
P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 6B 23 M A R C H 19 6 4 

Degenerate Systems and Mass Singularities* 
T . D . LEEf AND M . NAUENBERGt 

Columbia University, New York, New York 
(Received 24 October 1963) 

For a system with degenerate energies, the power series expansions of the S-matrix elements may become 
singular. An elementary theorem in quantum mechanics is proved which shows that under certain general 
conditions such singularities do not appear in the power series expansions of the transition probabilities, 
provided these are averaged over an appropriate ensemble of degenerate states. Application of this theorem 
leads to the cancellations of mass singularities and infrared divergences in quantum electrodynamics. The 
question of whether a charged particle can have zero mass is studied. 

I. INTRODUCTION 

IN many cases it has been observed that the perturba
tion series expansion of the transition probabilities 

for a degenerate system often exhibits infinities which, 
however, can be cancelled by averaging over an appro
priate ensemble of states. The well-known problem of 
infrared divergence1'2 in electromagnetic theory is one 
such example. Another example is given by Kinoshita 
and Sirlin3 in their calculation of the lowest order 
radiative correction to muon decay (or other decays 
through weak interactions). If the mass of the electron 
me is set mathematically to be zero, the partial decay 
rates of the muon contain (In me) singularities, but the 
total decay rate remains finite. By using the detailed 
properties of Feynman graphs, Kinoshita4 has also 
investigated the cancellations of such "mass singulari
ties" for higher order diagrams. 

As we shall show, the occurrence of such singularities 
and their cancellations are consequences of an ele
mentary theorem in quantum mechanics which can be 
established without any explicit use of Feynman 
graphs, nor even the explicit form of the Hamiltonian. 

Let us consider an arbitrary Hamiltonian (H0+gHi) 
which can be diagonalized by a unitary matrix U. 

UKH0+gHdU=E, (1) 

where Ho and E are both diagonal matrices and g is 
the interaction coupling constant. If the problem con
tains a continuum then £/=£/_ or U+ depending on 
whether incoming or outgoing scattered waves are used. 
The S matrix is given by 

S=Z7_tff+, (2) 

where f indicates Hermitian conjugation. The cor
responding transition probability from a state a to a 
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state b is given by 

£ Z(U-)ib*(U-.)}bll(U+)ia(U+)ja*l. (3) 
*./ 

For clarity, we assume the problem contains a certain 
parameter fx and the degeneracy occurs in the total 
Hamiltonian only when /*—»0. For ju^O, the (i,j)th 
matrix element of U± can be expanded in the familiar 
power series in g. 

(U^^d^+giE-E^iay^l-d^iH^j+Oig"), (4) 

where 8{j is the matrix element of a unit matrix, a is a 
positive infinitesimal quantity, and Ei is the ith 
diagonal element of the matrix E. Furthermore, we 
assume that each term in the power series expansion is 
finite if there is no degeneracy. As the parameter 
fx —> 0, the state of energy Ei becomes degenerate with 
other states which lie within a certain subset D(E{). 
Therefore, if some of the states i, j , a (or b) in (3) are in 
the same degenerate set, the power series expansion of 
the corresponding transition probability would contain 
infinites in the limit ju=0. On the other hand, such 
infinities can be completely cancelled if we consider the 
power series expansion of the sum 

D(Ea) 
(5) 

where the summation extends over all states a in the 
same degenerate subset D(Ea) and U can be either 
U+ or U— This can be easily verified by using (4) and 
neglecting second or higher order terms in g. In an 
equally elementary way, we shall establish in the fol
lowing section a theorem which gives the general 
condition under which such cancellations can occur 
for every term in the power series expansion. 

By applying this theorem to electrodynamics, we 
can derive the elimination of the "mass singularities" 
in the mathematical limit me-^0 and the cancellations 
of the well-known infrared divergences. This will be 
done in Sec. III. The question of whether a spin-f 
zero-mass particle can have an electric charge is dis
cussed in the same section. It is shown that by altering 
the usual renormalization program and by limiting 
measurements only to the ensemble averages over the 
appropriate degenerate sets of both the initial and the 
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final states, finite results for any physical transition 
probabilities can be obtained in the power series 
expansion. An unusual feature is the necessity of 
including interference terms between certain graphs, 
some of which may contain disconnected parts. Another 
interesting result is that the limit me~->0 does not 
correspond to a theory with two .uncoupled two-
component particles. 

For clarity of presentation, a number of other related 
theorems are given in Appendices A, B, and C. The 
details of the cancellation of mass singularity for the 
bremsstrahlung process are given in Appendix D. In 
Appendix E, we include some further illustrations of 
the theorem for the case of a soluble model in field 
theory. 

Throughout this paper the question of convergence 
of the power series is not discussed. 

II. AN ELEMENTARY THEOREM 

The general perturbation series of the U matrix can 
be derived by using the unitarity condition 

UW=\ (6) 

and Eq. (1), which may be written as 

[£/,£]= (gt f r fA)^ (7) 
where 

A=Ho-E (8) 

and U stands for either U+ or Z7_. The diagonal matrix 
A represents the negative of the energy shift introduced 
by the interaction gHi. For example, in a field theory 
with no bound state, E is the free-particle Hamiltonian 
with physical masses, and H0 is the same free-particle 
Hamiltonian but with bare masses.5 

Let the formal power series expansions of A, U, T be 

A = I g w A n , (9) 
I 

U=IlgnUn, (10) 
0 

and 

T(Ea)= E r r » ( E . ) , (ii) 
0 

where [T(Ea)2ij is defined by (5). 
When the parameter ^0, the eigenvalues Ei of the 

total Hamiltonian (#o+g#i) contain no degeneracy 
other than the usual continuum due to the infinite 
volume. The power series expansions of U± can be 
obtained by using (6) and (7). As JJL-^0, degeneracy 
occurs, and these expansions may contain singular 
terms. The following theorem can be proved: 

5 Strictly speaking, there may also be a shift Avao in the vacuum 
energy which, however, can be removed by considering, instead of 
(Ho-\-gHi), the Hamiltonian (Ho+gHi—Avac / ) where I is the 
unit matrix. 

Theorem: If lim^oAn exists for all n^N, then 
\im.ll^o£Tn(Ea)2ij exists for all n^(N+l) and for 
arbitrary states i and j . 

Proof: We shall prove the theorem by induction. 
Assume that lim^oAn exists for all n^N and that 

Km [Tn{Ea)~]i3 exists for all i,j and n^M< (iV+1) . 

(12) 
[T„(Ea)] is related to Un by 

Cr.(JE.)]tf= £ L (U^UUn-Jja*, (13) 
m=0 D(Ea) 

where the first summation E extends over the subset 
D{Ea) 

D(Ea) of all states a that are degenerate with Ea in the 
limit fi —> 0. As discussed in the previous section, 
lim^o[Ti(Ea)2ij always exists. Therefore, (12) holds 
for M= 1. To show that lim^o[TM+i(Ea)2ij exists, we 
consider the following three cases: 

(i) The state i lies outside the subset D(Ea), and the 
state j may or may not lie outside D(Ea). From (7), it 
follows that (since Ei5*Ea): 

(Uj^iEa-EtA E (ff,)i»(M*a 

(14) 

m n 

+ E (A0«(#m-0;a . 
1=1 J 

Substituting (14) into (13) and taking the limit /x—> 0, 
we find for n=M+l 

[TM+i(£a)]^=(Ea-£,)-4 L (Hl)ik[TM(Ea)2ki 

(15) 

+ E &l)i<ZTM+^l(Ea)2iA , 
1=1 J 

where in the summation over / we have used the simple 
fact that ZTo(Ea)2ij=Q for the present case. Thus, 
\imlx^TM+i(Ea)2ij exists. 

(ii) If the state j lies outside the degenerate set 
D(Ea), but the state i may lie inside D(Ea), the exist
ence of \im^o[mTM+i(Ea)2i3 follows from the hermiticity 
relation 

LTM+i(Ea)2«= [TM+1(Ea)2ir (16) 
and (i). 

(hi) If both i andy are within D(Ea), then by using 
the unitarity of the U± matrix, we have (for M>0) 

[ rM + 1 (£«) ]«=- E H{um)ib{uM+i-m)Jb*, (17) 
m=0 b 

where E & extends over all the states b not in D(Ea). The 
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right-hand side can be written as a sum of [TM+i(Ea)2ij, 
where the states i and j are not degenerate with E&. 
Case (hi) is then reduced to (i); therefore, limM_*o 
[TM+i(Ea)2ij exists. The theorem is then proved by 
induction on M. 

It is important to note that since U± is unitary, its 
matrix element cannot have a magnitude bigger than 1. 
Therefore, limM_»o(fr±Xy and lim^oC^(£«)]# cannot be 
infinite. However, as ix —> 0, infinities may occur in the 
power series expansion of U±. The theorem states that 
such infinities do not occur in the power series of 

Remarks 

1. For a system that contains a continuum, the sum
mation J^D(Ea) in (13) represents the integration over 
all states that lie within the energy interval between 
Ea— e and E a+e, where e^O but can be chosen to be 
arbitrarily small. 

2. Since (A0)™=0 and (Ai)«= — (Hi)iiy it follows 
that lim^oC^nC-Sa)]^ exists for n<2 provided (Hi) a 
remains finite. 

3. As stated above, the degenerate set D(Ea) should 
contain all states whose energy is degenerate with Ea. 
In almost all problems, the theorem remains true if 
the subset D(Ea) is substantially reduced. This can 
be most easily seen by considering a different problem 
in which Hi is changed into Hi where (H'i)jk= (Hi)jk 

if j and k lie in an arbitrarily chosen set S, and otherwise 
(Hi)jk=0. Applying the theorem to this new problem 
we find the relevant degenerate set becomes the inter
sections DAS of the original D(Ea) and S. For any 
given states "i,j, arid a, one can always choose the set S 
such that (Um)ia and (Um)ja remain unchanged for all 
m<n. Therefore, for the original problem we can re
place DXEa) by DAS in (13) and the resulting sum 
remairxs finite in the limit fi —> 0. 

4. In the above proof we need only the expansion 
formulas (14) for those elements (Um)ia where E^E^ 
The complete recurrence formulas for all elements 
(Um)ij and (Am)a are given in Appendix A. These 
formulas will be useful for many explicit calculations. 

5. In the above power series expansions, the energy 
denominators such as (Ea—Ei) in (15) refer to the total 
energy Ea and Ei. An alternative series can be de
veloped in which the energy denominator is replaced by 
(Ea°—Ei0) where Ea° and Ei° are the eigenvalues of 
HQ. A theorem can also be established for the existence 
of [ r n (£ a

0 ) ]y when H0 becomes degenerate. (See 
Appendix B.) 

6. For problems in field theory, each Feynman graph 
represents a part of the S matrix which is the product 
£/_t£/+. To obtain U+ or U- one may imagine that 
each of the Feynman graphs is cut into two by an 
arbitrarily drawn line. Rules can be derived6 to repre-

6 Cf., W. R. Frazer and L. Van Hove, Physica 24, 137 (1958). 

sent U+ and U- as sums of the respective halves of all 
these cut graphs. Our theorem on [Tn(Ea)2i3 refers to 
the existence of the corresponding sum of products of 
these cut graphs when degeneracy occurs. 

III. APPLICATIONS TO ELECTRODYNAMICS 

We consider the pure electromagnetic interaction 
between electrons and photons. The matrix A is 

A=dfneUe$ed*r, (18) 

where 8me is the difference between the mechanical 
mass mo and the physical mass me of the electron, and 
\f/e is the wave function operator of the electron. We 
assume there exists an ultraviolet cutoff in the theory. 
Problems related to the renormalization of the ultra
violet divergence will be discussed later. (See point 6 
below.) 

1. Electrodynamics contains degeneracy because 
photons have zero mass. This is the well-known infra
red divergence.1'2 For calculation purposes we can 
assign the parameter /z to be the fictitious mass of a 
neutral vector particle; in the limit /JL=0 this vector 
particle becomes the photon. It is well known that dme 

does not contain the infrared divergence. Therefore, 
lim/x_»oAn exists for all n. For each given state a, the 
subset D(Ea) consists of all other states which differ 
from a only in the number of infrared photons. The 
theorem proved in the previous section states that the 
power series expansion of (U— U+ or UJ) 

V 7 7 - 7 7 * 
D(Ea) 

does not contain infrared divergence. 
2. Another application is one in which the parameter 

fi in theorem 2 is the physical mass me of the electron. 
For example, the state of an electron with a three-
momentum p is degenerate with the state which consists 
of an electron with momentum p—k and a photon with 
momentum k provided both me and the angle 6 between 
p and k are zero. However, because of helicity conserva
tion the matrix element between these two states for 
me=0 and small 6 is proportional to 6, being zero if 
0=0. The transition amplitude for an electron to emit 
such a photon is proportional to the product of the 
matrix element divided by the energy denominator 
t(p-k)2+m2lQ*Ea>[d2+(fne/E)2'], where E and co are 
the magnitudes of the three vectors p and k. The prob
ability of such an emission with small 6 is proportional 
to J%62[62+(me/E)']~2d(cosd) which contains a In 
X (nte/E) singularity as me—^0. Similar considerations 
can be applied to states which consist of combinations 
of er, e+, and 7 moving in the same direction. The 
resulting singularities are called mass singularities. 

It follows from either dimensional arguments or 
75 invariance that as me —» 0 every order of the pertur-
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bation series for (8me) approaches zero. (A formal 
proof is given in Appendix C.) Therefore, limM_*oAn 

= 0 for all n. Our theorem states that summing over 
these degenerate states, there is no (lnme) singularity 
in [Tn{Ea)^\ij or in the corresponding products of the 
cut graphs. 

3. By using Eq. (2), the theorem can be readily ap
plied to the S matrix. We consider first the case of 
mass singularity. It follows from the above discussions 
that the power series expansion of 

Z E \sba\
2 (19) 

D(Eb) D(Ea) 

contains no mass singularities, provided we sum over 
both subsets D(Ea) and D(Eh) which consist of the 
states that are degenerate (in the limit me —> 0) with 
the initial state a and the final state b, respectively. 

To illustrate the use of (19) we consider the collision 
between an electron with a fixed external potential. 
The differential cross section d<n which includes the 
lowest order radiative correction for such a collision 
without the emission of any hard photon (i.e., co^e 
where e^O but can be chosen to be arbitrarily small) 
is given by 

<fci=Arol 1 + H 2 ( ln - 1 ) l n - + - l n — +0(1)1 j , 
I TTL \ m2 ) E 2 m2 J) 

(20) 

where e2=fine structure constant, E is the initial 
energy of the electron, q2 is the square of the momentum 
transfer and dao is the differential cross-section without 
radiative correction and without the emission of soft 
photons. In (20) the infrared divergence has already 
been eliminated by including the contributions due to 
emissions of soft photons (i.e., 00= ^e) . The 0(1) term 
remains finite as we—> 0 and (e/E) —» 0. The contribu
tion of vacuum polarization is not included in (20), 
but will be discussed in point 6 together with the 
problem of charge renormalization. 

Let p and p' be, respectively, the initial and the final 
momentum of the electron, with |p | = | p ' | = E . We 
define the set D (or D') to consist of all states in which 
an electron with momentum p—k (or p'—k') and a 
hard photon with momentum k (or k'), where hard 
photons means co= | k | > e or (| k' | > e). In addition 
the angle between k and p (or k' and p') is less than or 
equal to 5 which can be chosen to be arbitrarily small. 
In Fig. 1, the diagram (i) represents the collision 
process without the presence of any hard photons. 
Diagram (ii) represents the bremsstrahlung process 
where the initial state is an electron with momentum 
p and the final state is one in the degenerate set Dr. 
Diagram (iii) represents the absorption process in which 
the initial state is one in the degenerate set D but the 
final state consists of a single electron with momentum 
p'. 

(i) (ii) (iii) (iv) 

FIG. 1. Diagram (i) shows the elastic scattering of an electron in 
an external potential including radiative corrections. Diagrams 
(ii) and (iv) correspond to inelastic scattering with the emission of 
a single photon, while diagram (iii) illustrates the absorption of a 
photon in the initial state of the electron. 

It can be readily verified that, after summing over 
their respective final and initial sets of states Df and D, 
neglecting terms which remain finite as me —> 0, the 
differential cross sections do-% and dcrz for diagrams (ii) 
and (iii) are given by 

e2r E5-\r E 3n 
(l(T2=daz=dao—\ 2 In— In . (21) 

7rL meJL e 4 J 

Therefore, the sum do-i+da2+daz contains no (In 
Me) singularity. 

For practical calculations, (19) can be used to obtain 
the important radiative correction terms from the 
corresponding real emission and absorption processes, 
provided me is much smaller than all other values of 
energy and momentum transfer in the problem. 

It is interesting to notice that for hard photons the 
mass singularity in the transition probability is removed 
only if the initial degenerate set D(Ea) as well as the 
final degenerate set D(Ei) are summed over in (19), 

4. Another example is the decay of the muon, In this 
case, the initial state has no degeneracy (apart from the 
infrared photons) as me —>0. Therefore, in (19) we 
need only to sum over the degenerate set of the final 
states. In particular, the power series expansion of the 
total decay rate of the muon does not contain any 
(In me) singularity.3 

For fx decays in which the momenta of v^ and ve are 
fixed, the partial decay rate remains free from (In me) 
singularity provided the appropriate degenerate states 
of 7, e~ and e+ are summed over. This can be seen by 
applying remark 3 of Sec. II, where the set S contains 
only Vy. and ve with the given momenta. 

5. For infrared photons, it can be shown that the 
power series of either 

E \sha\
2 

D(Ea) 

D{Eb) 
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already contains no infrared divergence. Since the 
problem of infrared divergence has been extensively-
studied in the literature1'2, we will restrict ourselves 
only to a few remarks concerning the difference between 
the infrared divergence and the mass singularity in the 
limit mt -—» 0. For clarity, let us use the Bloch-Nordsieck 
approximation so that the electron currents ej„ can be 
regarded as a static classical distribution. Let A^ 
represent the electromagnetic field which consists of 
only soft photons (w^e). The interaction Hamiltonian 
is given by 

e jpApdh. (23) 

For each given static classical distribution j ^ , the 
entire Hamiltonian for the soft photons can be diagon-
alized by a unitary matrix U(j). Consider a problem in 
which the electron has an initial current distribution 
jn which becomes jj after the collision with an external 
potential. Let q be the momentum transfer given to the 
external potential and V(q) the corresponding matrix 
element. The 5 matrix (to first order in V) is then 
given by 

S=U1(j')V(q)U(]). (24) 

That the power series of (22) contains no infrared 
divergence can be easily established by using the uni-
tarity relation (for arbitrary jM) 

and the fact that our Hilbert space consists of only soft 
photons which in turn form the complete degenerate 
set. 

It is essential that in (24) the momentum transfer q 
and therefore the matrix element V(q) are the same, 
irrespective of the number of soft photons that are 
emitted or absorbed by the electric current. In the case 
of hard photons, emissions and absorptions of different 
photons may drastically change the values of momentum 
transfer. For example, in Fig. 1 the momentum transfer 
given to the external potential in diagram (iv) is 
p—k—p', which differs from the momentum transfer 
q=p—p' in diagrams (i), (ii), and (iii). The final state 
of (iv) is not degenerate with the final states of the 
other three diagrams in Fig. 1. The mass singularity of 
(iv) is cancelled only if one includes diagrams listed in 
Fig. 3 which contain disconnected parts. (See Appendix 
D for the details.) 

This situation is to be contrasted with the infrared 
problem. Let us suppose in Fig. 1, that diagram (i) 
represents the collision of an electron without any 
emission of photons (hard or soft) and the photons 
k, k' in all other diagrams are soft photons ( |k| , 
|k' | =€)* Then, according to (22), the contributions of 
(i) and (ii)+ (iv) contains no infrared divergence. 

6. In the above section we assume the existence of an 
ultraviolet cutoff X in the theory. For electrodynamics, 
the ultraviolet divergences can be removed by a re-

normalization process. All above statements concerning 
the absence of singularities due to degeneracies are 
correct, provided the relations between the renormalized 
charge and the unrenormalized charge do not contain 
terms which become singular in the limit that de
generacy occurs. For the infrared divergence, this is the 
case. Therefore, all above statements about the removal 
of infrared divergence are also correct in terms of the 
renormalized charge. 

The same, however, is not true for the limit me=0. 
This can be easily seen by recalling that the value of the 
observed electric charge e is usually determined by the 
well-known Thompson limit of electron-photon scatter
ing which clearly does not exist if me=0. This difficulty 
can be overcome by defining the renormalized charge in 
a different way. Let ZV(&) be the complete propagator 
(including all radiative terms) of the photon. Instead of 
the usual Z3, we may introduce7 a Z% by requiring 
[k2= (4-momentum)2] 

k2DF'(k2) = Zz' (25) 
a t & 2 = - M V 0 . 

By applying our basic theorem, the power series 
expansion of D/(—M2) can be shown to be free of mass 
singularity. To see this, let us introduce a hypothetical 
neutral vector particle of mass M which has the same 
form of interaction with the electric field as that of the 
photon except the coupling constant is / instead of the 
bare charge e<s. The total interaction Hamiltonian now 
consists of this new interaction plus the usual electro
magnetic interactions between the electrons and the 
photons. Consider the diagonal matrix element of the 
S matrix for the state which consists of only one such 
particle of mass M. The function D/{—M2) can be 
simply derived from the expansion of this matrix 
element to the first order in / but arbitrary orders in 
eo2. Since both the initial and the final states have no 
further degeneracy as m*—*0 (M remains finite), 
DF(—M2) can be regarded as a special case of (19) 
which, therefore, contains no mass singularity. 

We now define the renormalized charge er by 

e /=Z8
/1^o. (26) 

In terms of e', Eq. (19) contains neither ultraviolet 
divergence nor infrared divergence nor (In tne) singu
larity in the limit me= 0. 

7. The question whether a charged particle can have 
zero mass has been discussed in the literature.7'8 Our 
results show that if we regard a spin-J zero-mass particle 
as the limiting case of a nonzero mass particle as the 
mass m —•» 0 and if we restrict ourselves only to measure
ments which consist of ensemble averages over the 
degenerate sets, then to each order of the perturbation 
series in terms of a new renormalized charge ef, finite 

7 V. G. Vaks, Zh. Eksperim i Teor. Fiz. 40, 792 (1961) [English 
transl.: Soviet Phys.—JETP 13, 556 (1961)]. 

*K. M. Case and S. G. Gasiorowicz, Phys. Rev. 125, 1055 
(1962). 
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results can be obtained for these ensemble averages.9 

This, of course, does not mean that the entire sum of 
such power series exists. (Indeed, the fact that no. such 
zero mass charged particle has been observed in nature 
leads us to suspect that perhaps the sum does not 
exist.) Nevertheless, in the limited sense of ensemble 
averages (over both initial and final states) and power 
series calculations, a theory with a zero mass charged 
particle can have a meaning. For problems in which all 
such zero mass particles are completely produced by 
massive particles, the initial state has no degeneracy. 
The single sum over the final set of degenerate states 
gives a finite result for the power series calculation. 

The absence of any static limit makes the electro
dynamics of a zero mass charged particle different 
from that of a finite mass charged particle even in the 
classical theory; e.g., there is no Coulomb's law. In the 
present form of quantum theory, several additional 
interesting features may be emphasized: 

(i) Although there is no mass in the theory, a length 
M~l is nevertheless introduced through the renormaliza-
tion process. 

(ii) For a spin-J particle, the limiting process of 
starting with a finite mass m (therefore, a four-
component theory) and then setting m—>0 does not 
lead to two uncoupled two-component particles. This 
can be seen by considering the transition between such a 
charged particle with momentum p and, say, left-hand 
helicity to a right-hand helicity state with momentum 
p—k through the emission of a photon with momentum 
k which makes a very small angle 6 with p. The matrix 
element for such a transition is proportional to (m/E) 
where E = ( m 2 + | p | 2 ) i The transition probability for 
small values of 6 and m is proportional to (m/E)2 times 
the square of the energy denominator which is 
oc [02-f (m/E)2] . The integrated transition probability 
is, therefore, proportional to f (m/E)2[_62-\- (m/E)22~2 

d(cos0) which remains nonzero in the limit m—> 0. 
This seems to indicate that a two-component theory of a 
zero mass spin-f charged particle does not exist. 

(iii) Another interesting feature is the necessity of 
averaging over the degenerate set for the initial states. 
Such averages require an ensemble in which states 
with different numbers of zero mass charged particles 
are populated with equal probability, provided they 
belong to the same degenerate set. However, the avail
able phase space for states with N (unbound) particles 
is proportional to ttN where Q is the volume of the 
entire system. I t would appear that such an ensemble 
can never be realized. This dilemma can be resolved 
by considering the cases when these (initial) degenerate 
sets of states are themselves produced from certain 
finite numbers of nondegenerate states; e.g., these 
degenerate states are the decay products of some mas
sive particles. These decay products can be regarded as 

9 It can be shown that the same conclusions hold for a spin-0 
charged particle. 

wave packets extending over a finite volume V de
termined by the size of the experimental apparatus. 
The appropriate spatial part of the phase-space volume 
for the initial distribution of these degenerate states 
is, therefore, given by V and not Q which is infinite. 

Mathematically, this necessitates a certain change in 
carrying out the limit of infinite volume. We recall 
that 0 enters into all our formulas [e.g., Eqs. (13) and 
(14)] in two different ways. One is through the energy 
denominators such as (Ea—Ei)a which should be set 
to its limiting value (Ea— Ei)^^- The other is the 
trivial Q, dependence of the matrix elements (Hi) a, and 
in passing from a discrete momentum sum Y,k to the 
integration (Sir^tifdPk. These latter ones can be 
combined to give factors £lmfTrdzki— •, which, apart 
from a three-dimensional 5 function for over-all momen
tum conservation, should be replaced by VmJ*Tdzki • • •, 
where V is to be regarded as an additional characteristic 
parameter of the initial ensemble. 

I t seems also possible that some of these ft could have 
been replaced by different finite volumes, Vi, V% V%y 

• • •. The ensemble is then characterized by these 
parameters which, in turn, determine the relative 
populations of various degenerate systems containing 
different number of particles. However, we have not 
investigated these possibilities. Several additional in
teresting questions arise which have not been an
swered : Can the results of the limiting case m —> 0 be 
formulated by setting m—0 at the outset? Does the 
restriction to ensemble averages which seems to be 
necessary in the present case have a more fundamental 
bearing in the quantum theory of measurements? 
Is it possible to investigate the entire sum of the expan
sions, and thereby throw some light on the important 
question whether a zero mass charged particle can 
really exist or not? 
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APPENDIX A 

In this Appendix we will derive the complete recur
rence formulas for the power series expansions of 
(U±)ij and An. As mentioned in Sec. I I , these formulas 
can be derived by using Eq. (1). However, in order to 
make our discussion on Feynman graphs appear in a 
more transparent way, we will derive the power series 
expansion by using the time-dependent Schrodinger 
equation. This has an added advantage of deriving, in a 
natural way, the generalizations of the U matrices 
which approach U± in the limit a = 0 + [where a is 
introduced in Eq. (4)J and remain unitary for any 
nonzero a. 
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We choose an interaction representation in which The diagonal matrices Am are independent of a and /. 
the equation for an arbitrary dynamical variable A (t) Their values can be uniquely determined by studying 
is given by the above equations in the limit a = 0 + . 

<̂ 4 (0 _ , x _ , Theorem A : If there is no degeneracy in the total 
- i — = [ i M 0 ) L (Ai) e n e r g y E ) 

d 
where E is the diagonal matrix defined in (1). The ll^+

 una(t,-™), Y\m^—Un
a{ty-^), 

solution of the Schrodinger equation for the state vector 
\p in this representation is d 

*(0=tf(Vo)iK*o), (A2) 

da 

dm 

lim Un
a(t,-x>) 

ac 
where exist for all m and n. 

i-U(tM)=(gH1+A)Um , (A3) J™^ By Using ( A 1 3 ) a n d t h e t i m e d e P e n d e n c e of 

dt ^ l W ' 

U(t0,to) = 1 , (A4) [Hi(01*= C^i(0)l-* expp(£i -£*)f l , (A14) 
and 

A == (HQ—E) . (A5) the matrix elements of Un are found to be 

For the 5 matrix we need the limit of U(t7to) over an rjj au _ oo )~| -k= VJJ «(o — oo )~| >k 

infinite time interval. To establish the existence of such v V(R R V-l- f\ (A1 $) 
limits, it is useful to multiply the coupling constant g by , ^L j 

a slowly varying function in time, say, exp(—a|$ | ) , 
where a is a small real positive number. The limit a rjjn

a(0 —oo)l'k=rEjc—E-\-inal~1 

= 0 + corresponds to the physical situation. The 
interaction Hamiltonian gHi(i)+A is then replaced by 

Ein-{i) = gH1{t) exp[-a |* |]+A«(0 , (A6) 
X I [ 5 i ( 0 ) ] { ^ ( 0 r ^ ) ] , + L (Am)y. 

where Aa(X) is related to the power series expansion of ] 
A, X [ ^ _ w « ( 0 , - ^ ) } J . (A16) 

oo 

A = V #wAn (A7) 
w=i For n=l, the off-diagonal matrix element of U\ is 

by given by (j^k) 

A«(0= i)g»A»exp(--na|t|) . (A8) [C/ia(0,-a))]y ,= [ E , - E i + i a ] - i [ F 1 ( 0 ) ] i , , (A17) 

T , „ j r v , • rrn,/. _ \ i - i which clearly satisfies the theorem. I n order tha t the 
Le t us define a uni tary matrix Ua(L—<x>) which . . / . . . . .. , , • . . TT „ 

satisfies theorem holds also for the diagonal element of Uia, 
Tja(__ QQ __ QQ \ i (KQ\ ^ i e m a t r i x Ai is determined to be 

and 
i(d/dt)U«(t,-«>) = Hin«(t)Ua(t,-<x>) . (A10) 

For clarity, we consider first the case t ̂  0. Expanding Correspondingly, 
Ua(L— oo) in a power series 

[ff !«(<>,-oo )]fl=0. (A19) 

(Ai)yy=-DSri(0):iyy. (A18) 

U"(t,-co)= E f P / f t - 0 0 ) , (AH) Next, we assume that the theorem holds for all n 
=-(N—l) and m=\. By considering the diagonal ele-

the successive terms Un"(t,-°o) satisfy ment i=£ in (A16), the matrix Aw is determined to be 

Uo°(t,-™)=l, (A12) ( A w ) i y = - E [ F 1 ( 0 ) l , [ ^ _ i ( 0 > - o o ) ] y 
and for n> 1 l 

N-l 

iUn
a(t,-«>)=•• I H1{t')exp(al')Un~ia(l,-«>)dt' „_i 

/ where I7m(0,—oo)== l i m « ^ o + ^ " ( 0 , - 0 0 ) . I t is easy to 
+ E / Amexp(tnaOU^a(t,-co)dtf-. (A13) see that the theorem holds for all the off-diagonal 

m = i j ^ matrix elements of £7jva(0,—oo). The diagonal matrix 
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element is given by (A10), (A15), and (A23), we find 

ZUK"(0,- 00)],,= (iNa)-l\ E [ # i(0)]yi and (A27) 

N—l 

X[]^iv-ia(0,— <*>) — Z7i\r_i(0— <»)]y+ E (Am)# 3. For problems containing a continuum, it is con-
m==1 venient to introduce first a finite volume 0 for the 

1 system and then to take the limit 12—> oo before the 
X [ ^ - m a ( 0 , — oo)— Z7jsr—w (0, — °°)]yj| , (A21) limit a—>0+. The £7+ and £/_ discussed in the previous 

' sections [cf., Eq. (1)] are related to U(t,to) by 

which becomes, in the limit a— 0, J7+= Z7(0,~ oo) 
and 

[ t f t f (0 , - oo)]yy= (iiV)-1 tf_t= tf (oo,0) . 

E [ffi(o)]yi-[^-i«(o,- «,)]„+ L1 (A*)* APPENDIX B 

We review the Raleigh-Schrodinger perturbation 
series expansion of the U matrix £Eq. (1)] in which 

\Z_TTT a(c\ _ \~i 1 (\oi\ the energy denominators refer to the eigenvalues £i° of 
da ~m ° ° ^ ^ J — ^ " ^A Z Z j #0. I t is well known in the case that these eigenvalues 

are degenerate. There exists a special orthogonal set 
Similarly, one can obtain the limiting expressions for o f degenerate eigenstates of H0 for which the expansion 
all the derivatives of UN<* with respect to a. Theorem A o f u remains valid. We will show, however, that the 
is therefore proved by induction. corresponding series expansion of T(Ea°), Eq. (5), 

exists in all representations. 
_ , We write (1) in the form 
Remarks 

1. In an entirely similar way, one can investigate the u ° ' v 

properties of the unitary matrix Ua(°o,t) which satis- where A=H0-E. Substituting the formal power series 
fies expansion of U and A, Eqs. (9) and (10), in (Bl) we 

-i(d/dt)Ua(co)t)= U«(co,t)Hin<*(t) (A23) obtain the recurrence relation 
and n 

ff«(oo,oo)=l. iUn,H<>1=HlUn-l+ E U„-mAm. (B2) 
w z = l 

Except for some minor changes, explicit power series m1 . . . /T,_N . , . J , . ., 
solutions similar to (A16) can be obtained for U«(«>,t) ™ e solutxon of (B2) a subject to the unitanty c o n i 
f o r m 0. Furthermore, t l o n 

lim ^ - ( c o , 0 , . . . l i m — ffn«(oo,fl a n d f o r ^ l , 

E UmWn.m= L tf^n-^-O. (B3) 
exist for all n and w, where Un

a(<x> jo) is given by the m==0 m==0 

power series expansion A . , -, . , ., ,. . , 
r r A convenient procedure to solve these equations is to 

oo introduce the slightly modified recurrence relation 
U"(«>,t)=ZgnUna(«>,t). (A24) 

2. Define ZUn
a,H0]+inaUn<

x=H1Un-,1«+ E !7n-w
aAW) (B4) 

r r c = l 
00 

*7(*,- °o)= £ ^lim gnUn
a(t,- oo) (A25) w h e r e a i s a r e a l p a r a m e t e r . The advantage of (B4) is 

, that if a solution exists, it automatically satisfies the 
unitarity condition (B3), for all values of a. This can be 

U(°°,t) = E lim gnUn
a(«>,t) . (A26) r e a d i l y verified by substituting (B4) in (B3). To obtain 

n=o «-o+ n a solution of (B2) we then take the lima —> 0. If there is 
a continuum, the limit taken from positive and from 

Both U(tf— oo) and U(&>,t) are particular solutions of negative values of a differ in general. From the time-
(A3). I t is clear that the previous restriction /gO or dependent formalism, Appendix A, we find that 
/ ^ 0 can be extended to all /. Furthermore, by using \im.a^U±

a='U±. 

file:///z_ttt
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From (B4), and when EMEf> 
\ ( A * % = 0 . (Bl l ) 

I k Hence, in the case E » ° = E / 

+ E E ( ^ n - ^ ) ^ ( A j f c y , (B5) ( l /^«)< /=(iiVa)-1( E ( # i k ( ^ - i ' a - ^ W ) * ; 
m=l k J ^ fc 

i \ T - l where (Am)fc/= (Am)kk8kj. 
If the eigenvalues E*0 are not degenerate, the proof of + E E (UN-m'a- UN-m')ik(Am')kj \ , (B12) 

the existence of lima^o±(Un
a)ij,lima^o±d/da(Un

a)ij and w=i * J 
higher derivates is the same as that given in Appendix 
A. We obtain which becomes in the lima —» 0 

( A „ ) « = - E ( f f i ) t t ( M « - E (tf»-m)«(Am)« ( E V ) * = ( * t f H £ ( H i ) « ~ ( ^ - i , 0 ) * i 
* w _ 1 (B6) I fc d a 

and 

(tf„)«= lim - I E (H)ik-(Un^)ki + E 1 E - ( ^ - w
, a ) ^ ( A M 0 ^ L o . (B13) 

8"*°t»l * da m=i jb da J 

I y tjj <*)..(& ) . \ (B7) When E^Ej0 the lima.*o#Va is obtained by setting 
m=i da H~m lt M * J a = 0 m (BS). Similar expressions hold for the deriva

tive of UN" with respect to a. Theorem B is then 
where Un stands for either (U+)n or (UJ)n, when p r 0 Ved by induction. 
a —> 0 or 0 . From the unitarity of U' it can be readily established 

For degenerate eigenvalues E t°, it is clear that the t h a t AN' i s Hermitian. Let S be the unitary matrix 
lima—»0 of (B5) in general does not exist. Suppose, which diagonalizes A' i.e. 
however, that we allow An to have nondiagonal elements 
among degenerate states. To avoid confusion, we call 

SWS=A, (B14) 
this matrix A,' and the corresponding solution of (B5), w h e r e A i s d i a g o n a L W e n o t e t h a t 5 c o r n m u t e s with 
Un • Note that U does not d i a g o n a l s the total H(j H e n c e u = ^ i s t h e u n i t a r y m a t r i x w h k h d i a g 0 . 
Hamiltonian ( # o + £ # i ) . We can then prove the n a i i z e s the total Hamiltonian. 
following theorem. _ Finally, since Sbc=0 when Eb°^Ec

0, we have 
Theorem B: There exists a matrix A„ which has 

nondiagonal elements only among degenerate states, LT(Ea
0)~]n= 2Z {U)ia{U^)aj 

for which *(B«°) 
d dm 

lim */„'", lim—(£/„'<") • • • l i m (Un'
a) - T (U')n(S)ia(.S^ac(U'^ci 

da = E (*7')ia(£/'t)ai. (B15) 
exists for all w and #. D(#a°) 

rooj. or n— Substituting the expansion of V in (B15), we obtain 
(I7i/«)»i= {(#i)*y+ (A/)*} . (B8) t h e P o w e r s e r i e s expansion of r ( £ a ° ) . 

(Ej°—Ei°-\-ia) Similarly to the treatment given in the text, we may 
Let consider the degeneracy in the eigenvalues E{° of the 

(Ai )a= — (Hi)ij (B9) unperturbed Hamiltonian HQ as the limiting case when 
, Al • • .i . .. r r-n T-n r î a, parameter u—> 0. For ^ 0 , degeneracy does not 
for those hJ that satisfy £ , » = £ / . Then ^ a n d ^ p Q w e r g e r i e s o f ^ ^ i g o b t a i n e d 

1 directly from the expansion of U, Eq. (B5). We have 
lim (L/ya);y= (Hjij provided Ef^E?, shown here that 
«-o (Ej°—Ei°) 

o t h e r w i s e . (BIO) lhnT(Ea>) = T(E^ 

i < ^ /T,rN , , . , , i T . A ^ A has a power series expansion. However, this does not 
and w = 1. From (B5) we establish that when Ei

0=Ej°9 imv\y that 

Now we assume the theorem holds for all nSN— 1 
nd w = 1. From (B5) we establish that when Ei°=Ej°, 

(AN%= ' ' Km Tn(Ea°,n) 

E (ffi)<*(tfW)*;+ X ^ E (tftf-m')«*(Am')*y| e x i s t s> . w h e r e T»(E*°>*) is the wth-order term in the 
h m=i k J expansion of T(Ea°,/i). In general, the order of the 
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summation in the power series expansion and the limit 
JJL —» 0 cannot be exchanged. This is to be contrasted 
with the case when the degeneracy occurs in the eigen
values Ei of the total Hamiltonian, and the energy 
denominators in the expansion refer to Ei. The existence 
of the corresponding limit of Tn(Ea,ix) as jx—->0 is 
established in Sec. II. 

APPENDIX C 

To prove (8me) = 0 in the limit me= 0, we consider the 
wave function operator \l/m(x) of the electron with a 
bare mass m (physical mass me) in the Heisenberg 
representation. At any given time t, \j/m, ^mt, and 
y$l/-m, \p-m^h obey the same anticommutation rela
tions. Therefore, there exists a unitary matrix U which 

Utym(x)U=ytf^n(x) (CI) 
and 

Utym(x)U=-t-m(x)yi, (C2) 
where 

^m(x) = ^Mt(x)74. (C3) 

Throughout, the five y^ matrices are 4X4 Hermitian 
matrices that satisfy 7/*7l+7„7/t=25/II,. From (CI), 
(C2) and the equation of motion, it follows that U can 
be chosen to be independent of t and 

ummu=H. (C4) 

where Hm and H-m refer to the Hamiltonians in which 
the mechanical mass of the electron are, respectively, 
m and —m. Since high-frequency cutoff X can be 
regarded as the result of some additional neutral vector 
fields which have a mass X but with a wrong metric, 
all the above equations are also valid with a finite cutoff. 
Let I vac> m refer to the vacuum state for Hm. We have, 
from (C4), 

U11 vac> m= I vac> _m. (C5) 

Therefore, the propagator Sm(x—y), which is defined 
to be the T product 

T< vac I ̂ m(x)\pm(y) | vac> m= T< vac | UU tym(x) 
m 

satisfies 
Sm(x—y)= —y&S-m(x—y)yb. (C6) 

The Fourier transform of Sm"1 (x—y) may be written 

as 
Am+iBm(yp), (C7) 

where (yp) = ylipn, and AmBm are functions of p2. 
From (C6), we have 

Am= —A-m and Bm=B_ 

The physical mass me is given by 

me= (Am/Bm) 

(C8) 

(C9) 

at p2=—me
2. As m—> —m, we have me—^ —me and 

8tne—> —hme. In terms of me, 8me is an odd function 

of me. Therefore, in the limit me=0, dme must also be 
zero. 

APPENDIX D 

We discuss in this section the cancellation of mass 
singularities in bremsstrahlung in the limit that the 
mass of the electron vanishes. The singularity appears 
here when a photon is emitted nearly parallel to the 
direction of the incident electron, before the electron 
scatters from the external potential [[see Fig. 1, diagram 
(iv)]. _ 

In discussing the amplitude for processes containing 
nearly parallel electrons and photons, it is convenient 
to use helicity states. Let u\(p) be the spin state of an 
electron with momentum p and helicity X, where 
X= + (—) denotes spin parallel (antiparallel) to the 
momentum. Similarly, the four-vector en(k) denotes 
the state of a photon with momentum k and helicity 
rj= ± . The Feynman amplitude corresponding to 
diagram (iv), Fig. 1, is given by 

^ / (p / )C7-F(g ) ] [ - (7^ )+ (7 -^ ) -^ ]CT-^ (k )>x(p ) , 

(8££'a01/2[<>-&)2+<] 
(Dl) 

where p= (p,iE) and p'= (p',iE') are the initial and 
final four-momentum of the electron, k= (k,ico) is the 
four-momentum of the emitted photon, V(q) represents 
the external potential which depends on the four-
momentum transfer q=pf—p-{-k, and ( 7 - a ) = 7 ^ for 
any four-vector a. 

If 6 is the angle between k and p, the denominator 

/m2 
m 

(p-k)2+m2^o)E[ H2 for 0«1 and — « 1 . 
\E2 J E 

To evaluate the numerator, we note that in the limit 
m—>0wQ have 

(yk)(yep)ui&—'s/2a)eup 

for 0= + or — and d<s,l, while 

(7 -A) (7 • eJ)u+= (7 -k) (7 • e+)u- = 0. (D2) 

For an incident electron with positive helicity, we 
obtain for (Dl) 

Uv(p')\jyV(q)lu+(p)^d 
-X 

(8EE'a>yi*luE\ 1-02 J E-
(D3) 

where the upper (lower) term in the curly bracket cor
responds to a photon with positive (negative) helicity 
and 6, (m/E)<^A. In the case that the incident electron 
has negative helicity, the meaning of the upper and 
lower term in the bracket is interchanged. 

The probability per unit frequency that the photon 
is emitted in the forward cone 0^6^8, where 5<3Cl, is 
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then given by 

l^v (pQ[-n -F(g)> + (p ) l^ 

(4TT)2E ,E3CO 

7 E8\ f E2 

( In—)X 
E2 

(£-co)2J 
(D4) 

Equation (D4) becomes logarithmically divergent 
when m —> 0. 

To obtain the contributions which cancel this 
singularity, we note that the singularity in (D4) is 
due to the degeneracy of the intermediate electron-

photon state with the initial electron state [see diagram 
(iv), Fig. 1]. Since our basic theorem applies to any"% 

Hermitian Hamiltonian, we may consider a truncated 
electron-photon interaction which only couples these 
two states (see Sec. II, remark 3). Then the only other 
processes which have a degeneracy with respect to the 
initial state are given by diagrams (i) and (ii) of Fig. 2. 
According to (A16), the amplitude for diagram (ii) of 
Fig. 2 in the case kx=k, 0i<<Cl and {m/Ei)<0.} is given 
by 

u^{y')l-iyV{q)-}u+{y1)el\ 

(8£'£1o,)1/2(£i+«>)2ia 
[co£i(TO2/£i2+^i2)+2ia(£i+w)]-1X 

M2} 
* r 

(£i+«)2 

E 
(D5) 

where 0i is the angle between ki and pi= p—ki, E and 
Ei are, respectively, the initial and final energy of the 
electron. The interference of the processes illustrated on 
diagrams (i) and (ii) of Fig. 2 gives a second-order 
contribution which equals (D4) but with opposite 
sign. This result is obtained by using (D5) and integrat
ing over the forward cone S^BS5, where 6 is the angle 
between k and p. [For 0i<<Cl, (tn/Ei)<g,l} and ki=k, 
6=(Eidi/Ei+<ti).'] Hence the singularity is cancelled 
when adding these contributions. 

P -k 

(U 

(iv) 

FIG. 2. Diagrams (i) to (iv) illustrate some of the processes in 
which the initial and the final states are degenerate with diagram 
(iv) in Fig. 1, provided w«=0 and p, k, and ki are parallel. By con
sidering a truncated interaction Hamiltonian which has matrix 
elements only between states of a single electron and that of a 
single electron plus a photon, the mass singularity of diagram (iv) 
in Fig. 1 can be shown to be completely cancelled by the corre
sponding mass singularity in the sum of the first two diagrams (i) 
and (ii) in Fig. 2. 

We note that the usual Feynman rules for diagram 
(ii) of Fig. 2 when ki= k2 lead to an amplitude different 
from Eq. (D5); in particular the energy-dependent 
factor in the curly bracket for the emission of photons 
with positive and negative helicity is given incorrectly, 
and a factor \ is missing. 

In the case of the simple truncated electron-photon 
interaction discussed above, the process corresponding 
to diagram (iii), Fig. 2, for example, does not occur 
since it contains either two photons or electron-positron 
pairs in the intermediate state. It can be verified that 
this process also contains a mass singularity. Since for 
the complete Hamiltonian we must extend the inter
action to include coupling to these states, other pro
cesses containing mass singularity will also occur, e.g., 
diagram (iv), Fig. 2. One finds that by adding the 
contributions of all of these processes the mass singu
larity is again canceled completely. 

APPENDIX E 

In this section, we consider a soluble model in field 
theory, which has been discussed in the literature.10'11 

Throughout this section, all unexplained notation is 
the same as that in Ref. 10. We will examine in particu
lar the matrix elements of Z7, Eq. (1), between the 
V state and the N+6 scattering states in the limit 
J L I = ^ + ^ - W 7 - > 0 , where MN, m$ and my are the 
physical masses of the N, 6 and V particles, respectively. 
We will show that in this limit, these matrix elements 
cannot be expanded in a power series in the unre-
normalized coupling constant g, but that such an 
expansion does exist for the corresponding elements of 
the matrix T(Ea) defined by Eq. (5). The power series 
expansion in terms of the renormalized coupling con
stant exists in the limit /x= 0 only after a certain change 
in the usual renormalizatiori process. These modifica
tions are similar to those used in Sec. I l l (point 6). 
Finally, to give a further illustration where the cancel-

10 T. D. Lee, Phys. Rev. 95, 1329 (1954). 
11 G. Kailen and W. Pauli, Kgl. Danske Videnskab. Selskab, 

Mat. Fys. Medd. 30, No. 7 (1955). 
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( i ) ( i i ) (Hi) 

FIG. 3. Diagram (i) shows the emission of a 0 particle by a V 
particle in an external field which transforms the N state into an 
N' state. Diagrams (ii) and (iii) illustrate the scattering process 
iV-f-0 —> N-\-6' to zero and second order in g2, respectively. 

lation of singularities requires the inclusion of a discon
nected diagram (see Fig. 3), we consider the emission of 
a 0 by a V particle in an external field. In dealing with 
disconnected diagrams, a great deal of care must be 
taken to preserve unitarity in the expansion of the U 
and the S matrix, while cancelling singular terms. This 
requirement is satisfied by the explicit expansion 
formula given in Appendix A. In these expressions 
[e.g., Eq. (A16)]] the unitarity of U± is maintained even 
for finite a, where a must be set equal to zero after the 
cancellation of singularities due to /z=0. 

To make the model finite, we assume for simplicity a 
sharp cutoff in the interaction at co=X, where co is the 
energy of the 6 particle. In this case, there is a bound 
state G of the N-\-6 system which lies above the con
tinuum, i.e., its mass MG> W ^ + X . According to Ref. 10, 

- [ • (v\u+\v)= i+g2L 
k 2o£l{oy-\-mN—mv)

2. 1 
-1/2 

(V\U+\N6*) = 
(loxtyw 

(oo+mN—mr)( 1+g2 

Z )] , (E2) 

while the ma t r ix e lement (V\U+\G) is ob ta ined from 
( E l ) b y changing my to niG- H e r e my a n d MG are the 
two mass eigenvalues m of the equa t ion 

1 
niv0-m=g2i: . (E3) 

k 2o>ft(to+m#—m) 

In Eqs. (E1)-(E3), the sum is carried over momenta 
k such that co^X. For an infinite volume 12, 

1 1 r x 

52 > / dookoj. 
k $1 2<K*Jm.9 

I t is then clear that in the limit \x —> 0, the integral in 

(V\U+\V), Eq. (El) , diverges. Therefore (V\U+\V) 
cannot be expanded in a power series in g2 in this limit. 
This applies also to the matrix element (V\ U+\Ndk), 
Eq. (E2), at the threshold energy <a —me. Nevertheless, 
as an illustration of our basic theorem, we will prove 
by explicit calculations that the diagonal element of 
the matrix T+(Ey), Eq. (5), for the V state, does have a 
formal power series expansion in this limit. For clarity, 
we include a subscript + in Eq. (5) to indicate that U+ 

is being used. We have 

(V\T+(Er)\V)=\(V\U+\V)\*+ E \(V\U+\N6*)\\ 

(E4) 

where D(EV) is the set of N8* states withco^wH-e, and 
e is an arbitrarily small energy. 

According to (El) , the nth-order contribution to 
| ( F | * 7 + | F ) | 2 i s 

[ g2 rx do)k T 
— (E5) 

47r2 Jm6 (p}+mN—mv)
2J 

which behaves as ju~n/2 in the l imit /* —> 0. 
N o w consider the second t e rm in (E4) wi th D(Ey) 

replaced b y the complete set of A^k s ta tes . F r o m (E2) 
we h a v e 

g2 fx do)kf(o)-{-ia)f(o)—ia) 
l i m i : | ( F | C / + | i V 0 k ) l 2 = — 

4ir2 .L l 
fi->oo 

where 

m$ (o)-{-mN—mv)
2 

/(< 
r g2 rx du'k' T1 

o>)= 1 + — / 
L 4ir2Jml, (o>'+m?f—mv)W—w)J 

(E6) 

(E7) 

C^l) Using the relation 

2iw 
f(o)-{-ia)f(o)—ia) — (O>+WJV—my) 

g2k 

(E6) is equal to 

2wi J c (<u 

X [ / ( < o + w ) - / ( w - * a ) ] ; 

do)f(o)) 

(o)-\-mN—my) 

(E8) 

(E9) 

where the path of integration C is a closed curve around 
the cut me^oo^X, which does not contain the poles of 
the integrand. To obtain the nth-order contribution, we 
now expand the right-hand side of (E7), in powers of 
g2 and substitute the power series in (E9). The result 
for the nth-order term is 

— / 
2TiJc 

dco 

c (o>+mN—my) 

L 4** J„,(»'• 

da'k' 
X 

m9 (a>'+m,N—tny)(uf—u>) •I- (E10) 
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In the limit /x —» 0, the pole in the integrand at co= my 
— ntN approaches the branch point at co=me for n^ 1. 
The integral is therefore singular in this limit. We can 
readily separate out the singular part by deforming the 
contour; it corresponds precisely to the wth-order 
contribution to | (V\ U+\ V)\2, Eq. (E5), but with 
opposite sign. To complete the proof we note that 

£ \(V\U+\Nek)\>=Z\(V\U+\Ndk)\* 

-H'\(v\u+\Nek)\\ (Eli) 
k 

where on the right-hand side the sum X) u extends over 
all k and the sum X ) / extends only over those states 
NBk which are not in D(EV). The sum £ k ' has a non-
singular power series in g2 in the limit JJL —> 0. 

As we have pointed out, this cancellation of singu
larities is essentially implied by the unitarity of U+. 
In fact if we evaluate the integral in (E9) we obtain 
simply the normalization condition on the state U+ \ V) 

| ( F | £ / + | F ) | 2 + E | ( F | l / + | i W k ) l 2 

k 

+ \(y\U+\G)\'=l. (E12) 

In this connection it is interesting to note that for 
small g2, 

| (V | U+1G) 12^g~2 (X2 - W*2)-1/24TT2 exp 

4:w(\+mN—mvy 
X 

fQt-mf)1!* 
(E13) 

Hence, the second term in (E12) does not have a strict 
power series expansion in g2. Nevertheless, the differ
ence between 1 — | (V | U+1 V) \2 and the series expansion 
generated by (E10) approaches zero as g2 —» 0. 

In order to eliminate the explicit dependence of the 
iV+0k scattering amplitude on the cutoff parameter X, 
it is customary to introduce a renormalized coupling 
constant gc related to the residue of the pole in this 
amplitude at o)=mv—m^. By a subtraction in the 
integral in (E2) at o)o=ntv—m^, we obtain 

(V\U+\Ndk) = -z-77Z^+mN-mv)-
1 

1/2 (2coft) 

X l-\ (co+mN—mv) 
4TT2 

4-
J ma (CO 

da'k' 

(o)f+mN—mv)
2(o)/—o)—ia) ia)\ ' 

(E14) 

where gc=^21/2g, and Z 2 = | (V\ U+\ V)\2 is given by 
(El ) . The limit X —> <*> 0f (E14), keeping gc fixed, exists. 
However, if we keep gc fixed as \x —> 0 then the inte
grand in the denominator of (E14) becomes singular 

for all co, and (V\ U+\Ndk) would vanish identically in 
this limit. 

The way out of this difficulty is to define a new 
renormalized coupling constant gj by a subtraction in 
the integral in (E2) at u^ntv—wiN- We then have 

(V\U+\N6k) 

(IM)1*2 

f / sc2 

\ {<j>+mN—mv)[ l-\ (w—wo) 
L \ 4x2 

X I -
dJK 

(co'+niN—m v) (co'—co o) (co'—co ~ ia) ) ! ' 

where gc' = (Z')1/2g and 

{i+i-f-
L 47T27W , (CO 

do)k 

(co-\-m^—fnv) (co—coo) r 
(E15) 

(E16) 

I t is easy to see that a power series expansion of 
T(E), Eq. (5), exists also in (gc)2, since Z1 is analytic 
in g2 in the limit JU —•» 0. 

As a last example, we consider a process which re
quires the inclusion of a disconnected diagram to 
cancel the mass singularity. For this purpose, we 
introduce a new field \f/x> in the model corresponding to 
a particle N' which interacts only with the N particle. 
The interaction Hamiltonian H' is time-dependent, 

Hf=f(t)(+N^rtN+*NtyN>), (E17) 

where/(/) has a Fourier transform/(co). The process of 
interest is the emission of a 6 by a V particle: V —» N' 
+ 0 . The transition amplitude to first order in H' is 
given by 

J —or 

dt(N%\H'(t)U(t,-^)\V) 

= - * j W + « - » » F ) ( M k | U+\ V). (E18) 

To first order in g, (E18) becomes 

-if{mN>-\-o>—mv) 
(2icU)ll2(mv—mN—w+ia) 

(E19) 

corresponding to the amplitude for diagram (i), Fig. 3. 
The transition probability for emitting the 6 in the 

energy range tne^oo^e, where w ^ e ^ X , is 

g2 r dwk\f(mN>+a)—tnv)\ i l f 
iw2Jn 

(mN+o)—mv)2 
(E20) 

If f(mN,Jro3—mv) is finite at co=w^ this transition 
probability diverges in the limit p. —» 0. 

To cancel this singularity we must consider also the 
process N+d^-^ Nf+d^2. The transition amplitude to 
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first order in B! is 

-if(niN>+o)2-niN-o)i)(Ndk2\ U+\N6kl) . (E21) 

Evaluating (E21) to second order in g2, we obtain 
according to Eqs. (A16) and (A17) given in Appendix 
A, 

—if(inN'+o)2—mN—coi)( 5k2tkl-{ 
\ (^icoa)1^ 

Xl(o)2-ooi+2ia)(mN+o)1-mv+ia)J-1 J . (E22) 

The first and second terms in (E22) are, respectively, 
the amplitudes for diagrams (ii) and (iii), Fig. 3. 
To order g2, the contribution to the probability of find
ing the 6 particle in the energy interval w ^ w ^ e due 
to the interference between these amplitudes is given 

RECENTLY, Feinberg and Pais1 have developed a 
theory of higher-order corrections to weak inter

actions mediated by charged W mesons of spin one. 
Their discussion of the leptonic processes, based on an 
approximate solution to a regularized ladder approxi
mation BS equation, has been verified by Pwu and Wu.2 

Recently, however, Bardakci, Bolsterli, and Suura3 

have remarked that the sum of the unregularized ladder 
graphs has, in configuration space, an essential singu
larity on the light cone which cannot be regularized 
away. Thus the procedures of regularization and sum
mation apparently do not commute, and in the sense of 
BBS, this interaction is not renormalizable. 

The purpose of this paper is to suggest a mechanism 
whereby the crossed graphs without the aid of regulari
zation may provide sufficient damping to prevent the 
occurrence of an essential singularity. This conjecture is 

*. Supported in part by a Sloan Foundation grant for mathe
matical physics. 
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by 
g2 re duk 

— \K^N'-mN)\2 / . (E23) 
4TT2 JmQ (mN+o)-mv)

2 

In Eq. (E23), we have summed over initial states of the 
6 particle in the same energy interval. Now if we add 
Eqs. (E20) and (E23) we see that the combined transi
tion probability is finite in the limit n —»0. 

Remark 

Note that Eq. (E22) differs from the usual Feynman 
amplitude in the factor 2 multiplying a. This factor 
can be neglected in the nondiagonal elements of the U 
matrix, but is essential here, since we are evaluating 
the interference term with the disconnected process, 
diagram (ii) Fig. 3, at ki=k2. 

made here within the context of the weak interactions, 
but the mechanism might be expected to be relevant to 
the renormalization of other vector meson theories. 

A standard way of writing the BS amplitude (omit
ting self-energy, vertex, and closed fermion loop com
plications) is in terms of the iteration of an irreducible 
kernel or amplitude 

T=Ti+TiXT, (1) 

where, as illustrated in Fig. 1, the irreducible amplitude 
is defined to be the sum of all the irreducible Feynman 
graphs. The use of a finite-order expansion (~g2n) of the 
irreducible amplitude leads, in the approximation of 
neglecting 4-momenta but not momentum transfer,4 to 
BS equations whose solutions apparently contain 
essential singularities, with the severity of the singu
larity increasing with order n. For example, for n=2, 
one obtains for the "forbidden" crossed graph amplitude 

4 An additional simplifying approximation, equivalent to 
iterating only the "most singular part" of the irreducible ampli
tude expansion, has been made here. For n — 2 this corresponds to 
iterating not the simplest crossed graph but, rather, its value 
between spinors. 
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A possible damping mechanism is suggested to prevent the occurrence of essential singularities, such as 
that found on the light cone by Bardakci, Bolsterli, and Suura, when finite order expansions of the irreducible 
Bethe-Salpeter amplitude are iterated in configuration space without prior regularization. An infinite num
ber of irreducible Feynman graphs are considered and approximated by a "peratization" method; a simple 
example is found in which the light cone damping, obtained by Feinberg and Pais by summing over the 
regularized ladder graphs, is reproduced by this crossed graph method. 


