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However, he assumed that the maximum effect would 
be produced by a totally black disc, and it is not clear 
that this is true. If we add only inelastic states to the 
model, however, we find that we can produce a P-wave 
resonance virtually anywhere. The unique value for the 
position and width of the p meson is obtained when one 
imposes crossing symmetry as well. Thus it would 

I. INTRODUCTION 

IN their original program, Chew and Mandelstam 
stressed that a particle or a resonance in a crossed 

channel contributes to the forces acting between two 
particles.1 More precisely, the partial-wave amplitudes 
for pion-pion scattering have both a left- and a right-
hand cut as functions of the energy, and the resonances 
in the crossed channels determine the discontinuity 
across the left-hand cut or, equivalently, the forces. 
Unfortunately, it appeared that the discontinuity ob
tained from that mechanism increased at a rate in 
conflict with unitarity when the energy became infinite 
and negative, as soon as the spin of the resonance or of 
the bound state in the crossed channel was larger than 
or equal to one. Such is the case for the p meson (and 
now also for the f° meson). The problem of determining 
the exact high-energy behavior of amplitudes became 
a necessary preliminary to the dispersion theory of 
elementary particles. 

It was indeed felt that a simple solution of the 
problem had to exist since, in several cases, the simple 
trick of introducing a cutoff for the left-hand cut dis
continuity leads to sensible results. This idea has been 
expressed as the nearest singularity hypothesis, by 
which one meant that a physical process was mostly 
determined by the effects of the singularities nearest to 
the physical region and was not affected by any mis
behavior of the amplitudes at infinity.2 

1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
2 See, for instance, G. F. Chew, S-Matrix Theory of Strong Inter

actions (W. A. Benjamin, Inc., New York, 1961). 

appear that all aspects are equally important; elastic 
unitarity and the correct crossed cuts yield a dasicall} 
repulsive interaction, the attraction necessary to pro
duce a resonance is provided by the inelastic states (a 
phenomenon observed in other calculations7), and the 
actual value of the resonance is determined by the 
crossing relations. > 

The clue to a solution of the problem was provided 
by the observation, due to Regge,3 that the asymptotic 
behavior of the nonrelativistic-scattering amplitudes, 
as functions of the angle, are determined by the singu
larities of the partial-wave amplitudes as functions of a 
continuous angular momentum.3 Actually, these singu
larities are only poles. Chew and Frautschi4 and 
Mandelstam5 pointed out that the high-energy diffi
culties of the 5-matrix theory of strong interactions 
could be eliminated if one takes as an ansatz that the 
asymptotic behavior of the total amplitude in relativ-
istic theory is analogous to the one found in non-
relativistic theory. 

Although it was clear that the asymptotic difficulties 
were removed by that hypothesis, one had yet to 
exhibit a practical way of resuming the Chew-Mandel-
stam program, now enlarged to be a program for self-
consistently computing the leading Regge-pole trajec
tories. Chew and Jones are currently investigating such 
an approach in which they work both with the full 
amplitude and with the partial-wave amplitudes.6,7 

However, it is not clear whether only using the partial-
wave amplitudes, which has the advantage of leading 
to one-dimensional well-known equations, could lead 

3 T . Regge, Nuovo Cimento 18, 947 (1960). 
4 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394 

(1961). 
5 S. Mandelstam (unpublished). 
6 G. F. Chew and C. E. Jones, Lawrence Radiation Laboratory 

Report UCRL-10992, August 1963 (unpublished). 
7 G. F. Chew, Conferences at the Department of Applied Math

ematics and Theoretical Physics, University of Cambridge, 
England, 1963 (unpublished); see also Ref. 9. 
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For infinite energies, we determine the asymptotic behavior of partial-wave amplitudes when the full 
scattering amplitude satisfies Mandelstam representation and has itself a Regge asymptotic behavior. 
Particular attention is paid to the behavior of the partial-wave-amplitude discontinuities on their cuts. 
They are shown to behave as |£|a(0>_1, where t is the energy squared and a(0) is the leading Regge-pole 
position at zero energy. This result removes an old-standing difficulty in the Chew-Mandelstam calculation 
of amplitudes and provides a precise justification of the nearest singularity technique. As an application, we 
show that no subtraction is necessary in partial-wave-amplitude dispersion relations at physical values of 
the angular momentum, even for the case of S waves. 
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to simpler or more accurate calculations. Before we 
enter into such a program, nevertheless, it is necessary 
to solve explicitly the preliminary problem of high-
energy divergences and to find the explicit behavior of 
partial-wave amplitude discontinuities once the Regge 
asymptotic behavior is assumed for the full amplitude. 

In the present paper, we devote our work to the 
solution of this problem. Our main result is that the 
discontinuity at infinity is determined by the position 
of the leading Regge pole at zero total energy «(0) and 
not by the spin of the physical bound states or reso
nances. Since, as has been shown by Froissart,8 the 
requirement of unitarity implies that a (0)^ l , it may 
be shown that the difficulty originally encountered by 
Chew and Mandelstam is removed. In fact, the dis
continuities on the left-hand cut and the right-hand cut 
fit so well that no subtraction is needed in any physical 
partial-wave dispersion relation, even for the S wave. 
Therefore, no subtraction parameters have to be 
introduced when one solves the Chew-Mandelstam 
equations. 

Apart from this result, which bears on the consistency 
of the theory, it will be useful to use the asymptotic 
form of the discontinuities in such practical applications 
as the determination of the Regge-pole trajectory from 
N/D equations. In fact, it is obvious that in the partic
ular case of the S wave this procedure will lead to more 
rapidly convergent calculations than those which can 
be obtained by introducing a cutoff. 

The simple form of the discontinuity, which is not 
oscillating as sometimes assumed,9 but smoothly 
damped, is in fact a justification of the nearest singu
larity method. 

After some preliminaries about partial-wave ampli
tudes, their properties, and a precise statement of our 
hypotheses in Sees. I to III, we compute the asymptotic 
behavior of the discontinuities in Sees. IV through VII. 
Applications to the number of subtractions in partial-
wave-dispersion relations, as well as the possibility of 
cuts in the angular momentum plane, are made in 
Sec. VIII. 

II. HYPOTHESES 

Let us consider the amplitude A (s,t) for the scattering 
of identical neutral spinless particles with mass unity. 
We consider / to be the total center-of-mass energy 
squared, and s to be the square of the invariant momen
tum transfer. The partial-wave-scattering amplitudes 
ai(t) are given by 

1 r*1 

ai(t) = - / A(z,t)Pi(z)dz, (1) 

where z~ 1+2^/(^—4), is the cosine of the cm. scatter
ing angle. When A (t,z) is an analytic function of z in a 

8 M . Froissart, Phys. Rev. 123, 1053 (1961). 
9 G. F. Chew, Phys. Rev. 129, 2363 (1963). 

domain that contains the segment (—1,+ 1), Eq. (1) 
can be replaced by the Neumann formula 

<**(*) = — [ A(z,t)Qt(z)dz, (2) 
2wi J c 

where C is a contour around — 1 and + 1 . In particular, 
when A (z,t) is analytic in the complex z plane cut from 
ZQ to oo ? as is the case for any nonrelativistic amplitude 
satisfying the Mandelstam representation, Eq. (2) can 
be replaced by 

1 r™ 
ai(t) = - I Qi(z)A9(s,t)dz, (3) 

7T J go 

where 2iAs(s,t) is the discontinuity of A(s,t) across its 
s cut. Equation (3) was first given by Froissart.10 Its 
main properties are that it can be extended to complex 
values of /, and that the function obtained in this way 
is analytic in at least a half-plane Re/>iV, where N is 
the necessary number of subtractions in a dispersion 
relation at the fixed energy t. Within that half-plane, 
ai{t) is a bounded function. In accordance with a 
theorem by Carlson,11 it is therefore the unique analyitc 
function that interpolates the physical amplitudes from 
/ integer to / complex and that does not at most increase 
as fast as expx|/|. Equation (1) does not verify this 
boundedness property and coincides with Eq. (2) only 
for positive integer values of /. 

For a relativistic amplitude satisfying the Mandel
stam representation, there are two cuts, and Eq. (3) 
has to be replaced by 

1 f00 

*i(0 = - / Qi(z)A.(s,t) 
T J ZQ 

(-1)' r 
+ / Qi{z')Au{u,t)dz', (4) 

T J zO 

so that one has to deal with two different analytic 
functions of / that coincide respectively with di(t) for 
even and odd values of /. One distinguishes these two 
analytic functions by their signature db 1. For simplicity, 
we shall only consider in this paper the simple model of 
neutral spinless particles for which the odd amplitude 
vanishes and only the amplitudes with even signature 
play a role. 

III. DISPERSION RELATION 

The function di(t) has a branch point at the two-body 
threshold t=n and it is convenient to define, with 
Gribov,12 the new function <j>i(t) = ai(t)/\t—n)1, which 

10 M. Froissart, International Conference on Strong Inter
actions, La Jolla, California, 1961 (unpublished). 

11 R. P. Boas, Entire Functions (Academic Press Inc., New York, 
1956). 

12 V. N. Gribov, in Proceedings of the 1962 Annual International 
Conference on High-Energy Physics at CERN, edited by J. Prentki 
(CERN, Geneva, 1962). 
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FIG. 1. Bound of the integral 
f o r A</><2>. 

has only a second-order branch point at the two-body 
threshold. The function <f>i{t) satisfies the dispersion 
relation, for Re/ large enough and we have 

*,(/) = - / + - / — , (5) 

where it is understood that the necessary number of 
subtractions have been made. When ReZ becomes small 
enough, it is necessary to add to Eq. (5) the contribution 
of the poles of cj>i(t) (which are at the position of bound 
states when Z is a positive integer or zero). 

The discontinuities on the cuts are given, for t 
positive, by 

4 f00 / 2s \ ds 
lm*i(0— / Gi(l+ U.t(s,t) — . (6) 

W 4 \ * - 4 / (*-4)J+1 

Here Ast is the Mandelstam weight function p(syt). For 
negative /, one has 

A ^ W ^ f Pl(-^--l}As(s,t-ie} 
ds 

and 

A*i<»(*) = 

(4-0H_1 

ds 
= - / QA lU*»(s,th— 

*J*itt) \ 4 — / — i e / (4— 
i+i' 

(7a) 

(7b) 

(7c) 

(b) When one of the variables s, t, or u tends to 
infinity, the asymptotic behavior of the amplitude is of 
the Regge type.14 More precisely, if t tends to infinity at 
a fixed value of s, one has 

A{s,t)~Y,yr{s) 

where si(t) and S2(t) are the boundary of the third 
spectral region for fixed t (see Fig. 1). Note that, while 
A0j(O is real, this is not true of A<j>ia) and A#f

(2) sepa
rately. It has been shown by Gribov and Pomeranchuk13 

that, due to the existence of poles of Qi as functions of I 
at 1= — 1, — 2, • • •, Eq. (7c) implies the existence of an 
essential singularity of <j>i(t) at /= 1. 

IV. BEHAVIOR ON THE RIGHT-HAND CUT 

Our problem is to investigate the behavior of the 
three discontinuities given by Eqs. (7) when t tends 
towards ±oo. To do this, we make the following 
assumptions: 

(a) The amplitude A(s,t) satisfies the Mandelstam 
representation. 

13 V. N. Gribov and I. Ya. Pomeranchuck, Phys. Letters 2, 239 
(1962). 

x-
^(S ) [ - l - (2/ / (^-4))]+P a r ( s ) [ l+(2/ / ( . -4)) ] 

sin7ro:r(^) 
(8) 

where the sum goes over the indices r of the Regge-poles 
trajectories. We assume explicitly that there are no 
cuts in the angular-momentum plane. For simplicity, 
we make all the subsequent considerations by taking 
only into account one Regge pole. 

(c) We suppose that ar(s) is an analytic function of s 
in the complex s plane cut from s=4 to + <*>, and that 
it has a limit when a tends to infinity so that by the 
formal transformation defined by ar(s), it transforms 
the s plane into the kidney-shaped region indicated 
in Fig. 2. 

In fact, it would be easy to trace out the modifications 
of the following arguments if some of these assumptions 
were to fail. They are just made here for the sake of 
simplicity. 

Again, for more clarity, we do not consider the Regge 
poles of the u channel, but only those of the s channel 
as they are exhibited in Eq. (8). This is equivalent to 
putting the residues of the ^-channel Regge poles 
identically equal to zero and taking into account only 
the ^-channel Regge poles, then exchanging the role of 
s and u and adding the results. That simply makes the 
equations shorter so that when we reestablish the 
contributions of the ^-channel Regge poles at the end 
of the argument, we shall only have to multiply in some 
places by a factor of 2. 

Lastly, we insist on the reality of A<£j(/) for /—real by 
writing, in place of Eq. (7), 

where 
A0,(O = A0/1(O+A0/2(O, (9) 

A0/1(O=ReA*«<1)(O and A<t>/2(t) = ReA<l>i^(t). (10) 

Let us first find the asymptotic behavior of the dis-

Im O 

FIG. 2. Image of the cut s 
plane by the 
transformation. 

a (s) conformal 
a U»\ 

14 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys, 
Rev. 126, 2206 (1962). 
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FIG. 3. Singulari
ties of the integrand 
inEq. (11). 

continuity on the right-hand cut. This behavior may be 
found in a variety of ways and the result is already well 
known since it is the behavior of the phase shifts when 
the diffraction peak is determined by a Regge pole. 
However, we derive it in a way that is a good illustra
tion of the method to be employed for the other 
discontinuities. 

As we do not take into account the ^-channel Regge 
poles, which when t tends to infinity, is equivalent to 
considering the Atu discontinuity as zero, Eq. (6) 
reads now 

2 r00 / 2s \ 
l m ^ ( 0 = - / •QjU+—U,t(s,t} 

ds 

(*-4) l+l 
. (ID 

Let us write it as a contour integral 

im0Z(o=- [ e / i+—V (s, fi
ds 

t\>, 
(*-4) i+i 

(12) 

where the contour C goes around the cut of At(s,t) from 
s= 4 to s= oo (see Fig. 3). The integrand in Eq. (12) has 
this cut and also has the cut of the Legendre function 
which goes from s= — oo" to s=0. If we make the 
conformal transformation from the s plane to the a 
plane, Eq. (12) remains true as an integral over a on 
the contour C shown in Fig. 4. The contour C can be 
reduced to C", which encloses the Qi cut. It is clear from 
Fig. 4 that an integral over C cannot increase more 
strongly than ta(-0) when t tends to infinity. 

For the part of C that is in the physical region (i.e., 
for 4—t<s<0), one can compute the discontinuity of 
C by using the relation15 -

Qi(x—ie)—Qi(x+ie)==iTPi(x), (13) 

which is true for —1^#^ 1. However, it is clear from 
Fig. 4 that, as / tends to infinity, the part of the integra
tion over C for s<A—t behaves as 2a(oo). If we neglect 

FIG. 4. Deformation of a contour lead
ing to the asymptotic behavior of 
Im<f>i(f). 

15 Bateman's Manuscript Project, in Higher Transcendental 
Functions, edited by A. Erdelyi (McGraw-Hill Book Company, 
Inc., New York, 1950). 

such corrections of the order ta(-™\ we thus get 

r° / 2s \ ds 
l m ^ ( 0 « / Pi[l+ )At(s,t) 

+ 0[>(oo)-Z-l-]> ( W ) 

Obviously, this result can be obtained without using 
the conformal transformation. However, this trans
formation is extremely useful in the next two cases. It 
shows immediately what the asymptotic behavior is of 
any contour integral just by indicating up to what 
point in the a plane the contour can be pushed to the 
left, as well as indicating the asymptotic behavior of 
any term to be neglected. 

V. BEHAVIOR ON THE LEFT-HAND CUT 

Let us now look for the asymptotic form of A<£*(1)(/). 
If we take into account only the s cut, Eq. (7b) reads 

A<^(1)(/) 
/•4-< (2s \ ds 

= Pd -l)As(s,t) 
J4 \ 4 - r / (4-r t 

(15) 

The same argument as for Im^i(t) can now be given, 

a ( 4 - t ) 

FIG. 5. Deformation of contour 
for A<f>i^\ 

First transform Eq. (15) into 

1 r / 2s \ d 
A<£za> = - / p{ l)A(s,t) 

2iJc, \ 4 - / / ( 4 -

ds 

(4-0 1+1/ 
(16) 

where the path C\ goes from 4—t—ie to 4—t+ie and 
encloses the branch point at s=4. Here again we can 
push the transformed path Ci to the left in the a plane 
(see Fig. 5) and replace Ci by the preceding contour C". 
The error committed is caused by that part of the 
integration path in Fig. 5 going from a (4—/) to a(°°), 
which gives terms of the order of ta(oo) for t large enough. 
By using now the relation15 

Pi(x-ie)-Pi(x+ie)= -2i sin7r/Pz(-x) (17) 

(which is valid for x< — 1), to compute the integral on 
C", we get 

A<^a>(0=-sinZ7rf p A —Yd(*,*)' 

+0[/«(->-»-i]. (18) 
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VI. CALCULATION OF A0j(2)(O 

The calculation of A0*(2) (/) is exactly of the same type 
as in the preceding section, although more involved. As 
a first step we define the new function 

B(s,t) 
7T J si(t) 

*>WAsu(s\t)dsf 

(19) 

I t is important to observe that B(s,t) behaves 
asymptotically as Au(s,t) when / tends to — oo, 5 being 
kept fixed and negative. In order to show this, we 
observe that A8U(s',t) behaves, when \t\ —» oo, as 

AtiU(s,t)~Imy(s)\t\«^, (20) 

and we write the asymptotic form of B(s,t) as 

1 r00 r4 rs 

- + + -ds'. (21) 

I t is easy to show that the last integral behaves as 
|£|«(°°)-i when t tends to •—oo and that the second 
integral behaves as | / | a ( 4 )-3 / 2 . [The integrand behaves 

FIG. 6. Singularities 
of the integrand for 
A<£*(2), s plane. 

o « ! » . 

V: 

as | / | a ( 4 ) , the integration interval from 4 to si(t) is 
proportional to tr1, and a more careful examination of 
the effect of the branch point of a(s) at 5 = 4 leads to 
the last \t\~1/2 factor.] Therefore, up to powers of t 
smaller than a (4) —3/2 or a(ao) — 1 , B(s,t) is given 
asymptotically by the first integral, which can be 
written as 

1 ryi.>)\t\°«\ 
— i ds', 
2iri J c s'—s 

FIG. 7. Singularities of the integrand 
for A</>z(2\ a plane. 

To find the asymptotic behavior of A<£z(2)(/), we 
proceed by the following steps: 

(a) Make the conformal transformation from 5 to 
a(s) (see Fig. 7). 

(b) Split the Qi cut into its two component cuts from 
a(oo) to a(4:—t) and from a(oo) to a(0). 

(c) Apply the contour Ti against these cuts. 
(d) Deform the cut which goes from a(oo) to 

a (4—t), along with the contour which encloses it, to 
push the whole pattern as much as possible to the left. 
One is then led to the situation shown in Fig. 8. 

(e) The contour around the cut from a (oo) to a (4— t) 
gives a contribution to A<^(2), which behaves asymp
totically as t"^; we drop it, keeping only the contour 
which encloses the cut from a(co) to a(0). 

(f) Making the conformal transformation from a to 
s, we see that, asymptotically, A<£z

(2) is equal to 

4 r / 2s \ ds 
A ^ ( 2 ) ( / ) = _ / Qr 1 \ 5 ( t) ( 2 4 ) 

27riJr2 \ 4 - ^ - i e / (4-t)l+l 

where T2 encloses the cut of the Legendre function from 
s = — oo to 5=0 , as shown in Fig. 9. Therefore, taking 
Eqs. (10) and (22) into account, we get 

where, again, C is a contour surrounding the cut of a(s) 
and y(s) from 4 to oo. By the Cauchy theorem, this is 
precisely y(s) \ t \a(s); i.e., we have shown that 

iJfeO^ili.feO+OCI^I11""^-1'"^-8/2], (22) 

when t tends to — oo. We rewrite Eq. (7c) as 

4 r / 25 \ ds 
^ W ( 0 = — / Q( ims9t)- — , (23) 

2TiJTl \4:-t-ie / (4 -Z)^ 1 

where the contour Ti has to surround the cut of B(s,t) 
from si(t) to 52© and must avoid the cuts of the 
Legendre functions. The Legendre function has two 
logarithmic singular points at s= 0 and 5=4—t—ie, and 
it is customary to join these two points to 5= — 00 by a 
common cut as shown in Fig. 6. As for the contour Ti, 
we shall choose it as shown in Fig. 6 by making it go 
from + 00 and back by turning around 5=4 . 

A0/<2>(O = Re-
4 

2wi 

• r / 2s \ ds 
X Qi( l)B(s,t) . (25) 

To find the discontinuity of the Legendre function 
along the cut of interest one uses Eq. (13), which gives 

FIG. 8. Deformation of cuts and contours 
for A0i<2), aplsthe. 

a(0) 

TT^STIJ 

' a (4 - t - i c ) \ 
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5 
- 2 FIG. 9. Deformation of. 

cuts and contours for A<£j(2), 
4 " t " l € s plane. 

the discontinuity of Qi across the other cut, one also 
uses 

and 

15 

Ql(~z)=-e^Ql(z), (26a) 

Pl{^z) = e^ilvPi{z)— simrlQi(z), (26b) 

where Eq. (26a) gives the discontinuity across the 
merged cuts and (26b) serves to evaluate the right-hand 
member of Eq. (13). Finally, we have 

A0i'<2>(0 = cosfo <>-£> 
2s \ ds 

Au(s,t} 
(4-0 H _ 1 

+0[/«c»)-t-i]. (27) 

VII. RESULTS 

Let us now summarize the asymptotic values of the 
discontinuities when due care is taken of both the s 
and u Regge poles. This leads to 

r° / 2s \ ds 
Im<j>l{t) = 2l 2M1+ Ut(s,t) 

(Z-4)^1 

+0[/«<00>-*-1], (28a) 

ds r° / 2s \ d 
A0i(/) = 2 COS/TT / PA 1 )Au(s,t) 

J-„ \ 4-t/ ( 4 -

- 2 sink R e / p / l )A(s, 

( 4 - 0 m 

ds 

(4-Z)^1 

+ 0 [ | / | « ^ - ^ 1 ] . (28b) 

Replacing the Legendre function by its limit (equal 
to 1 when / tends to infinity), we get the less accurate 
result 

r° ds 
1m4>i(t) = 2 At{sfy _ +0[>«»-*-2] (29a) 

and 
«-4) l+l 

r° ds 
A<t>i(t) = 2 cosh I Au(s,t) 2 sink 

X / ReA(s,t} 
ds 

(4-0 l+l 
-0[|<| *(0)-Z-5 * ] . (29b) 

It is now obvious that both discontinuities behave as 
ta(o)-i-i^ Up i0 logarithmic factors, and that they are 
both damped without oscillations. 

In fact, it is clear that the same method may be 

applied directly to the Froissart formula [Eq. (3)] and 
that the whole function cj>i(t) itself behaves as /"C0)-*-1 

when | /1 tends to infinity. 

VIII. APPLICATIONS 

An important application of Eqs. (29) is to show that 
all dispersion relations for physical partial-wave ampli
tudes can be written without any subtraction. In fact, 
as can be seen from the Froissart theorem, one has 
a (0)^1, so that it is clear that both integrals in the 
dispersion relation (5) converge when l> 0. 

The case of 1=0 has to be treated more carefully. 
Actually, an immediate consequence of Eqs. (29) is 

Im*o(0-^o(0 = 0(|/|-1), (30) 

when we have 2 —> °°. Therefore, if we write the disper
sion relation in the form 

1 rrlmMn A0o(-O-] 
*>(*)=- / —- * , 

TJO L t'-t t'+t J 
(31) 

it is clear that this integral is rapidly convergent. 
This result shows that, in fact, calculations involving 

the exact asymptotic behavior of partial-wave ampli
tudes will converge more rapidly than calculations 
where the left-hand cut contribution is cut off. 

Another application demonstrates the relevance of 
partial-wave asymptotic behavior in the discussion of 
angular-momentum cuts. One can easily show, by 
introducing the asymptotic behavior 

(32a) 

(32b) 

(33) 

and 

At(s,t)~p(s)t«v, 

Au(s,t)~p(s)t"M, 

ReA(s,t)~ p(s)tc («) 
(1 + COS7TQ:) 

sm7ro: 

into Eqs. (28), and then introducing the discontinuities 
into the dispersion relation Eq. (5), that each of the 
dispersion integrals in Eq. (5) is an analytic function 
of / with a cut going from /= — co to l=a(0)— 1. How
ever, if we examine the singularity at a(0)~ 1, using 
Eqs. (32), we find that the singularity is cancelled if 
both dispersion integrals are considered together. This 
is another example where a correct account of the left-
hand cut discontinuity at infinity gives much better 
results than a cutoff. 
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