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The scattering amplitude for two-particle single-channel scattering may be computed by inverting a 
Hilbert-space operator 1—K, where K is compleely continuous and depends on the real energy as a para
meter. This inversion can always be accomplished by obtaining a finite number of eigenvalues and eigen-
functions of K together with a modified Born expansion which is guaranteed to converge. Another method 
consists in the inversion of a finite matrix, the elements of which are computed by a convergent perturbation 
series. 

I. INTRODUCTION 

IT is customary to distinguish between a time-
independent and a time-dependent scattering theory 

in quantum mechanics. More important, perhaps, is the 
related distinction between a wave mechanical and a 
Hilbert space formulation of scattering theory. In the 
first case one solves a boundary-value problem for 
functions that are not square integrable. In the second 
case the scattering operator (S operator) is expressed as 
a function of known operators on Hilbert space, and the 
ultimate problem is to compute matrix elements 
Sba= (<t>b,S<t>a) for certain Hilbert space vectors <f>a and 
<£&. The present paper is concerned with the Hilbert 
space formulation of scattering theory. The two formu
lations are, of course, intimately related; but a dis
cussion of this relation is not within the scope of this 
paper.1 

Recently, Weinberg2 has given a lucid discussion of 
the convergence of the Born series for two-particle 
single-channel scattering at complex energies. Weinberg 
gives a necessary and sufficient condition for the con
vergence of the Born series and shows how a convergent 
modified series can always be constructed when the 
ordinary Born series diverges.3 The purpose of the 
present paper is to modify Weinberg's treatment in such 
a manner that it becomes manifestly valid for real 
energies. Such a modification is suggested by the work 
of Rollnik.4-4a 

We are concerned with the scattering of a single 
particle by a fixed center, or with the relative motion of 
two particles. The Hamiltonian of the system has the 
form 

H=HQ+V, (1) 

where Ho is the kinetic energy. The scattering amplitude 

* Work performed under the auspices of the U. S. Atomic Energy 
Commission. 

1 A recent paper on the wave-mechanical Born series by M. 
Rotenberg [Ann. Phys. (N. Y.) 21, 599 (1963)] has many formal 
analogies to our treatment. 

2 S. Weinberg, Phys. Rev. 131, 440 (1963). 
3 Weinberg's so-called quasiparticles are really irrelevant in this 

context. 
4 H. Rollnik, Z. Physik 145, 639 (1956). 
4ft Note added^ in proof: See also K. Meetz, J. Math. Phys. 3, 690 

(1961). I wish^to thank Dr. W. Hunziker for drawing my atten
tion to this paper. 

may be obtained from the operator5 

T(W) = V+VG(W)V, (2) 

where G(W) is the resolvent of the Hamiltonian H, i.e., 

G(W)=(W-H)-\ (3) 

and W is a complex parameter W=E+ie. Eventually, 
W must approach the real energy of the scattering 
system. Since 

W-H= (W-Ho)Zl-Go(W)V2 
with 

Go(W)=(W-H0)-
1, 

we have the identity 

G(W) = [l-GQ{W)V~YlG,(W) • (4) 

Weinberg's treatment is based on the remark that, 
for reasonable potentials and W off the positive real 
axis, the operator 

KW=GQ(W)V 

is a Hilbert-Schmidt operator [Tr (KjKw) < oo 1 and 
hence is completely continuous.6 Unfortunately, the 
bound of Kw increases indefinitely as W approaches the 
positive real axis. This feature can be established easily 
by evaluating the expectation value of KjKw. Let x be 
defined by 

for some arbitrary vector \p and represent these vectors 
by square-integrable functions of E, /, m. The norm of 
the vector x is given in this representation by 

\\xf=l dEZ £ \x(E,l,m)\* (6) 
J o 1=0 m=—l 

5 This is a well-known result of the formal theory of scattering. 
See for instance M. Gell-Mann and M. L. Goldberger, Phys. Rev. 
91, 398 (1953), Eqs. (2.14) and_ (2.10). The precise relation of 
T(W) to the S operator will be discussed in Sec. II . 

6 A definition of completely continuous operators is given in the 
appendix. Other equivalent definitions and properties can be found 
in standard textbooks on functional analysis, for instance F. 
Riesz and B. Sz.-Nagy, Functional Analysis (Frederick Ungar 
Publishing Company, New York, 1955), p. 206; and N. I. Akhiezer 
and I. M. Glazman, Theory of Linear Operators in Hilbert Space 
(Frederick Ungar Publishing Company, New York, 1961), pp. 
56 if. 
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and the vector HQX is represented by the function 
Ex(E,l,tn). We have then 

JQ l,m 
(7) 

and since 

lime 
e-*Q Jo 

dE'F{E')[{E - E ) 2 + € 2 ] - 1 = TTF(EO): 

and 
0(±)to(±) = i . 

For the S operator, we may write 

dt 0(~} (12) 
dt 

the inequality 
and therefore, 

!MI2>-Llx(£^)l2 

2e im 

(8) ' / 
S= 1-i / (fte^o'Ffif-'e-^o*. (13) 

holds for all e that are smaller than some eo(\f/). One 
should not conclude that the eigenvalues of Kw increase 
in the same manner. They are continuous functions of 
W which have limits as W approaches the real axis.2,7 

But these limits are not eigenvalues of the unbounded 
operator KW(E). The eigenfunctions cease to be square 
integrable as e tends to zero. 

In Sec. II, the relation between T(W) and the 5 
operator will be examined. The result is that the 
operator limit 

T(E) = limT(E+ie) 

exists and is related to the scattering amplitude in the 
usual fashion. The operator T(E) is obtained as a func
tion of a known completely continuous operator K(E), 
and the problem of computing the scattering amplitude 
is reduced to inverting 1-K. Systematic approximations 
are discussed in Sec. III. 

II. PROPERTIES OF THE SCATTERING OPERATOR 

The scattering operator S is denned in terms of the 
Moller operators 12(±) by 

For any integrable function g(t) for which the limit 
g(— oo) exists, that limit satisfies the relation 

f° = lime / 
J —oo 

dte"g(t). (14) 

Similarly, if an operator A(t) is integrable and the 
strong limit 

(15) 
t—>—oc 

exists, then9,10 

lime / A^ = lime dtAity*. (16) 

The Moller operator 12(_) may therefore be obtained 
from 

0<-> = lim fll+G(E+ie)V]dPo(E)r (17) 

where dP0(E) is the spectral projection of #o.u We have 
thus the result 

where 
S=0<+>tQ<-> 

t->±oo 

U(t)=eiHte~iHQt. 

(9) 

(10) 

7Q<-> = lim f T(E+ie)dP0(E), (18) 

The limits are strong operator limits.8 All operator 
limits in the following are understood to be strong limits 
unless otherwise specified. From Eq. (10) follows that 

dQ(t) 
lim -=mW-&&Ho=0 
*-*±°° dt 

(ID 

7 A proof is given at the end of Sec. II . 
8 The definitions of various operator limits are listed in the 

Appendix. See also N. I. Akhiezer and I. M. Glazman, Theory of 
Linear Operators in Hilbert Space (Frederick Ungar Publishing 
Company, New York, 1961), p. 61. 

with TQV) defined by Eq. (2). Equations (13) and 
(18) give us the desired relation between T(W) and the 
5 operator. The limit e —> 0 must be taken after the 
integration over E unless the interchange can be justi
fied. The practical advantages of such an interchange 
are manifest. 

The matrix elements of S are to be taken between 
states <£a and <£& which are almost sharp in the energy, 
i.e., 

dP0(E)cl>a = <t>a (19) 
' Ea-A f 

J E, 
9 J. M. Jauch, Helv. Phys. Acta 31, 127 (1958). 
10 A. Galindo Tixaire, Helv. Phys. Acta 32, 412 (1959). 
11 In Dirac's notation one would write dPo(E) = \E)(E\dE. 
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for some "small" A. The limit e —» 0 and the integration 
over E may therefore be interchanged in Eq. (18) if the 
operator T(E+ie) converges to a limit T(E) uniformly 
in E for finite intervals. We prove the existence of this 
limit by expressing T as a strongly continuous function 
of an operator K(E-\-ie) that has the desired limit. 

The resolvent Go(E-\-ie) may be represented by an 
integral kernel in the x representation 

(x|G0(WO|xO = 
Jjtf eik\x-x'\ 

2T | X - X ' | 
(20) 

where k= (2MW)112. I t is therefore possible to factor any 
reasonable interaction operator V according to 

7=7(+>7(-> (21) 

such that the operator 

K(E+ie)=V<->G0(E+ie)V<*> (22) 

remains bounded as e tends to zero. The precise choice 
of F ( + ) and F ( - ) is arbitrary to a large extent. The trace 
of KfK may be computed from the expression 

Ti(&K) = (—\ fdx fdx' fdy (dy'(y'\V^V^\x) 

eik\x— x' | g— ik*\y— y ' | 

X(x'\V^V^\y) . (23) 
x—x' | y - y 

For local potentials and e=0, this expression reduces to 

/ M \ 2 r r |7<->(x) | 2 |F ( + ) (x ' ) l 2 

•***>-(£) M " — ^ — < 2 4 ) 

The operator K(E) is therefore a Hilbert-Schmidt 
operator provided the interaction potential decreases 
sufficiently rapidly for Jarge | x | . 

From the identity (4) we get 

7<->G(W0F<+>= (l-K^K, (25) 

and therefore, 

T(E)^V+V^ll-K(E)J-1K(E)V^ 
= V^[\-K{E)~]-W^\ (26) 

With Eq. (26) we have reached the objective of this 
section. ' . -

For complex W the operators Kw and K have the 
same eigenvalues. Let rj be an eigenvalue of Kw. Since 

V<->Kw=KV<->, (27) 
it follows from 

Kw<f>=H (28) 

that 
KV<->4>=V<-)<fo. (29) 

As e tends to zero, the vectors F("~ty converge to a 
strong limit while the vectors <j> do not. 

III. APPROXIMATION PROCEDURES 

A completely continuous operator K has essentially 
the properties of a finite matrix because it may be 
approximated uniformly by a sequence {KN} of 
operators of finite rank i^.12 Therefore the sequence 
{(I—KN^K^} converges uniformly to (1—K^K.1 3 

The Neumann series 

converges uniformly if and only if 

lim ||Z"H| = 0, 

since 

(l-K)-1- Z Kn=(l-K)~1K™. 
n=0 

If 171 is the largest eigenvalue of K, then 

For completely continuous operators14 

lim \\Km\\llm= Vi-

(30) 

(31) 

(32) 

(33) 

(34) 

Therefore Eq. (31) holds and the Neumann series (30) 
converges2 if and only if \rji\ < 1 . But |^i|<$Cl does not 
guarantee rapid convergence. An example would be a 
large Jordan box12 with zero eigenvalues. 

Instead of expanding (1—K)"1 in a Neumann series, 
one might simply select a suitable KN and invert the 
corresponding matrix. The following scheme combines 
both procedures. Let PN be a projection operator that 
projects into an iV-dimensional subspace of the Hilbert 
space, and define 

KN=PNKPN (35) 
such that 

| | # - i ^ | | < l . (36) 

A useful expression for the operator 

PN(l-K)~iKPN=PN(l-K)-ipN-PN (37) 

is easily derived from the identity 

( 1 - Z ) - 1 ^ {l-KN-K")-i[l+Kf{\-K)-q, (38) 

where 
K' = PNK(1-PN)+(1-PN)KPN (39) 

and 
K"=(1-PN)K(1-PN) 

= (1-PN)(K-KN)(1-PN). (40) 

From Eqs. (36) and (40) it follows that 

\\K"\\^\\K-KN\\<\. ' 
12 For the properties of operators of finite rank, see for instance 

F. R. Gantmacher, The Theory of Matrices (Chelsea Publishing 
Company, New York, 1959), Chap. 7. 

13 M. A. Naimark, Nowned Rings (P. Noordhoff Ltd., Groningen, 
The Netherlands, 1959), Chap. II, Sec. 9, No. 3, Theorem I. 

14 F. Riesz and B. Sz.-Nagy, Functional Analysis (Frederick 
Ungar Publishing Company, New York, 1955), p. 425. 
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From Eq. (38) it follows that 

PN{l-K)-^PN 

= {I-KNY^PN+K^I-P^^-KY^PN] (41) 
and 

(l-PN)(l-K)-ipN 

= (1-K")-1K'PN(1-K)~ip2r. (42) 

Substituting (42) into (41) yields 

PN(1~K)-'KPN= (1-KN-KN')-I(KN+KN') , (43) 

where 
KN' = PNK' (1 - K")^K'PN. (44) 

The matrix representing {1—KN—KN) may be in
verted by standard numerical methods. The operator 
KN should be computed as a perturbation series, i.e., 
from 

KN' = PNK'Y<m(K")™K,PN. (45) 

The larger the value of N, the smaller is the number of 
terms needed in the series (45) since ||i£"|| decreases as 
N increases. In practice one must compromise between 
the competing desires for a small TV" and for rapid con
vergence of the series (45). 

An alternative procedure consists in reducing K by 
computing first a finite number of eigenvalues and 
eigenfunctions. Let rji, r)2,- • -,r?w be the n largest eigen
values of K, with 

\m\ ^ W ^ 11)21 ^ • • •. 

We assume that there is a linearly independent eigen
vector \pv for each eigenvalue i\v. This is certainly the 
case if the eigenvalues are all different or if the degen
eracies are due to symmetries (such as rotational 
symmetry). The case of accidental degeneracies, which 
may involve nonlinear elementary divisors, is not of 
physical interest. The method described here could, 
however, be easily adapted to include that case. If rjv is 
an eigenvalue of K, then rjv* is an eigenvalue of i£+. Let 
Xv be the corresponding eigenvector. Then 

K\//V=r)vipv, (46) 

# f X ^ * X v . (47) 

The sets {\pv} and {xv} are bi-orthogonal, i.e., 

(xM = hv) (48) 

and the reduced operator Kn\ defined by 

Kn'f=Kf-£,f,Vp(x,,f), (49) 

has the properties 
#»ty,=0 (50) 

and 
Kn'iXv=0 (51) 

for v=l,"')n. The largest eigenvalue of Kn' is rjn+i. 

From Eqs. (49), (50), and (51), it follows that 

(l-K)-*Kf=i:f9 v^fi+il-KnT'Knf. (52) 
• * = i 1—rfr 

An eigenvalue ^ can be equal to unity only if there is 
a true bound state of the Hamiltonian H at the energy 
E. In that case Eq. (52) remains valid for all /which are 
orthogonal to Xv The term *>=/z should be omitted from 
the sum. 

For a completely continuous operator K, the eigen
value r)n+i can be made arbitrarily small by choosing n 
sufficiently large. The convergence of the Neumann 
series for (1 — Kn)"1 is therefore assured. But there is 
no assurance that \\Kn'\\ will become small. Inspection 
of the eigenvalues alone does not give sufficient in
formation about the number of terms needed in the 
Neumann series to achieve a given accuracy. Neverthe
less, it seems plausible that a few eigenvalues of K and 
the first term in the series may give an adequate approx
imation in practice. 

The preceding developments allow a trivial generali
zation to two-particle many-channel scattering if all 
particles are elementary. Rearrangement collisions 
require special consideration. They will be dealt with in 
a subsequent paper. 

APPENDIX 

For the convenience of the reader, the definitions of 
three modes of convergence of a sequence of bounded 
linear operators {An} on a Hilbert space 3C are listed. 

Definition 1. The sequence {An} converges weakly to 
A if for each pair of vectors /e3C and ge3C 

]hn(g,Anf)=(g,Af). 
n—>oo 

Definition 2. The sequence {An} converges strongly to 
A if for each /e3C 

l im| | (4- i l„ ) / | | = 0. 
n—»°o 

Definition 3. The sequence {An} converges uniformly 
if for every e>0 there exists an N such that 

| | ( ^ - ^ ) / | | < e | | / | | 

for all n> Randal l /e3C. 
Complete continuity of an operator may be defined in 

many different but equivalent ways.6 The following 
definition is the one most convenient for our purposes. 

Definition. A linear operator K is completely continuous 
if there exists a sequence of operators KN of finite rank 
N that converges uniformly to K. 
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