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A model of pion-pion scattering is presented in which each partial-wave amplitude in the s channel satisfies 
unitarity including inelastic states. This is accomplished by the use of the N/D technique. The full ampli
tude, i.e., the explicit, continued, partial-wave sum does not satisfy unitarity in the t and u channels, but 
it does have the correct branch points in these channels. These characteristics are guaranteed by construction 
and do not depend on arbitrary parameters occurring in the N functions. The parameters are fixed by 
imposing the crossing relations and by demanding the existence of a Pomeranchuk trajectory in the T—0 
channel. The existence of the p is not assumed. Since crossing is not satisfied exactly, the parameters are 
determined as those that yield the best fit to the crossing relations. Once the parameters have been fixed, 
the behavior of each partial wave in each isospin channel is determined. Phase shifts are presented for the 
S, P, and D waves. The P wave is repulsive at low energies but becomes quite attractive at higher energies 
due to inelastic effects. A resonance occurs at s = 33.7 ju2 with a width about three times that experimentally 
observed; this width is extremely sensitive to the parameters, the position is not. An 5-wave ghost occurs 
at 5-= —57.1 M2 (whose residue is zero) as well as the Pomeranchuk trajectory at s = 0. The S waves are 
strongly repulsive at low energies. In fact, they are so repulsive that rather broad peaks are produced in 
their cross sections near 400 MeV when the phase shifts pass through —TT/2. The peak in the T = 0 channel 
may very well correspond to the Abashian, Booth, and Crowe (ABC) anomaly. There are no resonances 
in the D waves. In particular, the existence of an/o is incompatible with any choice of the parameters unless 
it is accompanied by another strong Z>-wave resonance at low energy, and even this possibility violates 
crossing badly. This may be due to a poor choice for our trial function. 

I. INTRODUCTION 

IN the past few years, several attempts1-3 have been 
made to determine the pion-pion scattering ampli

tude. It is clear that this is an important amplitude to 
determine since a knowledge of it is necessary for a 
determination of all other amplitudes. Among other 
characteristics, the ir-ir amplitude is unique in the 
sense that the crossing relations are relations between 
the same amplitudes, no other amplitudes being in
volved. In addition to the constraint of crossing, one 
has of course the usual restrictions of unitarity, thresh
old behavior, etc. Not surprisingly, the solution of this 
complete problem is very difficult and various approxi
mation schemes have been developed to make the 
problem tractable. The goal of any given calculation 
using such a scheme has been primarily to reproduce 
the pronounced resonance in the T=l, 1=1 channel, 
the p meson. These calculations have shown, if nothing 
else, that the basic difficulty in a study of the 7r-7r 
amplitude is the imposition of the crossing relations in 
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the following sense. One conventionally decomposes 
the amplitude into partial waves and then analyzes 
these partial waves by some method, say the N/D 
technique, by means of which one can proceed a 
reasonable distance, but the crossing relations apply 
to the full amplitude, i.e., the partial-wave sum, 

To avoid the total complexity of the crossing rela
tions, the concept of a "self-consistent" calculation4 

was introduced, i.e., the presence of a p meson in the 
crossed channels will itself provide an exchange force 
which may produce a resonance in the direct channel. 
Such calculations have encountered divergence diffi
culties (which can be eliminated by the use of Regge 
poles in the crossed channel5), but they have been 
useful. They do suffer, however, from the essential 
difficulty of principle in that they assume the existence 
of the p meson itself. This, of course, is independent of 
the violence done to the proper crossing relations which 
is related to the divergence difficulties alluded to above. 
Also inelastic states have been shown to play an 
important role in producing resonances which occur at 
higher energies,6'7 and although such states have not 
been included in previous calculations, these states are 
certainly important in a discussion of the p meson. In 
any event, it is clear that a calculation which can 
produce the p meson by imposing the constraints of 
crossing, unitarity, etc., and without assuming its 
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existence, is certainly of interest. This, in fact, is the 
object of this paper. 

Finally, our main motivation here is not to perform 
a "better" calculation than those done by others since 
at this stage of development, the word "better," like 
the rest of the theory, is probably not well defined. 
On the other hand, we feel that it is not sensible to 
believe a model of the strong interactions simply 
because there happens to be some approximation 
scheme which when applied to the model yields results 
more or less in agreement with experiment. The natural 
question to ask is the following: Is this agreement a 
property of the model or the approximations? This 
question is of the utmost importance for those who 
want to "bootstrap" the phenomena associated with 
strong-interaction physics as we know it. We have 
tried to develop a scheme which is different from those 
already reported in the literature, and yet which is at 
the same time sensible. If the reader will bear this in 
mind, many obscure points of logic will become clear. 
This paper is probably unique in that we make very 
little use of Regge poles (none from a strictly logical 
point of view) simply because it is simpler to avoid 
them in our analysis. I t should also be kept in mind 
that our results, which come from a numerical vari
ational procedure, are strongly limited by our choice 
of a trial function and lack of time on a computer. 

In this analysis, we will construct a model which 
includes nearly all of the restrictions inherent in the 
TT-TT problem and show that, in fact, the p meson is a 
necessary consequence of these constraints. Basically, 
our procedure will be to construct scattering amplitudes 
which intrinsically satisfy certain of the usual con
straints, e.g., unitarity, threshold behavior, etc., while 
the remaining constraint and crossing will be satisfied 
by choosing specific values for parameters which will 
be introduced into the amplitude. Once these parame
ters are determined, the complete amplitude is known. 
Section I I will provide a construction of those ampli
tudes which satisfy all of the constraints except crossing. 
In Sec. I l l , we discuss the parameter determination 
by the use of crossing in detail. Finally, in Sec. IV, we 
present the numerical results of our analysis including 
the phase shifts for the Sy P, and D waves in all three 
isospin channels. 

II. CONSTRUCTION OF THE SCATTERING 
AMPLITUDES 

A. Elastic States 

As stated in the Introduction, our goal is to construct 
a parameterized scattering amplitude which intrin
sically satisfies some of the constraints imposed on any 
scattering amplitude and such that the remaining 
requirements can be approximately satisfied by choosing 
the parameters judiciously. This has been the object of 
several studies1-3 from various points of view, but we 
believe the analysis given here is a more properly self-

\x p,' 
FIG. 1. Elastic pion-pion f \ 

scattering. ( J 

consistent one than those previously presented and, 
as such, is more comprehensive. Although we will 
include the effects of some inelastic states, we will 
begin by imposing only elastic unitarity. 

Our procedure will be to choose a specific form for 
the partial-wave amplitudes in some channel such that 
each amplitude satisfies unitarity and has the correct 
threshold behavior in the relevant variable. We will 
further insist that the full amplitude, i.e., partial-wave 
sum, have, at least, discontinuities in the remaining 
variables over the correct range, although unitarity 
and the correct threshold behavior may not be satisfied 
in these variables. Even though the chosen partial-wave 
amplitudes will contain parameters, it is to be empha
sized that the above requirements must be satisfied 
independent of a particular choice of the parameters. 
Other constraints on the amplitudes, such as crossing, 
will be approximately satisfied by the choice of the 
parameters. 

We begin by defining the usual variables, see Fig. 1, 
as 

t=-(p1-p1
,)\ (i) 

u=-(p1-p2y, 

where P?=P}=P\1—P{'>•=—\, and we introduce the 
scattering angle in the 5 channel as 

Z = ( P x . P i ' ) / P * , (2) 

where P4 and P / denote the initial and final pion 
momenta, and P2= | (s—4). All quantities refer to the 
barycentric system in the s channel. We now expand 
the amplitude, using superscripts to denote the isotopic 
spin values, in a partial-wave series in the s channel as 

M™(s,t) = h E ( 2 / + 1 ) M , » . « M [ P ^ ) + i M - s ) ] , (3) 
I 

MV(s,t) = hJ:(2l+l)Mia)(s)ZPi(z)-Pl(-z)-]. (4) 
I 

The requirements that Mi{s) satisfy unitarity and also 
have the correct threshold behavior are usually ac
complished by first explicitly displaying the threshold 
behavior and then writing the remaining amplitude in 
terms of the N/D procedure.1 Therefore one writes for 
all s, 

Mi(s) = P*lFl(s) = P*l(Nl(s)/Dl(s)). . (S) 

For the purposes of this analysis, however, Eq. (5) 
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LX xJ. FIG. 2. Born approximation: two-
/ \ pion state in the crossed channel. 
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is not a favorable choice. Especially, within the frame
work of approximations we wish to employ, it will not 
lead to the correct cuts in the t plane. A more suitable 
choice is provided by the modification of the simple, 
Regge-pole formula due to Khuri,8 in which the full 
amplitude exhibits the correct t cuts explicitly. Rather 
than Eq. (5) we write, 

Mi(s)=<r»Fi(s), (6) 

coshf=l+(2Af/(j-4)), (7) 

where M is the lowest mass exchanged in the / and u 
channels. If we regard the diagram in Fig. 2 as the 
driving term of the ^-channel, partial-wave, dispersion 
relations, then Jkf=4. By use of Eq. (7), we may write 

e - f = ( , i / 2_ 2 ) / ( ^ 2 +2) , (8) 

which leads to the same threshold behavior as that 
given in Eq. (5). Thus, rewriting Eqs. (3) and (4), we 
have 

M(0,2)(^) = i £ ( 2 1 + l)6r«*F,<0'2)(s) 
i 

xDPiCO+iM-*)], (9) 
M<» (*,/) = * £ ( 2 H - 1 ) « - W ( j ) 

i 

XlPi(z)-P,(-z)l, (10) 
where 

F,m(j)=ff i<"( j ) /A" , ( j ) ) (ID 
and 

1 r p(s')e-t'lNlW(s') 
D,m(s) = l— ds' , (12) 

T J i S —S 

with 
p ( / ) = ( ( / - 4 ) / / ) ^ . (13) 

Extraneous constant factors in the phase-space func
tion p(s) are absorbed into the multiplicative parameters 
of the Ni; these factors will be the same for all channels. 
Once a choice of the form of Ni(T)(s) is made, the 
amplitude is determined except for the values of the 
parameters occurring in iWT)(s). This will be discussed 
in Sec. III. 

It is obvious from this construction that Mi{s) has 
the proper threshold behavior and satisfies unitarity in 
the s channel. We now show that M(T)(s,t) has the 
correct positions of the t and u cuts. It is well known 
that the N/D procedure starts with a Born-approxima
tion diagram (N) and iterates this to satisfy unitarity 
(D). Thus the diagram in Fig. 2 yields in an N/D cal-

s N. N. Khuri, Phys. Rev. 130, 429 (1963), 
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culation the sum in Fig. 3. We may explicitly display 
such diagrams by expanding the D function as, 

1 1 
= l+dl(s)+ • • • , (14) 

Dl{s) 1-dtis) 

where we have suppressed the isotopic-spin labels. Of 
course, if the series is truncated, it will not be a good 
approximation of the D function itself, especially if the 
value of s is near that of a resonance, but term by term 
the series is useful in determining the analytic proper
ties. Thus 

Mi(s) = hKs)Ni(s)£l+di(s)+-. • ] , (15) 

where we have introduced h(s) as 

h(s) = e-*= ( ^ 2 - 2 ) / ( ^ 2 + 2 ) . (16) 

The first term in Eq. (15) when summed over / is 
simply the Born approximation, i.e., the first diagram 
in Fig. 3, and the second term represents the second 
diagram in Fig. 3. However, Eq. (15) implies that the 
positions of the left-hand cuts arising from the diagrams 
in Fig. 3 are the same, which is not true. Thus if we 
wish to keep the first two terms in the expansion of 
1/Di(s), we must modify Ni(s) if we are to obtain the 
correct left-hand cuts. We therefore truncate the ex
pansion of \/Di(s) but replace Ni{s) by 

Nl(s)^Ni(s)Zl-dl(s)+7l(s)2, (17) 

where 7i(s) is a correction to di(s) and is proportional 
to an integral over Ni(s). Equation (15) now becomes, 

c ^ ( 5 ) A ^ ) [ l + Y ^ ) ] , (18) 

where we have neglected the quadratic terms. In order 
that we preserve the fundamental spirit of the N/D 
method we must insist that N(s), as modified in Eq. 
(17), is still analytic on the right. Since di(s) is cut from 
5=4 to oo, 7i(s) must also be so cut and thus let us 
choose for 7f(,y) 

T i « = - [ -^-p(s')Jrl(sW(,s,s')K(s,s'), (19) 
T J i S—S 

for reasons that will become clear shortly. With this 
choice for y^s), the requirement that Ni(s) have no 
right-hand discontinuity leads to the relation 

hl(s)N(s) = h~l(s)Hl(sJs)K(s,s), (20) 

which may be satisfied by requiring that 

(21) 

It is easy to see that Mi(s) satisfies unitarity, by use of 
Eqs. (19) and (21) to first order, i.e., 

ImZMi(s)/ht(s)l=p(s)hl(s)Nt(s), (22) 
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FIG. 3. Iteration of two-pion ex
change by means of one-channel 
unitarity. 

and this is the principal reason for the choice in Eq. 
(19). 

The total amplitude is given now as 

M(s,t) = T,(2l+l)hKs)Nl(s)ll+7l(s)Jfl(z). (23) 
i 

If we assume that we may neglect the I dependence in 
Ni(s)} say as compared to hl(s), we may sum the series 
explicitly. In particular, 

M(s,t) = N(s)Z(2l+i)hKs)Pi(z) 
i 

+ (l/ir)[ -^-p(s')N(s)K(s,s') 
Ji S—S 

XL(2/+l)H'(*/)Pi(2) 
t 

-N(s) 
\-W{s) 

13/2 l(l-k(s)y-2h(s)(z-l)J 

1 r°° ds' 
+- I • P(s')N(s)K(s/) 

TT J 4 S —S 

X-
l - f f ( v ' ) 

13/2 l(l-H(s/)y-2H(s,s')(z-l)J 

which follows by use of the generating function of the 
Legendre polynomials. By use of Eqs. (16) and (2), 
this may be reduced to 

M(s,t)=-
sw(sw+2)N(s) 

8(4-03 / 2 

1 rx ds' P3(s)(l-H2(s,s')) i r a. 
+- / —p(s')N(s)K(s,s')- t n 

wJi s'-s H3'2(s,s') 

X-
13/2 

•• (24) 
Z(P*(s)/H(s,s'Ml-H(s,s')y-Q 

The first term in this expression clearly represents the 
singularities in t arising from the first diagram in Fig. 3. 
However, the second term is quite unsatisfactory in 
representing the singularities in t for the second diagram 
in Fig. 3. If one insists on a product, cut-plane repre
sentation (i.e., a Mandelstam representation). In par
ticular, the cuts in t depend on s as well as s'. Since 
H(s,s') is arbitrary except for the condition in Eq. (21), 
we will insist that H(s,s') satisfy the additional re
striction 

(P>(s)/H(s,s')Hl-H(s,s')y=f(s'), (25) 

where f(sf) is some function of sf alone. We may de
termine f(s') immediately by setting 5 equal to s' and 
using Eq. (21). This yields 

/(*')= l&7(* ' -4 ) , (26) 

which is, of course, the equation of the boundary of 
the Mandelstam spectral function. The function 
H(s,s') itself may now be determined from Eq. (25), 
and one obtains 

ff(v')=i+ 
f(s') rfW yv)1 rt 2P2(s) LP2(s) 4PA(s). 

1/2 

(27) 

The opposite sign for the square root does not satisfy 
Eq. (21). 

However, Eq. (24) is still unsatisfactory because the 
integrand still contains a dependence on s other than 
that occurring in the denominator (s'—s). Again we 
insist that 

i» ( j ) ( l - f l»(v ' ) ) 
N(s)K(s,s') =F(s'), (28) 

IPi2(s,s') 
and determine F(s') by setting s equal to s' and using 
Eq. (21). This gives 

and 
F(s')=Ni(s')(Pd(s')ms')Kl-hi(s')), 

-Wis') N2(s') rP(s')^rH(s,s')-fi2 1 -
K(s,s') = \ 

LP(s)JLhHs') J 1-J . P (j) J L ¥ (/) J 1 - # 2 (s,s') N (s) 

We may therefore write Eq. (24) as 

sl'2(s1'2+2)N(s) 

(29) 

M(s,t)=-
8(4-/) 3/2 

i r 
+- / — 

TJi (s' — 

ds'p(s')P*(s') 

(s'-s)l(16s'/(s'-i))-0 13/2 

X 
r i - ay ) i 
L h*{s') J 

W{s'), (30) 

which correctly represents the singularities in s and t 
arising from the diagrams in Fig. 3. The proper cuts in 
u follow immediately from the symmetrization of 
M(s,t) given in Eqs. (3) and (4), specifically if ^ —> —z, 
then t—*u. 

Although we would not expect M(s,t) as given in 
Eq. (30) to yield reliable results in any calculation, 
especially those involving resonances, it does show that 
the form given in Eqs. (9) and (10) satisfies our require
ments for a scattering amplitude. Further, we note that 
the I dependence of Ni(s) played no essential role in 
the development of the proper t and u singularities. By 
neglecting this / dependence we have only allowed 
ourselves the possibility of summing the series ex
plicitly. In everything that follows, we will assume it 



B1S30 K R E P S , C O O K , B R E H M , A N D B L A N K E N B E C L E R 

is a good approximation to neglect the I dependence 
of Ni(s) especially when compared to that of e~^K 
Therefore, our model, in the approximation of elastic 
unitarity, is defined by Eqs. (9) to (13) and by the 
parameters which occur in the function N(s). 

B. Inelastic States 

We would now like to extend the analysis of the 
previous section to include inelastic states in the uni
tarity relation. The motivation for this follows pri
marily from the observation that important experi
mental effects are present considerably above the 
lowest inelastic threshold (s=16) and also that the 
effects of inelastic channels can be large below the 
inelastic thresholds.7 In order to include, in a general 
way, the inelastic effects, we will consider two "two-
particle" inelastic channels which represent in some 
way the states (w-oo) and (p-p). 

In the T= 0 and T= 2 channels the (TT-OO) state 
cannot contribute, and thus we represent the inelastic 
states for even isospin by the {p-p) state alone. Since 
we have even isospin, Bose statistics requires that the 
spin-zero and spin-two states couple to even orbital 
angular momentum (L) in the (p-p) system, while the 
spin-one state couples to odd L. The complications here 
due to the spin may be considerably reduced by neg
lecting, for the moment, all values of L except L = 0 . 
This is a reasonable physical assumption since the 
primary inelastic contribution to ir-ir scattering below, 
say, 1500 MeV is probably dominated by the low-energy 
region of this production reaction; this region is domi
nated, in turn, by the 5-wave, (p-p) phase space. Thus 
under this assumption, in each isospin state, the spin-
zero (p-p) state contributes to 5-wave T-T scattering 
while the spin-two state contributes to Z)-wave ir-ir 
scattering; the spin-one state does not contribute at 
all. Actually, we shall construct all the partial waves 
not just those corresponding to L = 0 . These remarks 
concerning the importance of Z = 0 motivate the in
elastic model we shall use to hold for all L 

If we continue to impose the condition that L=0 in 
the (p-p) state, then this state does not contribute to 
the T= 1 channel since L=0 requires even parity while 
Bose statistics requires odd parity in the (71—71-) system. 
Even if the (p-p) state could contribute to the T= 1 
channel, e.g., by removing the restriction that L = 0 , 
we would neglect its effect because its threshold 
(112 /x2) is so much higher than that of the (TT-CO) state 
(42 p2). While it is necessary to assume some model for 
the weighting of the spin zero and two in the inelastic 
(p-p) amplitude, spin presents no problem for the 
inelastic (T-OO) amplitude. Since the orbital angular 
momentum in the (71—co) channel is uniquely related to 
/, we can readily include all I in the construction. 

There are, of course, many other two-particle states 
which contribute to the inelastic effects, e.g., the (co-co) 
state. However, since all we wish to accomplish is an 

v ^ ^ S vCZ^O FIG. 4. Two-pion exchange states in 
/ \ /I \ elastic TTCO and pp scattering. 

(a) (b) 

approximate representation of the inelastic states, we 
will ignore these additional states. As a matter of fact 
the (00-00) state is well approximated by the (p-p) state; 
their thresholds and the analysis of their spin de
pendences are similar, and they will contribute to the 
r = 0 (7r-7r) state in approximately the same way. 
(They do not couple to the T= 2 state.) Intermediate 
(KK) states, etc., are neglected altogether. 

If we do confine our attention, and we will, to the 
(71—co) and (p-p) states then it is necessary to show that 
including these inelastic states does not affect the 
remarks made in Sec. HA concerning threshold be
havior and crossed-channel cuts. In order to show that 
the previous analysis still applies, let us ignore all 
questions of spin, both intrinsic and isotopic. We now 
have three channels (71—71-), (71—0;), and (p-p) which we 
will label 1, 2, and 3, respectively. For channel 1 we 
relabel the relevant quantities as: 

P i = [ ( * - 4 ) A ] 1 / 2 , 

A i = ( ^ - 2 ) / ( s W + 2 ) = «-«», 

cosh? 1 =l+(4 /2P 1
2 ) , 

P ! 2 = ( 5 - 4 ) / 4 . 

From the preceding section we know that if the partial-
wave amplitudes exhibit the factor hi1, then the correct 
threshold behavior is present. 

For channel 2 we consider the diagram in Fig. 4(a) 
and define 

{ [ > - ( a > + l ) 2 ] [ s - ( « - l W 
P2 = , 

[ 5 1 /2_ 1 ]2_ W 2 

[ 5 l /2+ jJ2_w2 (32) 

cosh£ 2 =l+(4 /2P 2
2 ) , 

4s 

where we note that hi—»P2
2 as s—» (w+1)2. Similarly 

for channel 3 we consider the diagram in Fig. 4(b) and 
write 

Pi=((s-4p*)/syi>, 

C^-4p2+4]1 '2-2 
h=e~(3= •, 

|>-V+4]w+2 (33) 

cosh?3=l+(4/2P3
2), 

iY=(*-4p 2 ) /4 , 

and, of course, h$ —> P3
2 as 5 —> 4p2. Just as in the case 
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of channel 1, if the partial-wave amplitudes in channels 
2 and 3 exhibit the factors h2

l and hzl, the correct 
threshold behavior will be present. 

If one proceeds in analogy with the previous section, 
we now write the many-channel, partial-wave ampli
tudes as7'9 

where 

and 

fhi ON 
h«» = h(2> 

hd) 

/Ai 0 \ 

\0 hj' 
fhx 0\ 

\0 A2/ ' 

(34) 

(35) 

The amplitudes F j ( r ) may be written in terms of a 
many-channel, Af/D analysis so that 

F,<T>D,<r> = Ni<r>, (36) 

where, suppressing the isotopic spin label, 

1 r00 ds' 

IT J A Sf — S 

i r dsf 

IT J 4 5 ; — ^ 

Z W > = - / hi'WNiu, 

(37) 

iW* 

7T 7 «,- S — S 

1 r00 <fc' 
= 1 — / 

TV J si Sf — S 
'hi'WNui', 

in which the primed functions under the integrals are 
functions of s' and where i=2(3) for T= 1(0,2). Also 
S2=(w+1)2 and s3=4p2, and we have suppressed the 
spin-state quantum numbers in the case of i—3 in the 
above equations. 

To show that the correct cuts in the crossed channels 
are still retained, we proceed exactly as before. Let us 
consider the T=l channel and expand the determinant, 
D=l—d, which now replaces the simple denominator 
function, as well as replacing N by N (1—d+y). As 
before, we assume the matrix elements of Nj to be 
/ independent. To second order, i.e., keeping the 
diagrams in Fig. 5, we obtain for the TT-TT channel, 

r 1 r00 ds' -| 
Afin = AiWn 1 + - / ftiV^ii' 

L T J 4 S' — S J 

1 r°° ds' 
+A1W12- / h'WNn'. (38) 

The series 

JM*,0 = E (21+l)Mm(s)Pi(z) 
1 

9 R. Blankenbecler, Phys. Rev. 122, 983 (1961). 

FIG. 5. Iteration of two-pion 
exchange by means of two-
channel unitarity. 

(a) (b) (c) 

may be again summed exactly and one obtains 

I -A1 2 

M u ( * ) = # i r 
(l+hi*-2zhdm 

+-
# 1 ds' 

-pi'Ku(s,s') 

X-

T J 4 S —S 

1-ffuW) 

Nu r ds' 
+ / P2 '#21(V ' ) 

ir J (u+i)* s'—s 

X 
( l + f f i d W ) - 2 a f f „ ( 5 , j ' ) ) W 

(39) 

The three terms in Eq. (39) correspond to the diagrams 
in Figs. 5(a), (b), (c), respectively, and the definition 
of the Ki3 and Ha is obvious from Eqs. (20) and (21). 
Proceeding in precisely the same way as Sec. IIA, we 
find the appropriate denominators corresponding to 
Fig. 5 as 

[ 4 - i f p , (40a) 

[(ifey(y-4))-fp/», 

(2^+1-co 2 ) 2 -13/2 

( / - f l -co 2 ) 2 

r (2 /+1-W 2 ) 2 "I3 

L (/+l-co2)2-4/ J 

(40b) 

(40c) 

Equations (40b) and (40c), of course, give the Mandel-
stam spectral curves for diagrams (b) and (c), respec
tively, in Fig. 5. One may also determine the remaining 
functions, but we will not do so here. The same argu
ments apply equally well to the T=0 and T=2 
channels. 

The complications introduced by including inelastic 
contributions can be considerably reduced by making 
two approximations. First, the fact that the (ir-ai) 
state consists of two nonidentical particles played no 
crucial role in the above and will not do so in what 
follows. I t is therefore convenient to replace the (x-co) 
state by an identical particle state for which: 

i V = ( * - ( c o + l ) 2 ) / 4 , 

P8= (*-(«+i)*)A, 

[^-(oJ+l)2+4]1/2-2 
(41) 

[ s - ( c o + l ) 2 + 4 p H - 2 

Second, we have no a priori way of relating the 
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P A A P ^ IG- -̂ One-pion exchange diagram in 
^ ^ the inelastic process TTIT —> pp. 

P P 

contributions of the 5 = 0 and 5 = 2 states in the reaction 
X + T —» p+p , even when we only allow (p-p) s waves, 
and this forces us to consider several amplitudes. I t 
is much more convenient to consider a specific diagram, 
compute the relative spin weightings, and apply that 
weighting to all /. In particular, let us consider the 
diagram in Fig. 6. The symmetrized amplitude is 

r2 

( P i - ? i ) 2 + l 

CPl-<?2)2+l 
- M V f c ^ i , , (42) 

where £i and £2 are the spin 4-vectors for the odd-
parity, spin-one particles, satisfying £*>^>=0. In Fig. 
7 we have defined the angles 6 and <p relative to P and q, 
the center-of-mass momenta in the initial and final 
states, respectively. We have, setting z=cos0, 

(43) 
( P i - <?i)2+1 = (V2) - P 2 - 2Pqz, 

( P 2 - ? i ) 2 + l = (V2)-P2+2P<72, 

where, of course, 

P 2 = ( s - 4 ) / 4 and g 2 = ( s - 4 p 2 ) / 4 . 

By use of the polarization conditions on £1 and £2, we 
obtain, suppressing the index (13), 

M = -
I* 5 ! - ( P - q ) 5 , - ( P - q ) 

2Pq X - z 

?i-(P+q)?.-(P+q) 

where 
X+Z 

X = ( 5 - 2 P
2 ) / 4 P ? . 

(44) 

Since we wish to know the relative weighting between 
the 5 = 0 and 5 = 2 states, we must express Eq. (44) in 
terms of total spin states. In order to do this, it is 
convenient to introduce the quantities 

€ i + = - ( l / ^ ) ( £ i . + i f i y ) , 

£io=£iz, 

(45) 

and similarly for £2, P and q, so that 

Z-A=-A+^-A^++A0£o, (46) 

where A is any vector. The total spin states, Xs
Ms may 

(47) 

then be expressed as, e.g., 

x / = (l/v5)Q1+f2_+?1^2+-^ l052o], 

X2°= (l/61/2)[?1+?2_+f1_f2++2aof2a]. 

After some algebra one obtains, 

&• ( P - q ) & - ( P - q ) = ( l / ^ O C ^ f f P i W - ^ - ^ X / 

+ (2/3y»ZP*-2PqPl(z)+fP2(z)]X%* 
+^q-£P-qPi(z)lX2i+qJX2\ (48) 

and similarly for £i* (P+q)£2« ( P + q ) . At the inelastic 
threshold, Eq. (48) becomes 

&• ( P - q ) & - ( P - q ) -> - (1M)P2X0° 
+ (2/3)1/2P2X2% (49) 

and in fact we will use the amplitudes near threshold 
to determine the weighting. The partial-wave ampli
tudes at threshold are determined by projecting with 
a state of total angular momentum / and spin 0 or 2, 
with an orbital angular momentum, L, in the (p-p) 
channel equal to I or I— 2, respectively; these states are 

h.i,o°=Yi°X0% 

+i,i~2,o°=Z C ( / - 2 , m, 2, -m; 1-2, 2, /, o) 
m 

and the projections are as follows: 

(50) 

1 P r / 2 / + l \ 1 / 2 P ; ( 2 ) 
ih,i.o°,M)=--r2- / dd ) 

v j q J \ 4T / X - z 

= - (4Tr/3)mr2Wq)(2l+l)mQiM , 

/2\> 
(h,i~w°,M) = (-\ 

X J dUC(1-2, o, 2, o;l-2, 2, /, o) 

2/-3\1 / 2P*_2(z) 

fl\w P 

r2— 

(51) 

/ 2 / - 3 V 

\ 4x / X - z 

/8x\ 1 / 2 P/l(l-l)\1'2 

We use a superscript to denote the spin-0 and spin-2 
components of the partial-wave amplitudes of our 
model and we write (suppressing the index 13): 

in which 

and 

Mt=Mi^x0+Mi^x2y (52) 

M^ = hil/2Ah 

Mi^ = hil { 
i(i-D 

(21+1) (21-1) 

\UZB 

) h. 
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We now assume L=0 to dominate and determine the 
ratio of A to B by setting 

M,™_ L(l/(2l+l)m)(ha.o°M)2i.o 

~MJV>~[(1/(27+!)")(*,.,_„•#)],_,: 
(53) FIG. 7. Polar and azimuthal 

angles used in the computation of 
Miz. 

and evaluate the result at threshold. By this procedure 
we obtain: 

A = — 
p - 1 B 

P+lv2~ 

B 
(54) AyO), and 

Thus the inelastic amplitude Mm is determined by a 
single function as 

Mui{s) = h^Flzl 

X hAa+m-i)/ 1 
(55) 

C. Choice of the Ntj(s) 

Our task of constructing a scattering amplitude 
which satisfies unitarity in the s channel, with the 
correct "crossed cuts" and threshold behavior has been 
completed, and there remains only the explicit choice 
of the Nij(s). The Na(s) will contain a certain set of 
parameters which will allow us to satisfy the crossing 
relations. 

The choice of the Nij(s) is, of course, rather arbitrary 
with simplicity and ease of manipulation being the 
primary considerations. However, referring to the 
previous sections, especially Eq. (30), we see that one 
choice will lead to a correct analytic behavior of the 
Born term, viz., 

ZW1}M = 1 / ds' ( ) 

/s'1/2-2\l 1 

V 1 / 2 + 2 / sn/2(sn 

16/MD /•<» 1 //-4\ 

Z>i«(1)«= / W ( — J 
7T J 4 S' — S\ S' / 

/s'-2\ls' 

V + 2 / s' 

+2/ s'1/2(sn/2+2)' 

1 / / - 4 \ 1 / 2 
(59) 

/s'-2\ls'-s0v 

'+2/ sf+s^sn/2(sn/2+2) 

I t is now convenient to introduce the quantity y as 

4^=^1/2-2, (60) 

so that Eq. (57) becomes 

iVn ( 1 ) W=fl i ( 1 ) /Cy+ i ) (y+ i ) -

Equation (59) now takes the form 

£ > i i i ( 1 ) M = l - a i 

N(s) = a/s^2(s^2+2). (56) 

2 r00 / y' \l+h 

(D_ dyt \ 
TTJO V + i / 

1 
This function is defined in the plane cut from ^ = 0 to 
s= —• oo? and has a pole on its second sheet at s = 4 . 

We must choose the iV# for all isospins and let us 
begin with T= 1. If we refer to Eq. (56) then we would 
write 

N11^(s)=16a1^/s1/2(s1^+2), (57) 

and the simplest choice for Ni2{1) (s) would be, therefore, 

N12<»(s) = 16b<M/sll2(s1i2+2). 

However, in order to allow more freedom in satisfying 
the constraints discussed in Sec. I l l , we define Nua)(s) 
with two additional parameters as 

X(16b^/sm(sll2+2)). (58) 

Equations (57) and (58) allow us to determine the 

X-
(y-yW+y+iW+h) 

= l -a ,o>a , ( j ) > (61) 

(1) 
and 

r~ c— c 

Dluv>(s)=-bv\—^(W 
a) •S+Si 

••-b«W>(s). 

s0V+SlV 

S+Si (1) 
-oti( -S l ( 1 ) ) ] 

(62) 

In order to define Nn and .ZV22 we introduce the 
quantity x, in analogy to y, as 

4 x = [ i - ( w + l ) 2 + 4 ] I ' 2 - 2 , (63) 

which vanishes at the (7r-co) threshold, and make the 
following choices: 
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a2
(1) s+s^ 

AVX)(*) = 
02 (1) 

(*+*)(*+1) 
(64) 

X-
#~t~2 

The perhaps surprising choice for N22
a)(s) is easily 

understood in terms of the resulting D2u
a)(s); in par

ticular, we find with Eq. (64) 

Aiz (1)(^) = - ^ ( 1 ) ^ ( 1 ) & - ( ^ + l ) 2 + 4 ] , 

D22lV(s) = l-a2Vals-(a>+l)2+4']. 
(65) 

The T= 0 and 2 channels will be handled in somewhat 
the same way. We write, for T=0, 

Nuw (s) = tf «<•> (s), 

Nuw(s) = -
( y + l ) ( y + i ) : 

NnM(s) = -
[ w ( w + l ) + P 2 / 4 ] L 

(66) 

( w + l ) ( w + i ) w+i 

#„<•>(*)=- -tfu ( < , )W, 
6(o) s+^i (o) 

where we have used the quantity 

4w= [ 5 - 4 p 2 + 4 ] 1 ' 2 - 2 , (67) 

which is the appropriate variable for the (p-p) channel. 
These lead to the Dai(s) as 

Dm^(s) = -b^ai(s), 

Z?,uW(s)= - 6 w | " a , ( j - V + 4 ) 

1(1-1) 
+ o w ( j - V + 4 ) I, (68) 

0+iXi-i) 

Z ? n i w ( j ) = l - « i w r f t ( , , ) ( * - V + 4 ) 

] • 

/ ( / - l ) 

(/+*)(/-*) 
-/Wo)(*-V+4) 

where the Z dependence in Dn and Z>33 is determined 
by Eq. (55). The N^(s) and Z V 2 ) 0 ) are identical 
to those in Eqs. (66) and (68) with (o) replaced by (2). 
I t is to be understood that a highly simplifying as
sumption has been made with regard to the spin 
dependence in channel 3. The matrix elements #33 i 
and Dzzi are themselves 9X9 matrices in the spin 

variables; we take these to be proportional to the unit 
matrix. Likewise the (13) and (31) elements have been 
taken to be proportional to the unit row and column, 
respectively, where the proportionality factors involve 
that weighting of the spin components which we have 
already indicated. 

The Nij(s) and Dij(s) are now completely specified 
and are determined by the single function ai(s), 
defined in Eq. (61). The integral defining ai(s) may be 
performed and yields hypergeometric functions; in 
particular, we find 

<xi(s)=——-{(^+2)^1(1,1;/+f; ( s 1 / 2 -2) /4) 
ir(/+§) s 

- ( i w - 2 ) 8 F 1 < l > l ; H - § ; ( 2 - * « ) / 4 ) 

- « i , l ; i + f ; l ) } , (69) 

which is defined by analytic continuation outside the 
interval 0 O < 4 . We note that the Di3-(s) have dis
continuities for s ^ 4 or s^ (co+1)2, s^4p2 , depending 
on the argument of the a% since the hypergeometric 
function has a branch point at one. 

III. CONSTRAINTS AND DETERMINATION 
OF THE PARAMETERS 

The analysis in Sec. I I specifies the w-w scattering 
amplitude completely except for the explicit numerical 
value of the parameters. The method of determination 
of these numerical values is the subject of this section. 

The primary constraint on the amplitudes will be 
that of crossing. This constraint may be expressed by 
requiring that the amplitudes satisfy the following 
relations1: 

M^ (s,t,u) = W{0) (t,s,u)+M<u (t,s,u) 

+ (5/3)Jf<»(*AiO, 

M™ (s,t,u) = p f <•> (t,s,u)+iM<u (f9s,u) (70) 

- f j f *>(*,*,«), 
and 

MM (s,t,u) = iM{0) (t,s,u)-iM<u (t,s,u)+iM<» (f,s,u). 

If we define Ai(s,t) as 

Ai(s,t) = MM(s,t,u)-MM(t,s,u), (71) 

then Eq. (70) implies that 

Ao(*,0= - 2 A ! & 0 = - 2 A 2 ( V ) , (72) 

which must be satisfied for all s and t. 
In order to determine the values of the parameters 

we must be able to obtain numerical expressions for 
the Mw(s,t) and M(i)(t,s). However, since we can only 
compute M^(Sji) from the partial-wave sum, we must 
restrict our attention to those values of s and t for 
which the sum converges. In particular, our formulation 
does not allow us to obtain numerical expressions for 
M{i) (s,t) if t^ 4 or u^ 4, and since we must use the same 
values of s and t, we are restricted to the range: £<4, 
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FIG. 8. T=0 pa
rameters leading to 
the occurrence of an 
f0 resonance with in
dicated width. Sensi
tivity of the position 
of the ghost is also 
shown. 

S ( o ) 

Do 
r f > 2 o / 

•82.5 

// 
5<H <20 /, 

1 \ ^ J I 

/•/-sg=-78.3 

100 7 7 200 
//-Sg=-75.0 

/ 
/y-Sg=-72.5 

I 
7V-Sg=-70.5 

^•Sg=-69.4 

s<4, s+t>0. Further, each partial wave becomes 
complex for ,?<0. Although the summation over I must 
yield a full amplitude which is analytic down to s= ~t, 
the technique for carrying out this summation and 
continuation with s<0 is not treated in this paper. 
Consequently, we are limited to the region: 0</<4 , 
0<.y<4. 

In principle, we would proceed as follows: We choose 
a set of points, say s=%, 1, f, • • •, | and similarly for ty 

compute Ai(s,t) for various choices of the parameters 
and finally obtain a set of parameters which satisfies 
the requirements in Eq. (72) most accurately. Within 
our framework we would have no a priori reason to 
believe that this set would be unique and, in fact, it 
would probably change as we change the mesh of points 
in the (s-t) plane. Such a program is simply not feasible 
at this point because we have so many parameters that 
a search, even by machine techniques, is impractical. 
Therefore, it will be necessary first for us to reduce the 
number of parameters in a more straightforward 
manner. 

Let us confine our attention to the T=0 channel 
first. In this channel we have five parameters, #i(o), 
a2(o), b(o\ s0

io) and s^°\ and we wish to reduce this to 
a smaller number of independent parameters. In order 
to do this we will require that this channel exhibit a 
Pomeranchuk trajectory,10*11 i.e., we insist that the 
parameters be such that the determinant of Dj(o)(,y), 
D^o)(s), vanish for 1=1, s=0. Such a requirement will 
lead to the vanishing of Do

i0)(s) for some s<0, i.e., for 
an S-wave ghost, and we will also require that the 
residue of this ghost state vanish. To be more explicit 
we have 

ZVo )(0)=Aii (^0)ZWo )(0)-
= 0 for 1=1. 

-IW0 )(0)£W0 )(0) 
(73) 

10 See e.g., S. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 34, 725 
(1958) [English transl.: Soviet Phys.—JETP 7, 499 (1958)]. 

11 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41 
(1962). 

From Eq. (68), this yields 

[ l - a 1 ^ 1 ^ ( 0 ) ] [ l - a 3
( o ) f t < o ) ( - 4 p 2 + 4 ) ] 

-[M°)]2a1(0)ai(-4p2+4) = 0. (74) 

The existence of an S-wave ghost implies 

£>no(o) {sg)DUo^ (sg) - D1Zo{o) (s0)DzuM (sff) = 0, 
or 

[ l - a 1 ( ^ 0 ^ ) ( ^ ) ] [ l - ^ ( 0 ) A ( 0 ) ( ^ - 4 p 2 + 4 ) ] 
- (b^¥ao(sg)ao(sg-4p*+4.) = 0, (75) 

where sg is the position of the ghost and is negative. 
Since the vanishing of the 5-wave determinant will 
produce a ghost in all of the reactions 7r+7r <-> 7r+7r, 
7r+7r <-> p+p and p+p «-» p+p, we must insist that all 
of the numerator functions vanish at s=sg. As a matter 
of fact, it is sufficient to require that 

NiioMDnoM-Nizo™D*loM = 09 s=sg 

i W o ) 2 W o ) - i W 0 ) Z W 0 ) = 0, s=sg. 

To see that this implies the vanishing of the off-diagonal 
elements, consider Fn. Multiply the first equation in 
Eq. (76) by ZWo)fo)AioCo)fo) to obtain, dropping 
the angular momentum and isospin labels, 

Nn (s0)Diz (sg)Du {sg)Dzz (sg) 
-Du(so)Nu(sa)Dlz(so)DM = 0. 

But by Eq. (75) this yields 

Duis^Nu^-Nnis^Duis^O, 

which is the numerator function of Fn(sg). 
The constraints contained in Eqs. (75) and (76) may 

be reduced to 
(o) 

*1 

r SgSoW 1 
W U ( 0 ) W ~CXo(sg)\ = 

L ^+* i ( 0 ) J 

a3(0)j^(0) (^ -4 P
2 +4)-

~So 
(o) 

Sg+Si (o) 

(Mo))2 

X a o ( * a - V + 4 ) j = l , 

/ o _ o ( o ) \ 2 

(77) 

or expressing these in a more tractable form 

Sa+S!^ 1 
O l ( o ) = -

, ( » ) = -

_ _ . « » -fi 1 

(78) 

r s,-s0™ y 
(JW)*= ) a „ ( - ^ - 4 p H - 4 ) 
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The reduction of the parameters now proceeds as 
follows: We choose values of s9

M and Si(o) which, by 
Eq. (77), determine #i (o), a>z{0\ and (b(o))2 as a function 
of sg. The quantity sg is then determined by substi
tuting these functional expressions into Eq. (74). This 

The nature of the roots of Eq. (77) restricts somewhat 
the possible choices of s0

(o) and Si(o); specifically we 
allow only those solutions which contain at least one 
real, negative root. As we will see this is not an im
portant restriction of the possible range of the so

(0) 

and Si(o). In the case that there are two negative roots 
we choose the more negative one on the basis of 
continuity. 

Finally, we remark that it is not possible to choose 
(l/aiM)NuM(s)= (l/a^0))Nn

(0)(s) as we pointed out 
in Sec. I I . This, of course, could be accomplished by 
choosing s0

(o) = — Si(o) [see Eq. (66)]], but we see from 
Eq. (78) that this implies ai (o ) = a3

( o )= (b(o))2= oo. 
Actually this means that the equations in Eq. (77) or 
(78) are reduced to identities for all values of the 
parameters and thus the parameters cannot be 
determined. 

Thus the T=0 channel is characterized by two input 
parameters, s0

io) and si (o), and these are to be deter
mined by crossing. 

Let us now turn to the T= 1 channel. In this case 
there are no restrictions that can be imposed in analogy 
to the r = 0 channel. However, because there are no 
restrictions to satisfy, we can reduce the number of 
parameters rather arbitrarily keeping simplicity in 
mind. In particular, we may choose s0

a)=—sia) in 
contrast to the T~0 channel, and this possibility will 
be discussed in detail in Sec. IV. Also it is possible to 
take the point of view that rescattering of the (w-co) 
state plays no crucial role in determining Mu(s,t) 
although the existence itself of an inelastic state is 
significant, i.e., the (71—co) state can contribute to (TT-CO) 
elastic scattering only by means of the (TT-TT) state 
through unitarity, but the (TT-CO) state can contribute 

equation is an algebraic equation, quadratic in s0i and 
can be solved immediately. In particular, we have 

As*+2Bsg+C=0, (79) 

where 

directly to the elastic (TT-TT) amplitude since the 
inelastic amplitude is nonzero. We will, in fact take this 
point of view and set a2

(1) = 0 in everything that follows. 
The remaining parameters, as well as those for the T= 0 
channel, are then fdetermined by the first crossing 
relation in Eq. (72). 

I t should be emphasized that there is no choice of 
the parameters which will satisfy crossing exactly. 
After all, we have certainly not been clever enough to 
guess the correct solution to the problem. The values 
of the parameters will simply be those that lead to 
amplitudes that satisfy crossing most accurately. 
These will then determine, within the model presented 
here, the behavior of the various partial-wave ampli
tudes in each isospin channel. 

IV. NUMERICAL RESULTS 

In this section we shall discuss the consequences of 
the parameter variation defined in the preceding 
section. For the moment, we will restrict our attention 
to simply one of the crossing relations, viz., A0= — 2AX. 
I t is to be admitted that parameters determined in this 
way may lead to parameters in the T=2 channel which 
yield undesirable consequences, e.g., ghosts or bound 
states in the T=2 channel. (As we shall see, this does 
not occur.) However, with the wealth of parameters 
available in this model, a simultaneous variation of all 
the parameters is not practical even with the use of 
machines. Further, there are many sets of parameters 
which can be used, each set satisfying the crossing 
relations to some extent. In any case, what we wish to 
show is that the main features of pion-pion scattering 
are a necessary consequence of the symmetries imposed, 

A-
1 i5i ( o )(0) /3i ( o )(-4p 2+4)~a 1(0)a 1(-4p 2+4) 

£ = -

[>o ( o )+*i ( o )]2 a 0 ( - * i ^ K ( - ^ - 4 p 2 + 4 ) 

1 ^ i ^ i ^ ( 0 ) / 3 i ^ ( - 4 p 2 + 4 ) + ^ ^ a i ( 0 ) a i ( ~ 4 p 2 + 4 ) 1 

Zs^+s^J « o ( - ^ i ( o ) K ( - ^ i ( o ) - 4 p 2 + 4 ) 2[>0
(o)+.?i (o)] 

/3i(o)(0) /3!<<»(-4p2+l) 
X 

o(si(o)) « 0 ( - ^ i ( 0 ) - 4 p 2 + 4 ) _ 

C = l — 
Si ( 0 ) 

(o)L 
ft(o)(0) £ i ( o ) ( -4p 2 +4) 

j 1 o » i 8 1 W ( 0 ) j 8 i W ( - V + 4 ) - * . < , ' ) s a i ( 0 ) « i ( - V + 4 ) 
X-

a < J ( - ^ ^ ) a 0 ( - ^ 1 ^ - 4 p 2 + 4 ) 
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FIG. 9. T=0 determi
nants for / = 0 and 2 for 
the case Si<°> = 74, s0

M 

= —56.6. Above thresh
old the real parts are 
plotted. 

and that the model presented here is a reasonable 
representation of this fact. 

A. T = 0 Channel 

As shown in Sec. I l l , the T=0 channel is determined 
by two parameters: s0

io) and ^i ( o ) . For any choice of 
these parameters we have a Pomeranchuk trajectory 
and an S-wave ghost whose residue vanishes. Before 
we impose crossing symmetry, let us examine the 
behavior of the relevant partial waves as we vary s0

(o) 

and Si(o). We remark first that the position of the ghost, 
s0y is not a sensitive function of s0

(o) and Si(o), and in 
fact occurs in the neighborhood of the conjectured 
Chew and Frautschi11 ghost. Second, it is possible to 
find values of the parameters for which ZVo)C0, the 
Z>-wave determinant, has a vanishing real part in the 
neighborhood of the observed f0 resonance,12 although 
it does not seem possible for our model to yield a width 
for the f0 which is as small as the observed value. If 
we require that Re ZVo)fa) = 0 for 7 6 ^ s^86 , then we 
obtain the values displayed in Fig. 8. This figure also 
demonstrates the insensitivity of sg to s0

(o) and Si(o). 
The width of the resonance Tf is determined by 
ImZ>2(o) and ranges over the values indicated in the 
figure. We determine Tf as 

Tf=lmD%M(sf)/sf\f, (80) 

where s/ is the position of the resonance and X/ is the 
slope of Re D2

(o)(s) at s=Sf. Equation (80) gives 

r,= — 
16 / * / 1 / 2 - 2 \ 5 

W/2+2/ \fSf*
/2\Sfl/2+l 

sf-s0<°> 
dl (o)_ 

Sf+Si (o) 

X [ l - a 2
( 0 ) [ f t ^ ( ^ ~ 4 p 2 + 4 ) 

+ ( 8 / 1 5 ) / ^ > ( s / - 4 p 2 + 4 ) ] 

+ ^ 2 [ a 2 ( s / - 4 p 2 + 4 ) 

+ (8 /15)a 2 ( s / -4p 2 +4)] ] (81) 

We emphasize, however, that in every case considered 

12 W. Selove, V. Hagopian, H. Brody, A. Baker, and E. Leboy, 
Phys. Rev. Letters 9, 272 (1962); see also I. J. R. Aitchison, Phys. 
Rev. 131, 1797 (1963) and references given there, as well as V. 
Hagopian and W. Selove, Phys. Rev. Letters 10, 533 (1963). 

in the parameter variation the Z?-wave resonance near 
the f0 was accompanied by a .D-wave resonance at a 
lower energy. This is illustrated in Fig. 9 for the case 
s0

(o) = — 56.6 and ^i (o) = 74. This leads to an S-wave 
ghost at sg= —66, and Z)-wave resonances at s=6 and 
s / = 8 1 . This behavior is not supported by the experi
mental evidence. In the parameter search to obtain 
the best fit to crossing—to be discussed shortly—we 
incorporate the fact that Re D2

(o) shall not vanish for 
s ^60 . I t happens that this restriction improves the 
fit to crossing. 

B. T = l Channel 

In this channel there are four parameters: #i(1), ba\ 
s0

{1) and si ( 1 ) ; there is no ghost constraint here analogous 
to the ghost constraint in T=0y so that all of these are 
independent. Because of this independence, it is possible 
to find an enormous number of sets of parameters which 
reproduce the P-wave resonance,13 i.e., the p with the 
correct width. If we insist that the crossing relations 
determine a set which yields the correct properties of 
the p, then we must decide how to begin the parameter 
search. This can be established by determining those 
sets which do yield a p with the correct properties and 
then to use these sets as a starting point. This will, in 
fact, be our procedure. To determine the initial set of 
parameters then, we insist that Re Di(x)(s) = 0 a t s=sp, 
the position of the p. This yields a linear relation 
between aia) and b(1)2 

b^2=-
l - a i ^ C R e a i f r p ) ] 

[ R e / ^ ^ p ) ] ^ 1 ^ , - (co+l) 2 +4] 

The width of the resonance so obtained is 

rp=imA(1)W/xp^2, 

in analogy to Eq. (80) for the / ° , or 

16 / 5 p
1 / 2 - 2 \ 3 / 2 

(82) 

(M) 

!W/2+2/ X,V/!!V/2+2 
„ - * . « > 

X ai«+6 c i > 2 - -Pim(.s,-(<*+W+4)\- (84) ]• S„+*l(1) 

If we insist that 0.6 ^ Tp ^ 0.8, we obtain sets of parame
ters such as those displayed in Fig. 10. A given curve in 
the figure, belonging to a given value of 5X

(1), represents 
a very narrow region of values of s0

(1) and ax
(1) for 

which there is a p with the correct mass and width. 
Once #i(1) is chosen and s0

(1) and si(1) determined so 
that we have the correct mass and width, ba)2 is ob
tained by Eq. (82). Figure 10 represents only a very 
small sample of the results of the search. 

The case of 6(1) = 0, i.e., no inelastic effects in the 

13 A. Erwin, R. March, W. D. Walker, and E. West, Phys. Rev. 
Letters 6, 628 (1961). 
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FIG. 10. T—\ parameters 
leading to the occurrence of a p 
resonance with width between 
0.6 and 0.8. 

elastic amplitude, is not among these results. If we set 
j a ) = o and demand that ReZ>i(1)(*P) = 0, we find that 
the slope of this function is positive and cannot repre
sent a true resonance. In fact, there is a ghost near 
s—— 90 and the zero we have demanded is the second 
zero of ReZ>i(1)(s). This result is independent of sQ

a) 

and si (1). In all the cases considered in the search, the 
zero at s—sp was required to be the first one. 

As we showed in Sec. I l l , it was necessary to intro
duce the parameters s0

(o) and Si(o) if we were to satisfy 
the Pomeranchuk trajectory condition. However, there 
is no such constraint in the T=l channel, and there 
would seem to be no need for the introduction of the 
parameters s0

a) and sia). In particular, we could have 
simply written 

N12
(1)/ba)=Nu^/ai (i) (85) 

If, in fact, we set 50
(1) = — si(1), we can eliminate these 

parameters from all formulas and obtain a p with the 
correct position and width. The parameters which 
accomplish this are a i ( 1 ) = - 3 4 9 and ^ 2 = 2 9 1 9 . How
ever, this case does not provide nearly as good a fit to 
crossing symmetry as do the sets for which s0

a)9^ — Sia). 
One could argue here that this makes little difference 
because it is clear that one can improve the crossing-
symmetry fit by introducing more parameters. This of 
course is true, but it is important to remember that 
these parameters determine all of the partial waves, 
not just the P wave. 

C. Cross Symmetry 

At this point we now impose the crossing relation 

A o ( j , 0= -2Ai (V)V 

As we have stated, the parameters are to be determined 
as those which best satisfy the crossing relation, but 
we must first establish a quantitative criterion as to 
what constitutes the best fit. Such a criterion is not 

unique, and we have considered many, but the following 
seems convenient: We consider the following mesh of 
twenty-one points in the s-t plane: s=%, 1, f, • • •, f; 
t—h I? f ? * • ' , i with t<s. For each of these points we 
evaluate A0(s,t) and — 2Ai(s,t), and represent this 
calculation by a point in the (A0, — 2Ai) plane. If the 
crossing relation were satisfied exactly, then all these 
points would lie on the 45° line in Fig. 11. In fact, these 
points will be scattered about this line as indicated in 
Fig. 11. We now define the angle e(s,/) for each point 
as shown and whose sine is given by 

sinewy,/) = 
| A O ( J , 0 + 2 A I ( J , / ) | 

v5[A0
2feO+4A1

2(^/)]1/2 ' 
(86) 

The average sine for the T=0 and T= 1 case is then 

1 
^oi=— L sine (*,/), 

N i*,t) 
(87) 

where the sum is taken over the twenty-one points in 
the mesh. The best fit to the crossing relation is defined 
to be that which minimizes ^ 0 i . 

The first variation of parameters was made with only 
those T=\ parameters for which there is a p with the 
correct mass and width. The minimum obtained in this 

way is 
= 0.358, 

and the parameters so determined are: 

*o(o)= 24 s0^= 12 

5l(o)= 10 Slv= 10 

a i(o)= - 4 . 3 a 1 d ) = - S . 8 

a2(o) = _15.0 b^2=U4: 

b^2= 192. 

The points in Fig. 11 in fact represent this situation. 
The position of the ghost in this case is 

V = - 5 7 . 1 . 

The determinants of the lower partial waves are plotted 
in Fig. 12. This shows the 5-wave ghost, D0

(o) 

(—57.1) = 0, the P-wave resonance (by construction), 
Z>i(1)(29) = 0, and the fact that there is no Z>-wave 
resonance. 

FIG. 11. Map of A0 versus 
— 2Ai. The angle (s,t) is defined 
in the figure. 
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FIG. 12. Determinants 
for r = 0 , Z = 0and2 , for 
si<"> = 10 and s0<°> = 24, 
and T = l , / = 1, for the 
optimum case in which 
the exact p occurs. 
Above threshold, the 
real parts are plotted. 

We now fix the T=0 parameters and vary ai(1) and 
b(1)2 in a second variation. We let ai(1) and Z>(1)2 vary 
in small increments until a minimum of \j/0\ is found. 
In principle, we then fix these new parameters and vary 
the r = 0 parameters, etc., until a stable set of parame
ters is found, if any. If we perform the second variation 
mentioned above we find that the new minimum is 
very nearby, and it is not necessary to continue the 
parameter variation. It is to be emphasized that this 
result is by no means built into the searching technique— 
the minimum could equally well have been unstable and 
(irun away" 

At the minimum we obtain ^0l=0.356 with pa
rameters 

bv2=m. 

The map of A0 versus — 2Ai for this case is not ap
preciably different from that shown in Fig. 11. In 
Fig. 13, the determinants Z>i(o) and Z>i(1) are plotted; 
the first of these shows the (by construction) Pomer-
anchuk trajectory at s=0 and returns through zero 
near s=10; the second shows the P-wave resonance to 
be slightly removed from the observed position. The 
parameters of the resonance are: 

Sp=33.7 = (5.8)2= (812 MeV)2 

Tp= 2.52 = 353 MeV. 

These results are remarkably sensitive to the variation 
of parameters. In particular, a 3% change in aia) and 
a 4% change in ba)2 have shifted the position of the 
resonance by 17% and have increased the width by 
more than 350%. 

D. T = 2 Channel 

Only the T— 2 channel remains undetermined. To 
determine the remaining parameters s0

(2\ $i(2), a±(2), 

FIG. 13. 1 = 1 determi
nants for r = 0 and 1 in the 
case of minimum \p0i. 

a2
(2), and 6(2), we must optimize the fit to the other two 

crossing relations 

(88) A0(s,t)=-2Ai(s,t), 

A1(s,t) = A2(s,l). (89) 

In analogy to the preceding section we introduce the 
following ^ 's : 

^02=— L 
|Ao+2A2| 

N{s,t}^[_A0
2 + 4:A2

2J 

^12 = — L 
A1-A2 

N{s,t} V2[A!2+A2
2]1/2 

(90) 

(91) 

The choice of parameters si(2) = si(o) = 10 and s0
(2) 

= s0
(o) = 24 suggests itself and proves to be superior 

to the case s0
(2)=—Si(-2K However, we again have the 

problem of where to begin our parameter variation. 
In order to obtain a starting point for the variation we 
will use the following argument. If we assume that T=l 

FIG. 14. Minimization of ^02 
and ^12 as a function ai(2). 

-10-8 -6 -4 -2 2 4 6 8 10 

scattering dominates in the crossed channel then we 
have, from the crossing relations 

M<0>(s,t)**MW(t,s) (92) 
and 

M& (s,t)« - p f < « (t,s)« - JM«» (s,t). (93) 

This suggestion that we begin the variation with: 

fl!<2' = 

fl2<
2) = 

&<2>2 = 

-W0) 

-W0) 

\b^\ 

If in fact we do this we find that 1̂2 reaches a minimum 
as a function of bi2)2 when 6(2)2=0. We argue from this 
that the T=2 channel prefers to be a one-channel 
problem, and thus as far as the elastic TT-TT amplitude 
is concerned, only one parameter, #i(2), remains to be 
varied. We have no reason to suppose that ^o2 and ^ i2 
will have their minima for the same value of #i(2); 
however, their minima are very close together as one 
can see from Fig. 14. This is a very satisfactory result, 
and it probably implies that we have obtained an 
essentially optimum fit to all of the crossing relations. 
A good compromise is reached if we take ai(2) = 4.2. 
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FIG. 15. (a) Map of A0 
versus — 2A2. (b) Map of 
Ai versus A2. 

The maps of A0 versus — 2A2 and Ai versus A2 are 
given in Fig. 15. 

In the T— 2 channel, for this determination of the 
parameters, the relevant partial-wave denominator 
function for elastic ir-ir scattering is not ZV2) but 
simply Diu(2) since only #i(2) is involved. This function 
is plotted in Fig. 16 for 1=0 and / = 2 . The 1=0 case 
seems to show a resonance near s=8; however, the 

FIG. 16. T=2 denominator 
functions for / = 0 and 2. Above 
threshold, real parts are 
plotted. 

imaginary part of Z>n0
(2) is negative there so that the 

scattering is repulsive for low energies. This repulsive 
behavior of the low-energy T=2 scattering is more 
obvious from a plot of the phase shifts. This is given in 
the next section. 

E. Phase Shifts 

Here we will present the results of the previous 
analysis in terms of phase shifts for the lower partial 
waves in each of the three isospin channels. The phase 
of the determinant ZVT) is — 5*(r), where 5 j ( r ) is the 
eigenphase shift. Therefore we have 

tan$,<T> = - (Im ZVr>/Re ZVT )) . (94) 

For T=0 and 2 we use: 

ReZV r ) = [ l - 0 i ( r ) 0 i ( r ) W ] (l-a.(r)[ 
1(1-1) -1 

ft<r)fr-4p?+4)+ / W ^ - 4 p 2 + 4 ) 
(/+i)(M) 

I m Z V r ) = 
1 6 / J 1 / 2 - 2 V + * ( s-So<T) 

\s1/2+2/ 
ai (D_ 

-b^2ai(s{al(s-4p2+4) 

so{T)r r 
— I 1-aM ft<r>(*--V+4) 

i(i-i) 

i(i-i) 

(/+*)(/-*) 

- < ^ 2 ( s - 4 p 2 + 4 ) l , (95) 

-/Wr)(*-4p2+4)ll 

for T=l we use: 
{• +ft<r>' a , ( > - 4 p 2 + 4 ) + 

/ ( / - I ) 

(H-iW-i) 
* ! _ , ( * - V + 4 ) ; (96) ft 

Re A ( 1 ) = l~^i ( 1 ) azW-^ ( 1 ) 2 ^ ( 1 ) W ^ ( 1 ) ( ^ - ( a ) + l ) 2 + 4 ) + - ^ 7 T T 7 7 - T T ^ - 2 ( 1 ) ( ^ - ( c o + l ) 2 + 4 ) | , 
(H-i)tf-l) 

16 / s 1 / 2 -2y+* j 

5W2/ r 
— 9 (Dr s—s, 

*+*i ( 

(97) 

ImDlv=-—[- - ) | f l l a ) + j a ) » — i l J " i 8 | a ) ( ^ ( C 0 + i ) 2 + 4 ) + 0 M ( i ) ( j _ ( w + i ) 2 + 4 ) ] l . (9 8) 

For the parameters determined above we have com
puted 80

(0), 52
(0), Si(1), 80®\ and 52

(2); these are plotted 
as functions of s in Fig. 17. As expected, the T=l, 
1=1 phase shift increases through w/2 at s=33.7. The 
remarkable feature about the phase shifts to be noted 
in Fig. 17 is that in every single case, except T=0, 
1=2, the scattering is repulsive at threshold. That this 
is true of the P wave is an unusual feature of the model 
presented here, but crossing symmetry apparently 

requires channel one to be repulsive. The attraction 
necessary to produce a resonance is provided by the 
inelastic contributions. 

In addition to the P-wave resonance discussed above, 
we note from Figs. 17(a) and (c) that peaks will occur 
at low energy in the S-wave cross sections for both the 
T=0 and T=2 channels. In the T=0 case, a peak will 
occur at s=9^x2 (420 MeV) because the phase shift 
passes rapidly through — w/2. On the basis of the 
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Levinson theorem one might argue that the phase 
shift should be T at threshold because of the existence 
of a "bound state," i.e., the 5*-wave ghost. However, 
since the residue of the ghost is zero, it will not con
tribute to the contour integral in the usual derivation, 
and thus the phase shift is taken to be zero at threshold. 
Of course, the correct value of the phase shift at 
threshold should be determined by defining 50

(o) (oo) = 0 
and then tracing the variation of 80

(o)(s) down to 
threshold. This will fix unambiguously the phase shift 
at either 0 or T. In any case, it may very well be that 
this peak at 420 MeV should be identified with the 
ABC14 anomaly at 310 MeV. However, the peak ob
tained here certainly cannot be considered a resonance 
in any sense of the word since the peak is so broad and 
asymmetrical as seen in Fig. 18(a), where the sin25o

(0) 

is plotted. On the other hand, it is not impossible that 

(a) 

90* 

-90* 

r̂ _̂ 
1 

i i i i i i i 50 

T » 0 

. . .S 

100 

4 r 

(b) 4_J I I — I — l — J — l — m l 

T = l 

(c) 

i = 2 

T«2N 

FIG. 17. Phase shifts as functions of s. 

FIG. 18. s i n V T ) ver
sus s for r = 0 , 2. 

-«d_ 

such behavior is consistent with the data, and that this 
type of situation is what is being observed. 

In close similarity to the T=0 channel, the T—2 
exhibits virtually the same behavior, the peak occurring 
at s=8n2 (390 MeV) as seen in Fig. 18(b). To the best 
of our knowledge such a situation has not been observed 
experimentally, but the crossing relations within our 
model appear to demand this behavior. 

This repulsive nature of the T=0 S wave is in con
siderable contrast to previous studies.14,15 In terms of 
the Lagrangian parameter X of Ref. 1, this means that 
X>0, in opposition to the results of Desai15 who found 
X^,—0.2. Further, the scattering length is negative 
here whereas others obtain a positive value. Of course, 
positive scattering lengths are to be expected in these 
other analyses since it was assumed that the T=0 
S-wave scattering must be attractive to explain the 
ABC data. As we have seen, it may not be necessary 
to understand these experimental results in terms of an 
attractive 5-wave scattering. 

One might ask whether the rapidly decreasing S-wave 
phase shifts in fact violate Wigner's15 remarks con
cerning the rate at which phase shifts can decrease. 
Wigner's arguments are based on causality and a finite 
range potential of range R, and he has found that 

db/dk>-R. 

(The correct quantum mechanical relation differs but 
little from this.) All we wish to show here is that the 
minimum ranges necessary for the results given in 
Figs. 17(a) and (c) are not too large. In particular, if 
we calculate R{T) when £0

( r ) passes through — 7r/2, we 
find 

*<o> = o.79(l//i), 

12«> = 1.25(1//*). 

These are reasonable ranges. 
Finally, let us obtain the scattering lengths them-

14 A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev. 
Letters 5, 238 (1960); 7, 35 (1961). 

15 T. N. Truong, Phys. Rev. Letters 6, 308 (1961); B. Desai, 
ibid. 6, 497 (1961). 
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I 
selves. For this purpose we would write 

P 2^ 1 cot8^ = -Re>< r>[P2Z+yim ZV r ) ] , (99) 

and for the term in brackets simply make the replace
ment 

16/s1/2-2\l+* 4'+* 
— ( - ) -> . (100) 
s \s1/2+2/ s(s1/2+2)2l+1 

We have plotted p cot50
(r) against P2 in Fig. 19, and 

if we use the relation 

*cotf.<r> = + (l/a0<r>), (101) 
we find 

*,(•>=-1.72, a„<»=-1.85 (102) 

in units of (1/ju). As we have indicated above, the P = 0 
result differs considerably from other studies. The 
result in the T= 2 channel is also inconsistent with that 
obtained by Kirz et a/.,16 who find |a0

(2)| <0.15. From 
Eq. (102) one finds that 

ao
w-'aow=-0.13. (103) 

This is in agreement with the experimental results of 
Botusov et al.,17 which yield, using an analysis of 
Anselm and Gribov,18 

aoW-ao^=-0.35±0.30. 

On the other hand, Khuri and Treiman19 have found 

flow-ao(o) = +0.7. 

V. DISCUSSION 

We have presented in this paper a model of ir-w 
scattering which we believe includes all of the essential 
properties of the true scattering problem. In particular, 
these are unitarity-including inelastic states in the s 
channel with branch points located at the correct 

16 J. Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 126, 763 
(1962). 

17 Y. A. Botusov, S. A. Bunyatov, V. M. Sidorov, and V. A. 
Yarba, Proc. Ann. Intern. Conf. High Energy Phys. Rochester 
10, 79 (1960). In this paper see also the table of scattering lengths. 

18 A. A. AnseFm and V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 
37, 501 (1959) [English transl.: Soviet Phys.—JETP 10, 354 
(I960)]. 

19-N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (I960).. 

positions in the t and u channels, the correct threshold 
behavior in the s channel, and crossing symmetry. 
Basically, we have found that these constraints, when 
a specific behavior in the T—0 channel is assumed, i.e., 
the Pomeranchuk trajectory, force a resonance in the 
T=l channel at approximately the position of the p 
meson with a rather large width. It is important to 
emphasize that we have not assumed the existence of 
the p meson in any essential way, but that it is a 
necessary consequence of the constraints imposed. By 
"essential" we mean it is the existence of the inelastic 
states themselves that is important and not the fact 
that one of the inelastic states is the (w-co) state; the 
fact that we knew of such a resonance experimentally 
and used this information to begin our parameter 
search is not significant. If we had not known that the 
p meson existed, we would have predicted such a 
resonance (practically, we admit that the parameter 
search may have been somewhat difficult in this case). 

If we consider the success of this model in reproducing 
the p meson, it does not seem unreasonable to have 
some confidence in the results for other partial waves, 
especially the T=0 channel since our model may very 
well enable one to understand the ABC anomaly. Thus 
let us consider the T=0, 1=2 case. As we have re
marked, our model will not reproduce the f0. However, 
considering the experimental data with respect to the 
f0, it may be worth noting that the determinant func
tion, Z>2Co) (s), dipped near zero in the general neighbor
hood of the f0 in many cases although it never did pass 
through zero without producing a lower energy .D-wave 
resonance. In terms of phase shifts, this means that the 
phase shift approached 7r/2, but then receded. In any 
case, it is not clear that one can believe the results of 
the model presented here at such energies. 

Because of the many aspects of the model it is 
certainly reasonable to ask whether any particular 
aspect is more important than the others. This is a 
difficult question to answer, but a few remarks can be 
made. One can construct an amplitude in which all 
aspects of the full model are retained except for inelastic 
unitarity. This would certainly appear to be a rea
sonable approximation and in fact is basically the form 
of nearly all previous calculations. We have made such 
calculations when s0

a) = —s1
a) so that there is only one 

parameter in the T=l channel, and we find that the 
P-wave resonance cannot have a mass greater than s=6. 
This result does not depend on crossing symmetry but 
simply on the form of the amplitude given in Eqs. (9)-
(13), and (57). A resonance can be produced at the 
correct position by using s0

{1) and ^i(1) but this is not 
very satisfactory. It would thus appear that elastic 
unitarity is not adequate to reproduce the p meson with 
our choice of a trial function. By including inelastic 
unitarity, and ignoring crossing, we can produce the p. 
This is in contrast to the results of Balazs3 who found 
that inelastic effects were not particularly significant. 
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However, he assumed that the maximum effect would 
be produced by a totally black disc, and it is not clear 
that this is true. If we add only inelastic states to the 
model, however, we find that we can produce a P-wave 
resonance virtually anywhere. The unique value for the 
position and width of the p meson is obtained when one 
imposes crossing symmetry as well. Thus it would 

I. INTRODUCTION 

IN their original program, Chew and Mandelstam 
stressed that a particle or a resonance in a crossed 

channel contributes to the forces acting between two 
particles.1 More precisely, the partial-wave amplitudes 
for pion-pion scattering have both a left- and a right-
hand cut as functions of the energy, and the resonances 
in the crossed channels determine the discontinuity 
across the left-hand cut or, equivalently, the forces. 
Unfortunately, it appeared that the discontinuity ob
tained from that mechanism increased at a rate in 
conflict with unitarity when the energy became infinite 
and negative, as soon as the spin of the resonance or of 
the bound state in the crossed channel was larger than 
or equal to one. Such is the case for the p meson (and 
now also for the f° meson). The problem of determining 
the exact high-energy behavior of amplitudes became 
a necessary preliminary to the dispersion theory of 
elementary particles. 

It was indeed felt that a simple solution of the 
problem had to exist since, in several cases, the simple 
trick of introducing a cutoff for the left-hand cut dis
continuity leads to sensible results. This idea has been 
expressed as the nearest singularity hypothesis, by 
which one meant that a physical process was mostly 
determined by the effects of the singularities nearest to 
the physical region and was not affected by any mis
behavior of the amplitudes at infinity.2 

1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
2 See, for instance, G. F. Chew, S-Matrix Theory of Strong Inter

actions (W. A. Benjamin, Inc., New York, 1961). 

appear that all aspects are equally important; elastic 
unitarity and the correct crossed cuts yield a dasicall} 
repulsive interaction, the attraction necessary to pro
duce a resonance is provided by the inelastic states (a 
phenomenon observed in other calculations7), and the 
actual value of the resonance is determined by the 
crossing relations. > 

The clue to a solution of the problem was provided 
by the observation, due to Regge,3 that the asymptotic 
behavior of the nonrelativistic-scattering amplitudes, 
as functions of the angle, are determined by the singu
larities of the partial-wave amplitudes as functions of a 
continuous angular momentum.3 Actually, these singu
larities are only poles. Chew and Frautschi4 and 
Mandelstam5 pointed out that the high-energy diffi
culties of the 5-matrix theory of strong interactions 
could be eliminated if one takes as an ansatz that the 
asymptotic behavior of the total amplitude in relativ-
istic theory is analogous to the one found in non-
relativistic theory. 

Although it was clear that the asymptotic difficulties 
were removed by that hypothesis, one had yet to 
exhibit a practical way of resuming the Chew-Mandel-
stam program, now enlarged to be a program for self-
consistently computing the leading Regge-pole trajec
tories. Chew and Jones are currently investigating such 
an approach in which they work both with the full 
amplitude and with the partial-wave amplitudes.6,7 

However, it is not clear whether only using the partial-
wave amplitudes, which has the advantage of leading 
to one-dimensional well-known equations, could lead 

3 T . Regge, Nuovo Cimento 18, 947 (1960). 
4 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394 

(1961). 
5 S. Mandelstam (unpublished). 
6 G. F. Chew and C. E. Jones, Lawrence Radiation Laboratory 

Report UCRL-10992, August 1963 (unpublished). 
7 G. F. Chew, Conferences at the Department of Applied Math

ematics and Theoretical Physics, University of Cambridge, 
England, 1963 (unpublished); see also Ref. 9. 
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For infinite energies, we determine the asymptotic behavior of partial-wave amplitudes when the full 
scattering amplitude satisfies Mandelstam representation and has itself a Regge asymptotic behavior. 
Particular attention is paid to the behavior of the partial-wave-amplitude discontinuities on their cuts. 
They are shown to behave as |£|a(0>_1, where t is the energy squared and a(0) is the leading Regge-pole 
position at zero energy. This result removes an old-standing difficulty in the Chew-Mandelstam calculation 
of amplitudes and provides a precise justification of the nearest singularity technique. As an application, we 
show that no subtraction is necessary in partial-wave-amplitude dispersion relations at physical values of 
the angular momentum, even for the case of S waves. 


