of Breit and Ebel.7 Their striking pre
diction of the observed large angle peaking for the 
reaction products gives quite reasonable qualitative 
agreement with experiments at low energies and perhaps 
more important, the theory has given basic insight into 
the nature of the process. The dominance of the core-
core Coulomb scattering is of course a fundamental as
sumption of their work, since the quantum-mechanical 
tunneling is calculated as the massive cores move 
inexorably along their classical Rutherford trajectories. 

With this process in mind, we can now be specific 
about the potentials Vab, Vac, and Vbc in Eq. (14). For 
the simple Coulomb tunneling approximation con
sidered in this section, we let Vab be the pure Coulomb 
potential between the two cores, and we save for later 
the treatment that includes the core-core nuclear po
tential as well as any deviations of V«& from a pure 
Coulombic form. Since we are treating neutron transfer, 
the effective two-body interactions Vac and Vbc are 
purely nuclear potentials between the neutron and the 
cores. Although the formalism is quite general and in
cludes spin effects, we assume in this first-order treat
ment that the neutron and both cores are spinless. 

The simplest theory of neutron tunneling is obtained 
from Eq. (14) by a first approximation which neglects 
the potentials Vac and Vbc by which the transferred 
particle c scatters on the cores. Consequently the second 
term of Eq. (14) is dropped, the distorting operators 
£2&c

(+) and 12ac
(-) of the first term are set equal to unity, 

and the approximate Coulomb T matrix tab becomes 
the exact Coulomb T matrix, 2a&. 

I t may not be clear from Eq. (14) that the neglect of 
the nuclear potentials yields the low-energy or tunneling 
approximation. One might ask why the second term of 
Eq. (14) does not contribute even at the lowest energies. 
However, it is clear from Eq. (A7) of the Appendix 
that at low energies only the first term involving the 
Coulomb T matrix contributes. The purely nuclear 
interactions become less and less important since the 

13a G. Breit, K. W. Chun, and H. G. Wahgweiler, Phys. Rev, 
133, B404 (1964). 
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Coulomb wave functions effectively prevent the short-
range nuclear interactions of the second term of (A7) 
from contributing to the matrix element. In a similar 
manner the Coulomb T matrix excludes the short-range 
part of the nuclear elastic wave functions of the first 
term and effectively projects out only their asymptotic 
plane-wave part. Actual calculations that include the 
nuclear (absorption) interaction14 show that this is 
indeed the case; at low energies the amplitude due to 
the first term of (A7) becomes truly insensitive to the 
short-range effects of the order of the nuclear radius. 
Thus, in this low-energy approximation, Eq. (A7) and 
Eq. (14) both yield 

ZV=<*/I*«*I*<>. (16) 

Equation (16) gives the amplitude for the simplest 
version of the rearrangement scattering and describes 
the " tunneling'' process, in which only the Coulomb 
interaction determines the scattering mechanism. The 
reaction proceeds by the tunneling of the neutron from 
an initially bound state to a rearranged final bound 
state in the presence of the strong Coulomb field, and it 
is evident that the mechanism is very similar in concept 
to the semiclassical theory of Breit and Ebel.7 In fact 
this latter theory may be considered approximately as 
the semiclassical analogy to the T-matrix treatment 
here; the classical Coulomb orbits in the earlier work 
provide an excellent classical (visual) understanding of 
the role of the T matrix in the present theory. 

For neutron transfer the neglect of the short-range 
nuclear-scattering interactions Vac and Vbc in Eq. (16) 
does not lead to any loss of generality as is evident from 
the derivation given in the Appendix. However, if the 
transferred particle c is charged, i.e., a proton, then the 
Coulomb scattering potentials Vac and Vbc should not be 
neglected even in this simple tunneling approximation. 
The evaluation of Eq. (14) for charged particle transfer 
in this approximation is in principle quite straight
forward and will be described in a future publication. 

To evaluate Eq. (16) we must make a further as
sumption about the Coulomb amplitude tab. Since we 
are dealing with a rearrangement scattering, the 
Coulomb T matrix for the core-core interaction in 
general connects states of different energies. We assume 
for the present that the elastic T matrix adequately 
describes this scattering, keeping in mind that there 
may be contributions to Tif from inelastic (Coulomb 
excitation) elements of tah. These latter contributions 
may be neglected in our first approximation treatment. 

The use of the elastic amplitude for tab niay be 
justified in part by the analogous use of elastic dis
torted-wave approximations in the DWBA theory of 
direct interactions, by the use of the elastic nuclear core-
core amplitude in the recent work of Blair for inelastic 
excitation processes,1 and by the use of on-energy-shell 

14 K. R. Greider, in Proceedings oi the Third International Con
ference on Complex Nuclei, Asilomar, 1963 (to be published). 

amplitudes in the impulse approximation.15 Of course 
the approximation of slightly off-energy-shell matrix 
elements by the on-energy-shell values cannot be justi
fied in a rigorous way without introducing specific 
models for continuing off the energy shell. However, the 
significant successes of the above-mentioned applica
tions of this approximation lend enormous support to 
this procedure. 

Using these assumptions we proceed to calculate the 
neutron transfer cross section in the tunneling ap
proximation of Eq. (16). Let r be the relative coordinate 
vector from the center of mass of core a to that of core b, 
and let xn be the coordinate vector of the neutron from 
core b. The matrix element of Eq. (16) can be written in 
the usual way as an integral over the coordinates r and 
r„, and all interior coordinates T« and T& of the cores a 
and b, respectively, 

Tif
0= / faad'zi4rdin<l>f*(r,rn,'Va,'Vb) 

XU(r)0<(r,r b). (17) 

The asymptotic states <j>i and <j>f have the simple form 

. = e x p U V ( r + — — J X6*(*6)Xa<(*0, r n - r ) , (18a) 

0/('Ca,t6,l ,n,r) 

= exp tkf(t - j Xa'(*a)X6/(<u6,rn), (18b) 

hi and k/ are the center-of-mass momenta and A a and 
Ab are the mass numbers of the two cores a and b. 
Xb(*b) and Xa(* r) are the initial-state internal 
wave functions of the cores b and the system (a+c), re
spectively. Likewise Xa(*a) and Xb(<5b,rn) are the final-
state internal functions for the core a and the system 
(b+c). 

The single-particle wave function for the bound 
neutron is obtained in the usual way by expanding 
Xa(<va, Tn— r) in a complete set of states of the core a: 

Xa(*a, r n - r ) = i ; um(rn-t)Xa™(>ca). (19) 
m 

The neutron wave function un{tn— r) for any state m 
is defined in terms of the fractional parentage coeffi
cients Fm which measure the overlap of the state 
Xa

m(*a) with the ground-state core function Xa(*a) 

um{xn-t)= / dTaXa™*(*a)Xa(T0, r n - r ) (20a) 

=Fmvm(tn-i). (20b) 

" G. F. Chew, Phys. Rev. 80, 196 (1952), and G. F. Chew and 
G. C. Wick, ibid. 85, 636 (1952). 
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I t is customary but not necessary to single out only one 
state (i.e., m=0) where the overlap integral Fm is con
siderably larger than that of other states. We assume 
this condition holds, and drop the subscripts of Eq. 
(20b). The single-particle function v(rn— r) may be 
obtained in principle by solving the Schrodinger equa
tion for the many-body {a-\-c) system using the effective 
binding potential Vac.

u However, in the energy region 
of interest in the scattering process, only the long-range 
part of v(rn— r) contributes to the neutron tunneling 
process, and the functional form of the long-range part 
is uniquely denned 

v(rn-r)^h^(iKa\rn-r\), (21) 

where hi(1) is the usual spherical Hankel function for a 
state of angular momentum /, and Ka is defined in terms 
of the binding energy 

Ka=(2»aEs°yi*/h, (22) 

where /xa is the reduced mass of the neutron and core a, 
and Es

a is the energy of separation (binding energy) of 
the neutron from core a. 

For low-energy scattering the short-range part of 
v(\rn— r | ) contributes very little to the angular de
pendence of Tif, but does affect the over-all normaliza
tion in an important way.17 There are a variety of 
methods that treat this normalization problem. One 
may assume a single-particle or shell-model potential 
inside the nucleus and solve for the neutron wave func
tion, requiring that it behave asymptotically according 
to Eq. (21). Or one may define some sort of nuclear 
"surface" beyond which Eq. (21) is valid and introduce 
a parameter such as the partial width to specify the 
normalization of the single-particle wave function at the 
"surface." For the very light nuclei, both the concept of 
a meaningful nuclear surface radius as well as a shell-
model description are probably unrealistic. 

The model used for v(\ rn— r | ) here is a simple one: 
The short-range behavior is assumed identical to the 
long range, 

e— aa\rn— r| 

FaVa(Tn-l) = Na , (23) 
I r^— 

where Na is a normalization parameter that includes the 
usual partial widths, fractional parentage coefficients, 
etc. We have assumed 1=0 here, and indeed calculations7 

that use actual / values differ little from the results using 
1=0, unless a specific quantum of angular momentum 
is transferred. Na indicates the amount of the low-
Fourier momentum components contained in the bound-
neutron wave function and the value of Na obtained 
from experiment gives the relative importance of these 
low-momentum components for a particular reaction 
channel. (In configuration space Na gives the relative 

16 K. R. Greider, Phys. Rev. 127, 1672 (1962). 
17 For specific examples of calculations that exhibit effects 

similar to these see B. W. Downs and R. H. Dalitz, Phys. Rev. 114, 
593 (1959), and K. R. Greider, ibid. 122, 1919 (1961). 

strength of the asymptotic tail of the neutron wave 
function for the various channels.) The model of Eq. 
(23) is obviously oversimplified, but is adequate for our 
purposes here in treating the scattering portion of the 
rearrangement process at energies where the angular 
distribution depends only weakly on the short-range 
part of the wave function. 

The final-state function X&(rw) is treated in exactly 
the same way and obtains 

g—abrn 

Xb(in,*b) = Xb(*b)Nb . (24) 
rn 

Finally, the Coulomb T matrix is obtained from the 
elastic amplitude18 for the core-core scattering through 
an angle 0, 

V 
tab = exp[—irj ln(sin20/2)+i?7o+i7r] 

2k0 sin0/2 

2korjC 
= exp[— 2ir) ln(A)l 

A2 

= 2kriCA-2i*-2, (25) 

where A is the momentum transfer, A = k/—ki=2ko 
X sin0/2,7] is the usual Coulomb parameter, rj=ZZfe2/hv, 
and C is a constant. 

A few remarks about the Coulomb amplitude of Eq. 
(25) are necessary before it is used in the calculation. 
The form of Eq. (25) is obtained from the asymptotic 
expansion of the confluent hypergeometric function19 

that satisfies the Schrodinger equation with a Coulomb 
potential. For such a potential both the incident plane 
wave and the outgoing spherical wave are distorted at 
infinity by the logarithmic factors, and it is not clear 
how the T matrix is defined. The usual definition of t as 
an integral equation20 implies a Born-like series which in 
general is not convergent for the r~l potential; indeed, 
the individual terms of the series are divergent. 

However, Eq. (25) expresses only the angular depend
ence of the scattered wave and as such it does not 
contain the well-known difficulties with the logarithmic 
distortion effects. Therefore, we may define an equivalent 
Coulomb T matrix in terms of the Fourier transform of 
Eq. (25) if such a transform exists. The Fourier trans
form does exist, as well as its inverse, if we assume a 
reasonable behavior for the dependence of the scattering 
amplitude / (A) on the momentum transfer A in the 
unphysical region A>2&0, or s in0/2>l . For the present 
we assume the simplest model: that /(kt-,k/) = tf(A) is 
given by Eq. (25) for all momentum transfers 0 < A < <*>. 
By defining the behavior of t(A) in the unphysical 
region in this way, we have essentially made a type of 

18 G. Temple, Proc. Roy. Soc. (London) A121, 673 (1928), and 
W. Gordon, Z. Physik 48, 180 (1928). 

19 L. J. Slater, Confluent Hypergeometric Functions (Cambridge 
University Press, 1960), p. 58. 

20 See, for example, K. M. Watson, Phys. Rev. 105, 1388 (1957). 



N U C L E U S - N U C L E U S R E A R R A N G E M E N T S C A T T E R I N G . I B1489 

high-energy approximation21 since, as ko—»<*>, Eq. (25) 
becomes exact for all A (neglecting relativistic effects). 

The Fourier transform and inverse transform of Eq. 
(25) are 

TT) 3 ' 2 J 
t(A) = / J r exp( iA- r ) / ( r ) , 

(2TT)3 '" 

*(r) = -
(2TT) 3 

dAexp(—iA-r)*(A). 

(26) 

(27) 

(28) 

Using Eq. (25) for t(A), we obtain for t(t), 

/(r) = C/fa*^1, 

where C is a constant independent of r : 

1 
C' = -2iZZfe2T(-2ir)) sinh(ipr) 

Xexp{+2irio+2iri ln(2£0)}. 

By using the equivalent T-matrix approach given by 
Eqs. (25)-(28) it is evident that we bypass the usual 
problems of the plane-wave logarithmic distortion at 
large distances. The advantage gained is that the 
Coulomb interaction may be treated along with other 
(short-range) potentials in the usual Green's function 
formalism. The disadvantage of such a procedure lies 
with the (evidently) nonunique definition of /(A) in the 
unphysical region.21* Since the scattering amplitude /(A) 
is correctly represented in the physical region 0 ̂  A ̂  2&0, 
we conclude that this method should yield correct 
angular distributions, but perhaps will not predict the 
over-all energy dependence to the same degree of 
accuracy. Also since Eq. (25) is obtained from the 
asymptotic long-range part of the Coulomb wave func
tion, we expect that it approximates the Coulomb 
scattering best at large r and not as well for r —» 0. At 
finite energies the behavior at small r depends in an 
important way on the assumed continuation of the 
amplitude for A>2&0. However, for nucleus-nucleus 
scattering, small r region is for all practical purposes 
automatically excluded from the matrix element due to 
the strong nuclear absorption inside the nuclear radius. 
Therefore the amplitude is quite insensitive to the 
details of t(r) for r —» 0. 

We make one final comment about the use of the 
elastic Coulomb T matrix [Eq. (25)]. In an earlier 
note4 it was incorrectly argued that the evaluation of an 
integral like Eq. (17), where t(r) is given by the 
Coulomb amplitude of Eqs. (26) and (27), is ac-

21 Compare, for example, the remarkable similarity of Eq. (28) 
for t(x) to that of the usual "high-energy approximation": R. J. 
Glauber, Lectures in Theoretical Physics (Interscience Publishers 
Inc., New York, 1958), Vol. I, p. 315. 

21a Note added in proof. Exact expressions for the Coulomb T 
matrix have been obtained independently by two authors: W. F. 
Ford, Phys. Rev. 133, B1616 (1964); L. Hostler, Phys. Rev. Letters 
10, 469 (1963) and private communication. These expressions are 
currently being applied to this problem. 

complished by a long-range approximation. This ap
proximation states that the physical elastic amplitude 
provides an almost exact representation of the true 
(energy nonconserving) T matrix, provided that the 
amplitude is highly peaked for zero-momentum transfer 
so that its major contribution to the integral [e.g., Eq. 
(17)] comes from the truly elastic region, k ; = k / . 

The peaking at A = 0 of the Coulomb amplitude 
arises from a second-order pole which is not sufficient to 
meet the requirements of the long-range approxima
tion.22 As a matter of fact, we shall see later that in 
typical integrals over Eq. (25) the logarithmic oscilla
tions arising from the imaginary exponent of A cause 
large cancellations in the integral for small A and 
produce the major contributions for A > 0 . Thus, we 
must resort to the same assumption that is used in the 
usual impulse approximation15; namely that for all A, 
the energy conserving amplitude provides a good ap
proximation to the actual amplitude even if the initial 
and final energies differ slightly from each other. 
Equation (17) may now be simplified with the help of 
Eqs. (18), (19), (23), (24), and (28). Since the core 
functions Xa and X& are members of an orthogonal set, 
the integral over dxa and <fa& gives unity, and 

Tif°=NaNbC fdrndrexp\-ikr(r - J 

exp(—abrn) . exp[—aa\ r— r n | ] 
X- _J2, irf—\_ 

Xexp ik 

r— r« 

•V-Bl (29) 

In the spirit of the first-order approximation methods 
already used, we assume A^>1 and A£2>1, and there
fore neglect these recoil terms in the exponential. In the 
theory of many-particle transfer reactions, or of single-
particle transfer for very light nuclei, such terms must 
be included; the general evaluation of Eq. (29) that 
includes these recoil effects will be treated later. 

Equation (29) may now be integrated directly if the 
binding parameters aa and ab are expressed in terms of 
an average value a. [See Eqs. (35) and (36).] The 
integrals over r and rn exist and may be found by con
sulting integral tables. However, to obtain physical 
insight into the problem, it is instructive to perform the 
integration in detail; furthermore, it is useful to use a 
momentum space (Fourier transform) representation 
for each of the functions in Eq. (29). We use Eq. (27) 
for t(r), 

j( r) = /"AiexpC&iTMJfei), (3°) 

W 2 J 
22 The author would like to thank Professor N. Kroll for pointing 

out this earlier incorrect argument. 
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andjfor the bound-state functions, 

exp(—abrn) 1 

/
dk2exp(ik2- rn) 

k2
2+ab

2 

exp(—aa |r— r „ | ) 1 

r— r« 2w> 
fdkz 

Xexp[4 8 *( r»—r) ] -
1 

h2+a2 

, (31a) 

(31b) 

The series converges rapidly for most values of aa and 
ab encountered experimentally, and in our lowest order 
approximation, we assume a a ~ « 6 and use only the first 
term of Eq. (36). However, each of the higher order 
terms may be explicitly evaluated. The integral over the 
solid angle of ki obtains 

(37) 

Substituting Eqs. (30) and (31) into Eq. (29), and 
interchanging the order of integration, we perform the 
integral over r and rn to obtain two delta functions: 

where 

T-l 
"M dkir 

NaNb 
Tf?=— CI, 

A 

1 1 

Tifo=NaNbC I dkidkidkt-1 1 1 

X / ( ^ i ) 5 ( k / - k 1 - k 3 - k , ) 5 ( k 2 - k 3 ) . (32) 

The delta functions eliminate the k2 and k3 integrals, 
and 

and Eq. (30) has been used to represent t(r). This 
integral is most easily evaluated by considering a con
tour integral in the complex ki plane, where the plane 
is cut along the positive real axis from zero to + <*> due 
to the imaginary power of ki. We first consider the 
integral from zero to —• °°, 

Tifo=NaNbC 'fdk 
J ( kx+A) 2 +a 6 

1 

r° dkjr l l -i 

/ '= / — • k 
•2 iff 

( k x + A ) 2 + a a
2 

where A is the physical momentum transfer for the 
rearrangement process, 

A = k / - k ; . (34) 

A further simplification is useful here to allow a 
trivial evaluation of Eq. (33). We expand the bound-
state functions in terms of an average value a, 

(—!—Y ' ) 
V (k,+A)2+a„2/ \ (kx+ A)2+a „*/ 

-( ' )T 
\(k1+A)2+a2/ L 

i(k±), (33) I f w e s e t kjf = k1(ri* w e find 

r° dfa'r 1 

" i + 0 0 kAiW+A + A ) 2 + a 2 (h'+A)2+a2 
~\we 

Therefore 

1+ 

1 1 r* dh 
1= / exp[—2ir)\n(ki)~] 

l+e2^2iaJ^ kx 

A — 
Lki+A+i 

1 

+ 

( k i + A ) 2 + a 2 

(a 2 -a i ,
2 ) 2 +(a 2 -a a

2 ) 2 +(5 2 -a < l
2 ) (a 2 -a i >

2 ) 

C(k 1 +A) 2 +5 2 ] 2 •] 
The second term in the brackets is identically zero if we 
define 

a 2 = ( a 0
2 + a 6

2 ) / 2 , (35) 

and the expansion reads 

( — L - ) ( — - — ) 
V (k i+ A ) 2 + a „2/ V ( k t + A) 2 +a a

2 / 

-r ' T 
L ( k 1 + A ) 2 + 5 2 J 

c 

kr\-A—id ki— A-\-ia kx—A—ia-

We close the contour at | k \ = oo in the upper half plane 
and exclude the pole at the origin by encircling it in a 
clockwise sense. The contributions from | k | = <*> vanish 
due to the term in brackets, while the contribution from 
the semicircle at &i=0 vanishes if we assume rj has a 
small positive imaginary part23: r] —* q+ie. Then 

1 1 rdhr 1 1 1 

1+62T,? 2ia Je ki Lki—A —ia h+A-iaJ 

Xexp[-2 i7yln(^ i ) ] . 

Only two poles ki= — A+ia and k\= A+ia are enclosed 
by the contour and contribute to the integral. The 

X I -
{aS-atY 

4 [ ( k 1 + A ) 2 + 5 2 ] 2 • ] • 
(36) 

23 This assumption is the same as required for the integral 
representation of the confluent hypergeometric function in terms 
of Bessel functions, the method often used to solve integrals in
volving Coulomb wave functions. See Ref. 25. 
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Cauchy residue theorem obtains 

1 7rrexp[—2ir\ ln(—A+ia)'] 

l+e27r"aL —A+ia 

exp[— lit] In ( A + i a ) ] " 

A+ia 

and the matrix element of Eq. (37) becomes 

NaNbC 

r.-/= aAp 
•exp( — 2irj lnp) 

X{exp[-2 t? ta,rr1(a/A)+i t a n - ^ a / A ) ] 

— exp(—2wrj) 

X exp[2?7 tan"1 (a/A) - i tan"1 ( a / A ) ] } , (39) 

where 

p=(a?+A*)1l*/2k9 

and the constant C is 

C = 8 T T 2 Z Z W ^ . 

(40) 

(41) 

For T?^>1/27T, the first term in the brackets is clearly 
larger than the second term, and 

± if -

NaNlC 
u_ 

aAp 

X e x p [ - 277 tan~x(a/A) -i(2rj l n p - taxr^a/A))]. (42) 

Equation (42) gives the desired analytic expression 
for the lowest order term in the amplitude of the simple 
tunneling process. Some of the corrections to Eq. (42) 
for finite core masses and nonequal initial and final-
state binding energies have already been discussed. If 
aa

2 is much different from a&2, i.e., QT^O, the higher 
order terms of Eq. (36) can be easily found by calcu
lating the residues from the higher order poles in kf. 
Other corrections to Eq. (42) that account for the 
effects of the nuclear interaction, angular momentum 
transfer, etc., will be dealt with in future publications. 

IV. COMPARISON WITH EXPERIMENT 

Comparison of the prediction of Eq. (42) with ex
periment is meaningful only for energies that are well 
below the Coulomb barrier. Angular distributions have 
been measured for transfer to the ground state in the 
reaction N14(N14,N13)N15 a t an incident laboratory 
energy of 12 MeV,8 and we use these data for compari
son. This is a particularly sensitive test of the theory 
since identical particles are involved and the differential 
cross section should exhibit interference effects between 
the amplitude at 6 and that at w—6. The general form 
of the differential cross section has been given by Breit 

E I l a b ) - 1 2 MeV 

FIG. 1. The differential cross section for N13 nuclei from the re
action N14(N14,N13)N15. The experimental points of Becker et al. are 
compared with the theory of Sec. I l l (solid line). The long dashed 
curves are the contributions to da/aXl from the direct term | /(0) |2 

and the recoil term | /Or—0) |2. As a comparison the recoil term of 
the semiclassical theory is shown by the short dashed curve, 
labeled "BE." 

and Ebel7 from consideration of spin and statistics, 

da 
= {\Tif(d)\*+\Tif(ir-d)\ 

kf/ tit \ 2 

R e C r ^ ^ r ^ T r - f l ) ] } - - ( — ) , (43) 

where /x/ is the final-state reduced mass. The calcula
tion of da/did uses Eqs. (42) and (43) and assumes 
A=2&iSin0/2 where ki is the incident center-of-mass 
momentum, ki=lA2F~1. For this momentum, the 
Coulomb parameter is rj = 8.34. The average binding 
parameter a is obtained from the known binding ener
gies of the neutron in the ground states of both N14 and 
N16 and is 5=0.693 F _ 1 . The correction terms in a. given 
by Eq. (36) are negligible for this example. Our results 
are shown in Fig. 1 along with the recent experimental 
data of Becker et al.8 

The theoretical curve contains no free parameters ex
cept for an over-all magnitude to normalize the theory 
to experiment at 90°, the symmetry angle for the 
scattering of identical particles. The predictions of the 
semiclassical theory of Breit and Ebel7 (labeled B-E) 
are also presented in Fig. 1 for the recoil events 
| /(TT—0) |2. The presence of interference effects is recog
nized by these authors in their formula for the cross 
section [our Eq. (43) above]. However, it seems ap
parent that interference terms cannot be calculated 
solely from semiclassical considerations; these yield only 
expressions for the cross section, or the absolute value 
of Tif. The complex phase as a function of rj, a, and A 
must also be known. [Due to the presence of the 
neutron binding parameter a, the phase term will in 
general be different from that given by the elastic 
scattering (Mott scattering) of identical particles.] 
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Equation (42) gives quite reasonable agreement with 
the experimental "wiggles" in the region near 90°, but 
does not predict the large observed fluctuations at lower 
angles. If these small angle wiggles are more than ex
perimental statistical fluctuations, they can only be 
explained by more subtle and more complicated effects 
than those described by the simple tunneling theory of 
this paper.24 This is apparent from consideration of the 
relative magnitudes of | T(0) | and \T(ir—d)\ as shown 
by the long dashed curves in Fig. 1. For 0<6O°, the 
contribution of the "direct" term T(d) becomes quite 
small compared to the "recoil" term T(ir—6), and 
therefore can produce little interference. 

Even if interference effects are suppressed, the aver
aged curve (without wiggles) provides excellent agree
ment with the average of the data in Fig. 1, that is, the 
average yield from 30 to 90° is apparently well described 
by Eq. (42). Comparison of | T(0) | 2 + | T(w-6) |2 calcu
lated by Eq. (42) with the semiclassical results7 shows 
the two methods differ by a factor of about 1.8 in the 
ratio da(0°)/dti to da (90°)/<ffl. [The contributions at 0° 
arise from only the recoil term, T(ir—ff).~] Now the 
angular distribution predictions of the absolute square 
of Eq. (42) differ from those of Eq. (23.1) of Ref. 7 
mainly by (1) the factor t an - 1 (a/A) which appears as 
just (a/A) in the semiclassical theory, and (2) the 
factor [A 2 (a 2+A 2 ) ] _ 1 which appears as A~~3 in the earlier 
work. The difference in the 0 to 90° ratio mentioned 
above arises primarily from the extra factor of A in the 
denominator of our cross section which contributes a 
factor of V i to | r ( 7 r - 0 ) | 2 at 0°. The use of the 
arctangent function rather than its argument also con
tributes to the discrepancy in a lesser way as does the 
contribution of a in the denominator function.7 

I t is obvious that both the replacement of the 
arctangent by its argument and the neglect of a com
pared with A in the denominator function become 
poorer approximations as the bombarding energy de
creases to very small values well below the Coulomb 
barrier. Conversely, in the neighborhood of the barrier 
and above, it becomes more reasonable to neglect a. 
compared with A; however, the large effects of the 
nucleus-nucleus interaction now must be accounted for 
and the simple tunneling theory (semiclassical or 
quantum mechanical) is no longer valid. 

We may also compare Eq. (42) with the results of the 
usual direct interaction theories for particle stripping. 
Both Ter-Martirosyan25 and Biedenharn, Boyer, and 
Goldstein26 have obtained expressions which, in certain 
limits reduce to expressions like Eq. (42). These theories 

24 More recent data apparently confirm the conjecture that the 
small-angle wiggles of Fig. 1 are of statistical origin. The addition 
of the new data smooths out the small-angle experimental distri
bution which is then described quite well by the solid curve. The 
author is indebted to Professor Mclntyre for the advance com
munication of these data. 

26 K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz, 29, 713 
(1955) [English transL: Soviet Phys.—JETP 2, 620 (1956)]. 

26 L. C. Biedenharn, K. Boyer, and M. Goldstein, Phys. Rev. 
104, 3S3 (1956). 

are based on a direct interaction stripping formalism in 
which the initial and final scattering states are repre
sented by Coulomb wave functions. The interaction 
"responsible" for the rearrangement is the usual deu-
teron potential used with a zero-range approximation 
for the deuteron's internal wave function. Although 
these two stripping theories differ somewhat in the 
approximations used, they essentially achieve the same 
result. 

Because the results of both theories are expressed in 
terms of Gauss' hypergeometric function, a direct com
parison with Eq. (42) for all values of the parameters is 
not feasible. However, it has been shown that Ter-
Martirosyan's result in the limit7'25 rj>1 obtains the 
same factor of tan - 1 (a/A) as in Eq. (42). The only 
difference in the angular dependence" is that of the extra 
factor of A in our results; which as we have already seen 
is most important to obtain a ratio of the cross section 
at 90 to 0° in agreement with experiment. The stripping 
theories also require the use of the usual zero-range 
approximation for the initial-state (deuteron) wave 
function of the bound neutron. This approximation 
introduces unrealistic high-Fourier momentum com
ponents for the neutron and also yields an expression in 
which only the final-state binding parameter (our a&) 
appears. I t should be emphasized that our approach 
avoids the difficulties that necessitate the zero-range 
approximation. 

The angular distributions from these theories are not 
plotted in Fig. 1. However, they would give results that 
are higher than ours by a factor of V2 at 0° assuming the 
same normalization at 90°. Although, in principle, the 
complex phase of the amplitude is contained in the 
hypergeometric functions of these references, the saddle 
point method used by Ter-Martirosyan to evaluate the 
hypergeometric function for ?7̂ >>1 obtains only the 
absolute value of the matrix element, and it is therefore 
not possible to compare the interference predictions of 
our theory with the stripping technique. 

The angular distributions of Becker et al. appear to 
be the only available at energies sufficiently low to 
neglect the effects of the purely nuclear potentials. Even 
in the low-energy N1 4+N1 4 experiments of Reynolds and 
Zucker27 at 19.2 MeV, calculations have shown28 that 
the effects of the core-core nuclear interaction are not 
negligible. I t is apparent from these calculations that 
the classical concept of Coulomb trajectories for nuclei 
with sharp boundaries is not valid for these processes. If 
they were, then the resulting angular distributions 
should show purely Coulomb effects [like Eq. (42)] for 
angles smaller than that where the distance of closest 
approach equals combined nuclear radius, and nuclear 
(absorptive) effects should be observed at larger angles. 
Our calculations4,14,28 show, however, that the nuclear 

27 H. L, Reynolds and A. Zucker, Phys. Rev. 101, 166 (1956). 
28 K. R. Greider, in Proceedings of the International Conference on 

Direct Interactions and Reaction Mechanisms, Padua, 1962 (Gordon 
and Breach, 1963). 
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absorption is quite important even at small angles which 
correspond to classical trajectories that remain well 
outside the nuclear boundary. Therefore, we argue that 
although the classical viewpoint may be approximately 
valid in the low-energy regime, it is not reasonable at 
higher energies in the region of and above the Coulomb 
barrier due to the importance of the inherently non-
classical nuclear effects. The advantage of the formula
tion presented in the Appendix is that it allows a simple 
and consistent description of the rearrangement process 
for all energies. 

V. DISCUSSION 

From a purely theoretical viewpoint it is difficult if 
not impossible to compare the methods that obtain 
Eq. (42) with the methods of either the semiclassical 
or direct interaction stripping theories. We rely instead 
on the physical plausibility of our "indirect interaction" 
approach for problems like neutron tunneling where the 
importance of the core-core Coulomb scattering is so 
evident. We must rely also on the reasonableness of the 
approximations involving the Coulomb T matrix that 
were made in Sec. I I I . Certainly a term-by-term com
parison of our methods with those of Refs. 25 or 26 is 
not possible since there are terms omitted from the 
direct interaction theory that are included in our "in
direct-interaction" approach and vice versa. In par
ticular, the lowest order term in the Coulomb potential 
Vab is neglected in the direct methods where Coulomb 
effects are only accounted for by the use of Coulomb 
wave functions. If Coulomb scattering is really so im
portant at low energies as it appears to be, then all 
terms in V ab should be included as in the T-matrix 
approach here. Also the zero-range approximation used 
by Ter-Martirosyan is not justifiable in the tunneling 
case. However, the only comparisons that can be made 
impartially are the comparison of both the mathe
matical form and the calculated results from Eq. (42) 
with the corresponding results of the other theories. 

Each of the theories gives the same approximate 
exponential dependence on A (neglecting the effect of 
the arctangent function), and each depends inversely on 
A as some power in A or (a2+A2)1/2. The extra factor of 
A in Eq. (42) which is absent in the other theories is 
apparently necessary to obtain agreement with the ex
periments shown in Fig. 1. Another comparison of the 
theories concerns itself with how well the dominant 
Coulomb scattering is taken into account. Consider the 
limit as the average binding energy (^a2) approaches 
zero, or when the mass of the transferred particle be
comes negligible. I t is apparent that the angular dis
tribution of the N13 nucleus (or core a) should be that of 
pure Rutherford scattering. The physical picture is that 
of a neutron bound infinitely weakly in both initial and 
final states; thus, the probability of finding the neutron 
no longer has a maximum at or near each nucleus, but 
is a constant over-all space. The correctly normalized 
Coulomb scattering angular distribution of Eq. (25) is 

exactly obtained in this limit by Eq. (42). Both the 
semiclassical treatment and the stripping results also 
reduce to the Rutherford angular distribution as a —> 0. 
However, these theories do not yield the complex phase 
dependence on A, and there appears to be some question 
concerning the absolute magnitude in the limit a —» 0. 
Of course it is not at all surprising that the T-matrix 
approach used here reduces to the true Coulomb scat
tering limit, since the actual Coulomb scattering ampli
tude is used in the description of the rearrangement 
process. 

We have said very little about the whole question of 
energy dependence in this paper since the data presently 
available overlap into the higher energy region where 
the core-core nuclear effects become important. In this 
region near and above the classical Coulomb barrier, the 
simple tunneling mechanism of Eq. (42) is not valid and 
the purely nuclear effects must be also included to 
describe neutron transfer. The energy dependence of the 
total cross section will be investigated in a future paper 
in which nuclear absorption effects are considered. 
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APPENDIX 

In this section we derive a formal expression for the 
transfer matrix element similar to that of Eq. (14), but 
which includes explicitly the entire nuclear interaction. 
The plane-wave states <j>i and <j>f are still given by Eqs. 
(1), and the complete wave functions are defined by 
Eqs. (3) where Vab(=Vab

N+Vab
c) is the sum of both 

nuclear and Coulomb potentials. Instead of Eqs. (5), 
we define the partially interacting states % in terms of 
the elastic potential U, defined such that its matrix 
elements are diagonal in the energy. The integral 
equations for the initial- and final-state elastic wave 
functions are 

x/+>= l 
L Ei-K-H-Vae-Ui+ie J 

(Al) 

and 

Ef-K-H- 7 6 c t - Ufi-ie •] US U , . (A2) 

The integral equations for \piW and ^ / ( _ ) can be written 
in terms of the %'s. 

*,.<+> = x..<+>+ 
1 

E-W+ie 

X(Vabc+Vah
N+Vbc-Ux)Xi{+\ (A3) 
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E-W-ie 

X(Vab°+V*»+Vac-UfW-\ (A4) 

The scattered wave ^ / + ) — X/+ ) still contains the 
inelastic rearrangement in which we are interested, and 
differs from the scattered wave of Eq. (7) in that some 
elastic channels contained in Eq. (7) are not contained 
here. The matrix element is then 

Tif^i+f^lVat'+Va^+Vtc-U^X^), (A5) 

which with the help of Eq. (A4) becomes 

Tif=(Xf^\\l+(Vab*+Vab
N+Vac-Uf) 1 

X (Vab
 c + Vab

 N+Vhc- Ui) I X/+>>. (A6) 

Equation (A6) can be expressed in a more useful form 
by singling out that part of the interaction that corre
sponds to the Coulomb T matrix propagating in the 
final-state elastic nuclear potential 

1 
Tif=(Xf^\Vab°+Vab 

E-Ho-Vbc-Vab°-Uf+ie 

XVab°\xW)+TifM. (A7) 

After a little algebra the second term on the right is 
found to be 

TV^Hx/-) I \i+vab * 1 
L E- Ho- Vbc- Vab

 c- Uf+ieJ 

X ( [ l + (Vab *+ Va- Uf) 1 

XiV^+Vlc-Ud+iVabV+Vao-Uf) 

1 

X-
E-W+ie 

7-F a 6 4 |X/+) ) . (A8) 

We now define new wave functions <£ which are solutions 
of the Schrodinger equation with the Coulomb potential 

and the elastic nuclear potential: 

(Et-Ho-Vac-Ui-Va^^O, (A9) 
and 

(Et-Ho-V^-UZ-Va^f^O. (A10) 

With these new functions, Eq. (A8) becomes 

r, . /» = <*/->I Vbc-Vac+Uf-tf<| %<<+>> 
+W->\(yab

N+Vae-Uf) 

X 1+ 
E-3C+ie 

-(VrtN+Vi c-tf<)] 3>/+>>. 

Finally, we define the elastic potentials Ui and Uf so 
that 

Wi^Vab + Vu-lU (All) 
and 

Wf=Vab + Vac~Uf (A12) 

are the inelastic part of the total initial- and final-state 
nuclear potentials, respectively. Then, 

r t. /«=<*/->|w r
i-^ / |x/+>) 

+(<$>/-) \Wf+Wr 
1 

-J*M $<<+>>. (A13) 
E-W+ie 

[Equations (A7) and (A13) appear somewhat un-
symmetric in regard to the initial- and final-state po
tentials since Eq. (A5) from which they were derived is 
itself unsymmetric. I t is easy to obtain a symmetrized 
expression by adding to Eqs. (A7) and (A13) the 
corresponding matrix elements that obtain when 

T^iXf^lVa^+Va^+Vbc-Uf^^) 

is used in place of Eq. (A5) J 
I t is evident from Eq. (A13) that the Coulomb wave 

functions <£ will diminish the contributions of the in
elastic nuclear potentials W at low energies and that 
Ti/(1) becomes much smaller than the first term of (A7). 
Therefore, in the low-energy limit, we expect 

Tif=(Xf^\tab
/c\xi^)^((l>f\tab

c\<l>i), (A14) 

which is the same as Eq. (16). A more detailed discussion 
of Eqs. (A7) and (A13) will appear in the subsequent 
paper in which a model for the nuclear core-core 
interaction is considered. 


