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Model of Mesons and Baryons Based on SU3 Symmetry* 
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(Received 13 November 1963) 

A model of mesons and baryons which incorporates the octet scheme of SU3 symmetry is constructed. 
In this model, the pseudoscalar mesons and a unitary singlet vector meson are regarded as bound states of 
baryons and antibaryons. This model is shown to be self-consistent and to explain the observed mass levels 
if we choose a p ~ 3 0p and 0:7 = 0, where ap and /?p are the D- and F-coupling constants of the BBw Yukawa 
interaction, respectively, and ay is the Z>-coupling constant of the BBV& interaction. This set of coupling 
constants are shown to explain baryon resonances. The coupling of a unitary singlet vector meson with 
baryons is shown to be aB{\j cos0yMFM— (l/2tnB) sin$(riiydvVfl']Bi with O<0<4O°. I t is also shown that the 
vector meson octet V$ cannot be regarded as a bound state of the BB system. 

I. INTRODUCTION 

IT is an interesting fact that bosons, baryons, and 
their excited states can be classified by irreducible 

representations of the SU3 group.1-3 For example, 
three octets (v,ir,Kj£), (<p,p,K*J£*), and (A,2,N,E) 
have been found. The o> may be an SU3 singlet.4 N%/2*, 
Yi*, E1/2*, and the yet-to-be-discovered 120"~ may form 
a decuplet.5-9 

The dynamical emergence of the decuplet has been 
successfully explained in terms of a Chew-Low-type 
theory by the author and Miyamoto7 and by Martin 
and Wali.8 The Born term has been found to be more 
attractive for the decuplet than for any other possible 
multiplets for a suitable choice of the ratio of the D-
and F-coupling constants1 of a irBB Yukawa interaction. 

If we regard resonances and particles forming multi­
plets as composite particles, we have to show why 
certain particular multiplets are the lowest possible 
states by constructing a dynamical model incorporating 
the octet scheme of SU3 symmetry. For example, we 
have to show why the octet pseudoscalar mesons are 
lighter than vector mesons, and why there are no 
unitary singlet pseudoscalar mesons, etc. 

In this article we shall regard the pseudoscalar 
mesons and vector mesons as composite particles 
consisting of a baryon and an antibaryon, and we shall 
attempt to answer the above questions.10 We shall 

* Work supported in part by the U. S. Atomic Energy Com­
mission. 

f On leave of absence from Physics Department, Tokyo 
University of Education, Tokyo, Japan. 

1 M. Gell-Mann, California Institute of Technology Snychro-
tron Laboratory Report CTSL-20 (unpublished). 

2 Y. Ne'eman, Nucl. Phys. 24, 222 (1961). 
3 S. L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10, 

192 (1963). 
4 J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962). 
5 R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee, 

Rev. Mod. Phys. 34, 1 (1962). 
6 S. L. Glashow and J. J. Sakurai, Nuovo Cimento 25, 337 

(1962). 
7 Y. Hara and Y. Miyamoto, Progr. Theoret. Phys. (Kyoto) 

29, 466 (1963). 
8 A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963). 
9 R. Cutkosky, Ann. Phys. (N.Y.) 23, 415 (1963). 
10 Our model is a generalization of the one proposed by C. N. 

Yang and E. Fermi, Phys. Rev. 76, 1739 (1946); and by Y. 
Miyamoto, Progr. Theoret. Phys. (Kyoto) 28, 967 (1962). 

B 

also discuss baryon excited states and two-baryon 
states. 

In the next section we shall explain our model and 
define our approximations. We shall discuss pseudo-
scalar mesons in Sec. I l l , vector mesons in Sec. IV, 
baryon and baryon excited states in Sec. V, and ^-wave 
BB bound states corresponding to scalar mesons and 
axial vector mesons in Sec. VI. 

II. MODEL 

In this article we regard the pseudoscalar mesons and 
vector mesons as composite particles consisting of two-
particle states. Three- and more-particle configurations 
of composite particles will be neglected for the sake of 
simplicity. The pseudoscalar mesons (7r8) will be 
considered as bound ^o states of the baryon-antibaryon 
(BB) system, and the unitary singlet vector meson 
(Vi) will be assumed to be a bound 35i state of a BB 
pair. We neglect possible wV and 2V configurations, 
since the wBB Yukawa coupling constants and the 
V\BB coupling constant are far bigger than the TTV 
coupling constants in absolute value,11-13 since it is 
complicated to consider them, and since 7r8 and Vi can 
be explained as BB bound states. 

Since the p mesons were discovered as ^-wave TT 
resonances, it is clear that the vector mesons have 
considerable 2-K configurations. The p mesons, however, 
may consist of NN too, as the pNN coupling constant 
gNNp^O. Indeed, as has been shown by various authors, 
gNNP

2~fP™2 (gNNP
2=Pv2 an.dfp„

2=lfv„c2).u Therefore, 

FIG. 1. Born diagrams for BB scattering. 
11 K. Kawarabayashi and A. Sato, Nuovo Cimento 26, 1017 

(1962), and the papers cited therein. 
12 Y, Hara, Progr. Theoret. Phys. (Kyoto) 28, 1048 (1962). 
13 According to Kawarabayashi and Sato (Ref. 11), 

/o,P.2/4x=0.65Xr(co -> 7r+7r<V-)/20 MeV, 
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FIG. 2. Magnitudes of Born 
terms. Here V stands for "due to 
vector meson exchange," P stands 
for "due to pseudoscalar meson 
exchange," (0,0) stands for " W 
and (1,0). stands for "»Si-> 8Si," 
with 

M72 = i ( W 2 + 3 / * P
2 + ^ 2 ) , 

/*p2=KW+3M7r
2+^2). 

p2K^) 

we shall have to consider V8 to consist of both BB 
and 2x. 

I t will next be assumed that the force which combines 
B and B is due to the exchange of the bosons, Vi, V%, 
and 7T8 (other yet-to-be-discovered bosons will not be 
considered14). (See Fig. 1.) Then we shall be able to 
calculate the Born terms corresponding to these 
processes using the following interaction Hamiltonian 
density,15 

sin0-(7MJ,d VAB1 

• > 

. / 1 
aBn i cos0-7MFM 

\ 2mB 

+avBiDiM i coscfr'-y^Vjcn sin^'o^AF*,,, )B2 

\ 2mB / 

+/3vBiFiMi cos^-y^Vk^ s i n ^ A F * ^ W 
\ 2mB / 

+Bi(apDif+pPFif)iy6Biirk. (2.1) 

Though it is desirable to iterate Born terms by 
solving suitable integral equations quantitatively, this 
will not be done in this article. Instead, we will assume 
that the ordering of mass levels is the same as the 
ordering of the Born terms according to their magnitude. 
Although this approximation may seem to be very 

14 The existence of a unitary singlet scalar meson does not alter 
our conclusion (Sec. VI). 

15 Vkjfi and Vn stand for the juth component of V& and Vi, 
respectively. MB is the baryon mass, and AllBil= A# B—AQBO. In 
the following, av will be assumed to be equal to zero. In this 
article, we_ assume that both the input and the resulting couplings 
of the BBTTS interaction are of pseudoscalar type instead of a 
pseudovector derivative coupling or of an arbitrary combination 
of both for the sake of simplicity. 

rough, it turns out to be quite reasonable. This Born 
term is proportional to the one-boson exchange potential 
between a baryon and an antibaryon. An important 
part of the many-boson exchange potential is in­
cluded in the potential due to the exchange of boson 
excited states. Therefore, our result may be trusted 
qualitatively. 

If we solve the integral equations, the magnitudes of 
the coupling constants a, ap, f3p, ay, and ($y and those 
of the mixing angles 0, </>, and <br can be calculated, and 
the consistency of our solution can be checked by 
comparing the output coupling constants with the 
input couplings. Although we will not be able to know 
the absolute values of the coupling constants (since 
we do not solve the equations), it will be seen that the 
ratio of the output coupling constants ap/{3p may be 
estimated for a given set of input constants. By compar­
ing the output with the input ratios, and by requiring 
that the order of the Born terms be the same as the 
order of the observed mass levels, we can determine the 
ratio aplap. 

III. PSEUDOSCALAR MESONS 

If we assume that the mesons are bound states of the 
BB system, the lightest mesons may be expected to be 
bound states in the xSo and 35i state, that is, pseudo-
scalar mesons and vector mesons. This is indeed in 
agreement with experiment. Then, we have only to 
explain why pseudoscalar mesons are lighter than 
vector mesons. This can be explained by assuming that 
the strongest interaction between B and B is due to the 
exchange of vector mesons. As is seen in Fig. 2, the 
interaction due to vector meson exchange is about f 
times stronger in the ^ o state than in the ZS\ state for 
pure vector coupling (6, 0 = 0). In fact, the interaction 
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in ^o is always stronger than that in zSi for any mixing 
ratio 0 and <£, as is seen in Fig. 3 (for ^2 = J). 

In the following, it will be assumed that 

tf/4ir=5~10, (ap+/3P)2/47r= IS, (3.1) 
and 

/ V / 4 T T ~ 1 , 

which correspond to11,12 

gNN^/^r = 5 ~ 10 , gNNir2/^ = IS , 
and11 

giW/47r==l. 

Also, ay will be assumed to be nearly equal to zero as 
this case is the most interesting one. Although the 
pseudoscalar coupling constant is the biggest one, it 

and where ay has been assumed to be equal to zero. It 
should be noted that the ratio S/A does not contain 
By or Bps 

Since the ratio S/A derived here is energy independ-

FIG. 3. Magnitudes of Born terms as functions of the mixing 
angle 0 at p2=h In particular: 0=0° : pure vector coupling, 
0=90°: pure tensor coupling. (1,2) stands for "3Z>i —»3£>i" and 
(1,0) <-> (1,2) stands for "»Si <-* 3 A . " 

turns out that the force due to the exchange of pseudo-
scalar mesons is not particularly strong because of its 
pseudoscalar property (see Fig. 2). 

The Born term for BB scattering due to the exchange 
of Vi, Vs, and 7r8 can be written as16 

a2 

TBti®'°>=—BvM)+Av,iBv®'0)+AptiBpM\ (3.2) 
4x 

where the ^4/s are given in Table I and the B/s are 
given in the Appendix and plotted in Figs. 2 and 3. 

In order to compare the magnitudes of the Born 
terms for the six possible representations of the SU3 
group, we have to diagonalize the 2X2 matrix for the 
octet states: 

ent, it is the mixing ratio of the symmetric state 
(—TJS&DifBi/y/lQ) and the antisymmetric state 
(B^i/BJ/^ 12) of the octet pseudoscalar meson irk, 
and is proportional to the ratio of the D- and F-
couplings of BBwz interaction. Specifically, 

S/A = -l(Sy*/S)(ap/Pp). (3.5) 

This equality has been obtained without solving the 
integral equations. From Eqs. (3.4) and (3.5), two 
solutions 

aP=3l3p and pP = 0 (3.6) 

are obtained. It is an interesting fact that ap=3/3p has 
been obtained elsewhere7,8 as the ratio that makes the 
decuplet 3̂/2 BIT resonances the lowest states. 

Using the ratio (3.6) and the magnitudes of the 
coupling constants in (3.1), the relative magnitudes of 
the Born terms are shown in Fig. 4.17 From Fig. 4, one 
of the octets of pseudoscalar mesons is seen to be the 
ground state. 

IV. VECTOR MESONS 

1. V1 

The unitary singlet vector meson V\ is assumed to 
be a bound state in the /•= 1~ state of the BB system. 

16 Here, 
T— T^J'L^B, (dimension of the irreducible representation), 

and 
B = B(J'L>> (exchanged boson). 

17 In drawing Fig. 4, it is assumed that <£=<// = 0. 

6pr*Br+(2aP*-6l3pZ)(-Bp), -4(S)1'^ f l8i.(-Sp) 

-4(5)1 '2ap^p(-JBp), 6Pr2Bv+L- ( 1 0 / 3 ) « P 2 - 6 / 3 P 2 ] ( - 5 P ) 

s, 
A, 

-A 

S 

Blt 0 

0, £ 2 

S, A 

-A, S 

CBi>.B2), (3.3) 
where 

and 
Bh JB2=6^ r

25F+(-|ap2-6^p2)(--Bp)±C(64/9)ap4+80ap2/3p2]1/2(-5p), 

- a p 2 - | ( — W 4 + 8 0 Q ; P 2 / 3 P 2 5'-4(5)1/2ap^p4 = 0, (3.4) 
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FIG. 4. Relative magnitudes of 
Born terms, with a2/4n=5 or 9, 
(ap-H3p)2/47r= 15, /3F

2/4TT = 1. 

We neglect possible wV configurations, as has been 
explained in Sec. II. 2ir states do not couple with V\ 
(and F27 if it exists) due to the exclusion principle. In 
particular, ^-wave TIT scattering occurs only in the 
&A, 10, and 10* states. 

The Born term for BB scattering in the / = l-" state 
due to the exchange of Vi, Vs, and m can be written as 

TB/l>V={ay±Tr)Bv
a>L)+Av,iBv{l>L) 

+APtiBP^, (4.1) 

where the Afs are given in Table I and the Z?/s are 
given in the Appendix and plotted in Figs. 2 and 3. 
The relative magnitudes of the Born terms for Vi and 
F27 are shown in Fig. 4. It will be seen that Vi is heavier 
than 7T8, but lighter than any other unobserved 
multiplets of pseudoscalar mesons if a2/47r>9. It will 
also be seen that there is no F27 in this model. 

Next, let us consider the mixing of the vector and 
tensor couplings for the ViBB interaction. The pole 
residues of the Born terms corresponding to Fig. 5 
(at s=nv2) are as follows: 

A\ AB 

AB% B2 
, (4.2) 

where 

A = h+—\cosO+( H )—sin0 
4cmB/mB 

and 

B = -v2( 1 ) cos0+v2 (1 ) si 
\ 2mB' 2MB\ 2niB' 

1.7cos0+O.9sin0, 

sin0 
2m B \ 2m B' 

-O.9cos0+O.3sin0. 

As is seen in Fig. 3, the interaction which mixes the 
35i state and the 3Z>i state can be written approximately 
as ap2 with a>0. Thus, AB<0 (for p2<0), i.e., 

O°<0<7O° or 16O°<0<18O°. 

By looking at Fig. 3 and Eq. (4.2), the range 

O°<0<4O° 

seems to be the most probable one. [If sin0< 0,5/^4 
X (3Di/*Si) is big. This is contradictory with Fig. 3.] 

2. Vs 

At first, let us assume that F8 (F i 0 and F10*) consists 
only of BB pairs. If we assume ap=#p=0, the potential 
(4.1) does not have consistent bound-state solutions in 
octet states [(4.3) and (4.4) are contradictory]. From 

-2av2+6pv
2+a2, 4(5)*/V0F 

4(5)1 'V/3F, (10/3)aF
2+6/V+a2 

we obtain 

S 

0, 

4(Syi*avPv 

0 

B2 

S, 

-A, 

while 

A [(64/9)aF
4+80aF

2/3F
2]1/2- (8/3)aF

2 

S/A = -(5yi*av/30v. 

(4.3) 

(4.4) 

It is difficult to say whether the potential (4.1) has a 
consistent solution without solving integral equations, 
when the term due to an exchange of pseudoscalar 

TABLE I. APti and Av,%. 

27 10 10* SA SS<^SA 1 

At-wAi -w -(WW • (8/3H2 -2ai2+6fr2 (10/3)^+6/3^ 4(5)i/Vfr (20/3K-2-fl2fr2 



M O D E L O F M E S O N S A N D B A R Y O N S B A S E D ON S U 3 S Y M M E T R Y B1569 

TABLE II. Bi and Q. 

27 10 10* 8A 8s<-> 8A 1 

Bi 
-2ai2-6&2 4ai2-12ai(3i 

1 
-4a i 2 +12o;^ 

1 
3 o i s + W 

2 
5«i2-9A-2 

0 
0 

V5 
-10a»2+18/3i2 

- 5 

mesons is taken into account ( # P = 0 ) . 1 8 What we can 
say is that \av\ must be much smaller than \pv\ even 
if (4.1) has a consistent solution. In Fig. 4, the potentials 
for V$ are drawn assuming a F = 0 . This solution is not 
satisfactory if it exists, since the strength of the Born 
term for V\ is far more attractive than that for Vs, 
as is seen in Fig. 4. This is not in agreement with 
experiment. Thus, we have shown that the octet vector 
mesons Vs cannot be regarded as bound states of the 
BB system. 

Let us consider both BB and 2-K configurations for 
Vs, Fio, and Fio*. Now, ^>-wave scattering of 2T appears 
only in 8A, 10, and 10* states. The Born terms for 2w 
scattering due to Vs exchange for 10 and 10* are zero, 
and that for 8A is attractive. Therefore, it is possible 
that the potential for V8 becomes more attractive if 
we consider the coupling of 2T and BB states. Mixing 
matrices between the 2TT and 8A or 8$ states of the BB 
system corresponding to the Feynman diagrams of 
Fig. 6(a) can be written as 

[ - (10/3)ap 2 -6 /3p 2 ]C for SA^2T, (4.5a) 

and 
4(5yi2aPPpC for 8S<->2TT, (4.5b) 

and those corresponding to Fig. 6(b) can be written as 

0 for 8A<-*2TT, (4.6a) 

and 
1(5)1/2Z> for 8s<^27r, (4.6b) 

where C and D are functions of energy. We do not 
solve coupled integral equations in this article, however. 
This problem will be discussed elsewhere. 

We have shown that 7r8, Vh and Vs are the lowest 
possible states if we could show that the mass of V\ 
is nearly equal to the masses of Vs by solving the 
coupled integral equations of the 2w and BB states. 
As is seen in Fig. 4, V27 does not exist, while Fio and 

FIG. 5. The BB -* 
process. 

Vi->BB 

Fio* are heavier since both the TTTT and BB interactions 
are weak in the 10 and 10* states.19 

FIG. 6. The_ Born 
diagrams for BB —> 2ir 
process: (a) Bs ex­
change; (b) Bio* ex­
change. B. 

/ \ 

B„ B. 

(a) (b) 

V. BARYONS AND THEIR EXCITED STATES 

The £-wave TB scattering amplitude corresponding 
to Fig. 7(a) and 7(b) can be written as7*9 

t and 

q* q* 
d—VB% for the pi/2 s tate, (5.1) 

q2 Bi q2 

- 2C%—| for the pm state (5.2) 
co 4 to+cor 

in the static theory, where the d and Bi are given in 
Table I I . (Common positive factors are omitted.) 

1. (#3/2*, *VS S1 /2*, Go") 

The py2TrB scattering amplitudes have been analyzed 
by several authors. Miyamoto and the author have 

FIG. 7. The Born 
diagrams for BIT scat­
tering: (a) Bs ex­
change; (b) J5io* ex­
change. 

(o) (b) 

shown7 that the resonances in the tenfold representation 
(#3/2*, Fi*, Ei/2*, ^o~) are indeed the lowest states if 

op/ftp = 1 ^ 3 . 

They used the Chew-Low static model. [If ap = 3/3p, 
we have rn,Bati)~w>Ba) and mB(io) assumes its lowest 
value.] Martin and Wali8 have shown that if the effects 
of the mass differences are taken into account and if 
the N/D method is used, resonances will be found in 
the tenfold representation for 

ap/fip= 1~5 . 

18 If pP = 0, Eq. (3.1) has no solution. 
19 The mixing matrices are - (&/3)aP

2C+lD both for 10 <-> 2TT 
and for 10* <-» 2x. 
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B:0 Bft 

MM 
n BA 

(0) (b) 

Ve + 

(0 
FIG. 8. The diagrams responsible for the iVi/2* resonances: 

(a) the Bir-*B*ir process; (b) the BIT —=>BV process; and (c) 
their iterations. 

The lowest possible positions of these resonances in the 
tenfold representation are attained when ap//3p=3. 
Their results are in agreement with the results of the 
static model in which the effects of the mass differences 
are nelgected. 

2. Octet Baryons 

For the p1/2 state, one of the octets is easily seen to 
be the ground state. If we neglect the first term in (5.1) 
compared with the second term, we obtain9 

ap/0P=[3(6)1/2+3]/5~2.O7 

by diagonalizing the matrix 

2, V5 

\A o 
s, 
A, 

-A 

S 

Xi, 0 

o, x2 

S, A 

-A, S 

and taking 
(Xi>X2) 

S/A = Z(S)U*/31(ap/tip). 

3. M/2* 

Let us assume that the TN second resonance, iVi/2*, 
is due to the iteration of the Feynman diagrams in 
Figs. 8(a) and 8(b). Since 10X8 = 35+27+10+8 and 
8X8=27+10+10*+8+8+l , the process in Fig. 8(a) 
occurs only in 27, 10, and 8, and the corresponding 
matrix elements are 

(~^r)v, .or 27, 

/ 2\w 
I—) aP-((6y^p)V, for 10, 

( aP-^(3p)V, 

and 

for 8S, 

( 5 / 3 ) ^ 7 , for 8A, 

while the second process occurs in 27, 10, 10*, 8, 8, and 
1, and the corresponding matrix elements are 

4pPW 

AapW 

-±apW 

-6pPW 

for 

for 

for 

for 

27, 

10, 

10*, 

and 8 A <-» < 'A, 

-2{$yi2apW for 8S^8A, 

-UppW for 1. 

The force that produces resonances is approximately 
proportional to 

{a?V*+b?W*YK (5.3) 

If ap«3ftp, Eq. (5.3) is largest for an octet. Therefore, 
iVi/2* probably belongs to an octet together with F0* 
(1520) and the yet-to-be-discovered Fx* and £1/2*. 
Since the s-wave B*ir system couples with the J3/2 BIT 
state and the s-wave BV system couples with the S1/2 
and dz/2 Bw states, the Br resonances caused by this 
mechanism may have spin d3/2. The wave functions of 
the octets in charge space are as follows: 

a/2 

Fi*: 

Al/2 

(20(d2+f))1^ 

1 

[(<*- (5 ) 1 / 2 / ) ^+ (d+ (5y*f)KA- (3d+ (5)^f)wN- (3d- (5)^f)K^2, 

(30(^2+/2))1/2 

1 

(io(d2+p)yt* 

1 

(20(J2+/2))1/2 

• [ - ( 6 ) ^ 2 - ((SyiHirk- (20) 1 / 2 /TT2+(3J+ (5)^f)KS+ (3d- (Sy^KN'], 

£(6y/2d<ir2+^d7jA+(d- (5)1/2/)iTS- (d+ (S)^f)KN2, 

£(d+ (5y!*f)vZ+(d- (5yi>f)KA+(3d+ (5yi*f)K2+ (3d- (5)^2/)xS], 
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TABLE III. APii' and Av,i. 

27 10 10* 8A %S*->SA 1 

^Aif W + W -(S/3W+Sai(3i • (8/3K-2-8o!ifr ~2ai2-6/3i
2 (10/3)ai2-6ft2 0 (20/3K2-12fr2 

where 

and 
d/f=lA if | F | » | W | 

d/f=l if | 7 | « | J F | . 

This result explains quite well the partial widths of F0* 
(1520) and NUi* (1512).3 

4. Deuteron 

If our SU3 symmetry is valid, the deuteron20 must be 
a component of some representation of this group. It 
is easily seen that the deuteron belongs indeed to 10*. 
This decuplet consists of 

7=0 , 5 = 0 : NN, 

/ = | , 5 = - l : (l/v2)AAT-(l/v2)7VS, 

1=1, 5 = - 2 : - (1/V2)A2+ (l/V3)Etf 

T— 3. 
1 ~2 y S = - 3 : 2g. 

+ (1/V6)22-, 

amplitude can be converted into the BB scattering 
amplitude. The Born terms can then be written as 

a2 

TB'(J'L)= Bv<<j>v-Av i'BriJ'L)+Ap,/Bp'«'L>; 
4TT 

where the Av,i"s and Apti"$ are given in Table III, 
and where 

MP2 / MP2 \ 
5/(0.0) = -3Bp/<1'°> = Bp0'°>+TZ-{M 1 + — ) . 

4E£ 2^V 

Most of these states may appear as resonances. We will 
thus be able to check SU3 symmetry by looking for AN 
resonances. SU3 symmetry, however, will not be valid 
for many-baryon systems as charge independence does 
not hold for heavy nuclei. 

Through charge conjugation, the BB scattering 

The difference between Bp and BP, namely (tjf/AEpjQo, 
corresponds to a delta-function potential which does 
not contribute to BB scattering because of a hard core 
due to vector meson exchange in this case. Since 
Bp'a>0)<0 for p2>0, the above decuplet is lower than 
the octet and the other decuplet. 

VI. SCALAR MESONS AND AXIAL VECTOR MESONS 

If mesons are BB bound states, the next excited 
states may be 3P0, 3Pi, xPi, or JP2 . If we assume that the 
interactions between B and B are due to the exchange 
of Vi, Vsy and TS, the Born terms for these states, 
TB,/J'L,8\ can be written as 

TB/J>LM=(p?/±Tr)Bv(
J>L>S) 

+Av>iBvu'L>8)+Ap,iBp(J>L>s), 

FIG. 9. Magnitudes of Born terms. 
Here, B=BV>L'SK 

1 "1" " "" " "-1— 

1 / ^^^ ^—--— *̂— 

/ ^ - ~ - ~ ~ ~ " -E/p.Bj''-'> 

i ^~~ ' " .. • 1 • 

1 " ] 

- ^ p b v 

E.B ( . .M) 

ER(«, i ,o) 

•j 

E n(o,i,i) 

P 

— P > 1 

*(«tyc«) 
} R. J. Oakes (to be published). 
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Repulsive 

FIG. 10. Magnitudes of Born terms as functions of the mixing 
angle 0 at ^ 2 = J . 

where the A/s are given in Table I and the Bi$ are 
given in the Appendix and plotted in Fig. 9 (for pure 
vector coupling) and Fig. 10 (for ^ 2=J) . Using the 
ratio ap=3(3p and the magnitudes of the coupling 
constants in (3.1), the relative magnitudes of the Born 
terms are shown in Fig. 11. The next state is seen to 
be a unitary singlet scalar meson (3Po). Since an s-wave 
2w state couples with this meson, it is possible that it 
has a much smaller mass than would be expected from 
a 3P0 bound state of the BB system. A discussion of this 
meson and octets of scalar mesons will be given else­
where. Though we have not considered the exchange of 
this scalar meson between B and B, its existence causes 
no difficulty, as its contribution is unitary spin in­
dependent and attractive both for 2Si and 1SQ (slightly 
stronger for 25o than for 36*i). 

I+( !P,) \*&t) OTPJ 

-27 

-10,10* 

-27 

==10,10 

= 10,10 

-27 

- 8 , 

Attractive 

FIG. 11. Relative magnitudes of Born terms, with OL2/4TT = 5 or 9, 
(ap+(3P)2/4TT= 15, /3F

2/47r = 1. 

Two types of axial vector mesons correspond to 3PL 

and 1Pi. The recently discovered ir+co resonance23 

corresponds to a component of octet lP\ bound states 
if its spin is 1+. 
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APPENDIX 

The Born terms for BB scattering in various partial waves are derived as follows. According to Goldberger 
et al.22 partial-wave amplitudes in singlet spin states of BB systems (u channel), foJ(u)> can be written as 

and23 

where12 

foJ(u) = / fi(u,zu)Pi(zu)dzu, 
2EU y _ i 

M^u)=Eu
2Gi(u,s,t)-zupu

2G2(u,s,t)+m2G^(u,s,t), 

Gi(u,s,t) = |A«(~ l)iHGi(t9s,u), 

(Al) 

(A2) 

(A3) 

21 M. Abolins, R. L. Lander, W. A. Mehlhop, N. Xuong, and P. M. Yager, Phys. Rev. Letters 11, 381 (1963). 
22 M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and D. Y. Wong, Phys. Rev. 120, 2250 (1960). 
23 Here m is the baryon mass. 
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and24 

AP 1 Av/ u s \ 1 
Gi(t,s,u)= ( )(sin0 cos0+sin20) , 

Av t 1 
G2(t,s,u) = (sin0 cos0+sin20) , 

7T 4 W 2 / — fXy2 

AA 1 
Gz(t,s,u)= , (A4) 

7T t — fJLA2 

Av . 1 
Gi(t,s,u) = (cos20+cos0 sin0) , 

T t — JJlV2 

As 1 Avr s u ~| 1 
G*>(t,s,u) = 1 (sin0cos0)-

7r L4m2 4m2 J w t—fxs2 7r L4m2 4m2J t—fjiv2 

Equation (A4) is derived by making use of the fact that the BB scattering amplitude can be written as 

T = - TT[PGI fa,u)+TG2+AGz+ VGt+SGs]. 
Thus we obtain25 

£ p C 0 , 0 ) = _ A ( £ 0 _ O l ) 
4 £ 

1 
^(o,o) = [ ( E 2 + m 2 ) e 0 - ^ 2 e i ] , 

4Ep 
(A5) 

jgF(o,o)== cos20(4£2-2w2)<2o+sin0 cos0X2^2(Qo-<3i)+sin20—\ (ip2+2m2)Q0~ {2m2-\-p2)Qx Q2 , 
4E#l m2L 3 J ) 

1 
£A(o,o) = (4£2+2w2)(2o (axial vector coupling). 

4:Ep 

The Born terms for triplet spin states can be obtained in a similar way: 

BP™=—(Qo-Qi), 
12E 

^lp 
£p(i,o)~a,2)= ( * g 0 + 2 G i - e 2 ) , 

UE 

12E .,(1,0)= J {-, cos26»[(w+2£)2(2o+12/'2gi+2(JE-w)2<22]+sine cos0 - (7m+8£)-<)o+15/>2<2i 
18E/> I L m 

f 1 f T / 9 51 6 \ 
+ 8 — (E-m)Qi H sin26> ( - O T 2 + 3 * 2 - 2 W £ ) O 0 + ( - W 2 f+-Em )Q1 

m J m* L \ 5 10 5 / 

+ ( - 2w2+f />2+2JEm)(?2+ (-m2+-/>2—£« V , j ) , 

24 Here P, V, A, and S stand for pseudoscalar, vector, axial vector, and scalar meson, respectively. AJs are (coupling constant)2. 
25 The arguments of ft's are 1 + ( M 2 / 2 ^ 2 ) . 
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v2 r v p2 

By<x.o)~(i,2) = cos2dZ(E-m)(2E+m)Q0-3p2Q1+(E-m)2Q2]+sind cos0 (2E+m)—Q0-6p2Q1 lSEpi L m 

(3m 2 -3wE+5^ 2 -2 /— )Q2 +sin20 (m2+U2+imE)—Q0+l m2+—p2 Em )—& 
V w/ J L m2 V 10 20 10 )m2 

p2 / 3 3 3 \ £ 2 -n 
+ (2m2-ip2-imE)—Q2+l m2- p2+—mE]—Qd } , 

w2 \ 10 20 10 /m2 J J 

1 f p2 

BVW = cos2d[2(E-m)2Qo+lSp2Q1+(E+2m)2Q2]-i sin0 cosd[%m(E--m)Qo+21m2Q1 
lSEp [ m2 

f r/ 9 \ /9 21 6 \ 
+ (-13w2-8w£)()2]H sin20 ( -2m2+-p2+2Em)QQ+(-m2 p2—Em )Q1 

m2 L \ 4 / \2 4 5 / 

+^-4w2+-^2-2EmJ(22+(-w2+-^2+-EwJ(23 , 

1 r / 5 5 8 \ 1 
BaM = l-m2+-E2+-mE)Qo-3p2Q1+2(E-m)2Q2 , 

12Epl\3 3 3 / J 
1 

£A(i,o) = [_ | (w + j E)2 (2o_|(£_m)2 (22-] (a x i a l v e c t o r C 0 U pH n g) . 

12Ep 

The Born terms for p-w&ve BB states, B(J>L'S\ are 

1 f p2 

Bv(o,i.i) = cos2(9[4^2<2o+2m2(3i]H sin0 cosd[6m2Q0~ (6m2+2p2)Q{\ 
4Ep [ m2 

P2 } 
+ s in 2C(4w 2 -4^ 2 )<2o-(6m 2+3^ 2 )<2i+(2m 2+^ 2 ) (3 2 ] , 

3m2 J 
Bp(o.i.o) = A ( G o - e i ) 

4E 

BV^)=—(cos2c^2eo+2E2e1+f^e2]+^ sin* cosoeo-2ei+fe2] 
\Ep\ +— sin^fc-W-iP2)Qo+-P2Qi+ (W-iP)Q*-&Wz~\\, 

m2 L 10 JJ 
Bp*M = -—($Q0-Qi+*Qi), 

4E 

jgF(i,i)o) = cos2^(4E2-2w2)(2i+^2sin6>cosC-fOo+2(3i-fe2] 
4Ei? I 

;s in 2J- | (^ 2+2m 2 )eo+(2m 2+-^ 2bi-f (p 2+2m 2 )Q 2 -^p 2Qj\ , 

4JB#I 

w2 

P 

4E 


