
P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 6B 23 M A R C H 1964 

Method for the Self-Consistent Determination of Regge Pole Parameters* 

S. C. FRAUTSCHI 

California Institute of Technology, Pasadena, California 

P. E. KAUS 

University of California, Riverside, California 

F. ZACHARIASEN 

California Institute of Technology, Pasadena, California 
(Received 7 November 1963) 

A method is suggested for approximately bootstrapping Regge trajectories, thereby avoiding the cutoff 
problems of the usual bootstrap calculation. The method is based on dispersion relations for Regge trajec­
tories and on unitarity applied at / =a. Successively more realistic approximations are described which bring 
in more information on the potential, and more trajectories. The approximate Regge parameters are guaran­
teed to have the desired threshold and asymptotic properties. 

I. INTRODUCTION 

ONE basic drawback of previous bootstrap calcula­
tions has been the presence of arbitrary param­

eters (cutoffs and the like), which were necessary in 
order to describe, at least crudely, the unknown high-
energy region. It is now believed that the high-energy 
behavior of scattering amplitudes is controlled by Regge 
trajectories corresponding to particles in the crossed 
channels. Therefore, if a method could be developed to 
carry out a bootstrap calculation of an entire Regge 
trajectory, rather than simply of one point on that 
trajectory, the high-energy region would itself be 
capable of a self-consistent determination. 

Nonrelativistic potential scattering is the natural 
breeding ground for studying the properties of the 
Regge poles, so we shall first search for a method of 
computing Regge trajectories here. It is, of course, 
essential to phrase the method in a way not tied 
directly to the Schrodinger equation, but to express it 
in language easily extendible to the relativistic case. 
Perhaps the most obvious way to do this is to base the 
method on the dispersion relations known to be satisfied 
by the trajectories and their residues in potential theory. 
The dispersion relations may then be supplemented by 
unitarity to obtain a system of integral equations 
which couple all trajectories together. One may then 
construct approximations of (more or less) practicable 
value by neglecting all but a few trajectories. 

The simplest approximation is to neglect all but one 
trajectory, and this case is discussed in Sec. II. The 
equations obtained there have been used by Cheng and 
Sharp1 in a slightly modified form to compute approx­
imate Regge trajectories, but their technique is not 
suitable for applications to bootstrapping because of 
the presence of undetermined parameters. In Sec. I l l 

we generalize the method in two stages, based on the 
Khuri representation2 for Regge poles. In Sec. IV we 
generalize the method further, by discussing the 
inclusion of several Regge poles in the coupled equa­
tions. It is interesting to see how details of the potential 
come in through the positions of the zeros of the residue 
functions. Section V describes the relativistic general­
ization of the method and its applicability to the boot­
strap. Finally, in Sec. VI, a brief comparison is made 
with Chew's suggestions3 for bootstrapping an entire 
Regge trajectory. 

II. FIRST VERSION OF THE SINGLE 
TRAJECTORY EQUATIONS 

Our basic idea, as we have stated in the Introduction, 
is to construct a method by which we can obtain, from 
the bootstrap principle, the entire Regge trajectory 
associated with a particle. The method we shall 
suggest is based upon the use of the dispersion re­
lations satisfied by the trajectories and their assoc­
iated residue functions, and it will be helpful to discuss it 
first within the context of the potential theory. Here, of 
course, there is no question of bootstrapping a trajec­
tory; we can only carry out the calculation of trajec­
tories resulting from a given input potential. Neverthe­
less, there is a very close parallel between this and the 
final proposal for a relativistic bootstrap. Furthermore, 
the potential theory case, where exact solutions for the 
trajectories exist, gives us an opportunity to measure 
the accuracy of our approximation. 

It has by now been well established4 that the leading 
Regge trajectories an(s) in potential theory satisfy 

* Work supported in part by the Alfred P. Sloan Foundation 
and the U. S. Atomic Energy Commission. 

1 H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963). 

2 N. N. Khuri, Phys. Rev. 130, 429 (1963). 
3 G. F. Chew, Phys. Rev. 129, 2363 (1963). 
4 A. Barut and D. Zwanziger, Phys. Rev. 127, 974 (1962); and 

H. Cheng, Phys. Rev. 130, 1283 (1963). Trajectories other than 
the leading ones often cross and develop left-hand cuts. In that 
case, (2.1) is not satisfied. This case will be discussed further in 
Sec. IV. 
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dispersion relations in the energy s of the form 

ds' 1 r00 

-s—ie 

I t is also true that bn(s), defined by5 

•Iman(s'). (2.1) 

bn(s) = Pn(s)/sa^ (2.2) 

where pn(s) is the residue of the partial-wave amplitude 
associated with the pole at l=an(s), is an analytic 
function of 5 with only a right-hand cut. For a super­
position of Yukawa potentials, 

V(r) -f d\i (r(p), 
r 

bn(s) has the asymptotic behavior 

bn(s) -> {g2/2)sn~l as s-
where 

(2.3) 

J m 

(ji)dn. 

We may now use the analyticity of bn(s)j this asympto­
tic behavior, and the fact, proved in Sec. IV, that 
bn(s) has exactly n—1 zeros, to derive the following 
useful representation for pn(s). 

We consider the function 

n— 1 

*(*) = ln(J„(*)/n (*-*)), 

where the Si are the locations of the zeros of bn(s). Note 
that all the Si are real.6 This function is analytic with 
a right-hand cut starting at s = 0 , has no singularities, 
and asymptotically becomes ln(g2/2). Therefore, 

<K*) = ln(g2/2)+ 
1 r°° Im0($') 
- / ds' 
TT J o sf—s—ie 

(2.4) 

Now Im0(s') is just the phase of ljbn(s
f), which, by Eq. 

(2.2), is the same as the phase of 0n(s
f) minus Imams') 

Xln^ . Hence, we get 

»(*) = — II (s-s 
2 *-i Re0n(*') 

A rr 

i) exp( - / t an - 1 

Iman(s') \ogsf]r^—+an(s) Ins J . (2.5) 5 We choose the particle mass equal to J so that 5 = q2, where q 
is the particle momentum. 

6 As will be made evident in Sec. IV, the Si are real and negative 
for normal trajectories; i.e., for trajectories with only the usual 
right-hand cut in energy starting at s = 0. For abnormal ones, 
that is, trajectories which may for example cross and therefore 
have additional branch points, the st may be complex. The 
derivation given here must then be modified in an obvious way. 

With the use of the dispersion relation for an(s), Eq. 
(2.5) can finally be transformed into 

ds* g2 n - l /S — Si 

2s i=i \ s )e x pC/0 7-
r s Im|8„0')-l\ 

Iman(s') In—f-tan"1 ) . 
L s' Repn(s')J/ 

(2.6) 

This equation, which, we remain the reader, is exact, 
will be very useful in what follows. 

The dispersion relations by themselves do not, of 
course, constitute a dynamical scheme which may be 
used for calculating anything. They must be supple­
mented by some information about the imaginary 
parts. As is the case with the usual dispersion relation 
for scattering amplitudes, this information is supplied 
by unitarity. 

The original representation derived by Regge,7 

expressing a scattering amplitude in terms of Regge 
poles, allows one to write for the partial-wave amplitude 
that 

A(s,l) = Z —+B(s,l). (2.7) 
n l—an{S) 

The sum is over all Regge poles; B{s,l) is the contribu­
tion of the mysterious "background integral." The 
partial-wave amplitude satisfies the unitarity condition 

[A (s,l)-A (s,l*)*y2i= (syi*A {s,l)A (s,l*)*. (2.8) 

Applying this at I—a gives us the equations 

1 
- = £ • 

3n*(s) 

2i(sy2 • am(s)-an*(s) 
-B(s,am*(s))*, 

m=l,2, (2.9) 

Equations (2.9) are an infinite set of relations connect­
ing the imaginary parts of the a's and /3\ given the 
function B. In conjunction with the dispersion relations, 
they provide us with an infinite set of coupled integral 
equations for the trajectories. As a practical matter, 
solving these equations is manifestly out of the question, 
and some approximation is called for. One could, for 
example, make the set of equations finite by discarding 
all but a finite number, say N, of poles and residues. 
Then the sum in Eq. (2.9) runs up to N, m goes from 
1 to N, and we have N complex or 2N real algebraic 
equations for the 2A" real quantities Im/3 and Ima. 

To begin with, let us suppose we take N=l and see 
what happens. There is no reason to believe this will be 
a terrible realistic approximation; one may argue that 
if Ima is small, as it presumably will be at low and 
high energies, and for weak potentials, then the term in 
the sum with n=m will dominate in Eq. (2.9). On this 
basis we may therefore also neglect B, and Eq. (2.9) 
reduces to 

Ima£=(j)1/2/3 and Im0=O. (2.10) 
7 T . Regge, Nuovo Cimento 14, 951 (1959). 
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(We drop the subscript 1 on a\ and ft.) From Eq. (2.6) 
we find (remember ft has no zeros) 

g2 r l ^ ds' n 
Ima(s) = exp - / Ima(sf) \ogs/sf . (2.11) 

2C?)1'2 LTTJO S'-S J 

This integral equation for Ima has several pleasing 
features: 

(i) It gives the correct asymptotic form for Ima; 
viz: Ima:(,?) —> g2/2(s)112 as 5 —>oo. 

(ii) As s —>0, it gives Imo:^) —> sa(0)+1/2, which is 
also correct. 

(iii) If the scattering amplitude itself is approximated 
by just one pole, whose trajectory satisfies Eq. (2.10), 
so that 

A(s,l) = P/(!-a), 

then the unitari ty condition (2.8) is automatically 
satisfied. 

I t has, in addition, several unpleasing features: 

(i) The range of the potential does not occur in the 
equation. 

(ii) The coupling constant scales out, in tha t Ima(s) 
is a function only of s/g*. 

The solution of Eq. (2.11) is thus some sort of 
"universal" Regge trajectory, which is essentially 
completely independent of the potential.8 This is 
obviously physical nonsense, and it is not hard to find 
the source of the difficulty. I n the "one pole" approx­
imation used in obtaining Eq. (2.11), we have discarded 
the "background t e rm" B(s,l). Yet , a glance a t Eq. 
(2.1) shows us tha t the entire left-hand cut in energy 
of the partial-wave amplitude A(s,l), and thereby all 
information on the forces in the problem, is contained 
in B(sjl). In order to make sense of an approach such 
as this, then, it is essential to incorporate the "back­
ground term," or par t of it a t least, into a practicable 
approximation scheme. A way to do this will be sug­
gested in the following section. 

III. KHURI MODIFICATION TO SINGLE 
TRAJECTORY EQUATIONS 

An alternative form of the Regge representation of a 
scattering amplitude to the one which led to Eq. (2.9) 

8 H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963) have 
suggested replacing the unsubtracted dispersion relations for a and 
b by subtracted ones, with the subtraction constants «o and bo, 
and the subtraction points so, considered to be parameters which 
may be taken from an exact solution or from experiment. This 
modifies Eq. (2.11) to 

Ima = boSa»+112 e x p ^ ^ / 7-7 £-, r Ima (sr) lns/s'. 
7T Jo (s'—so)(s'—s) 

Some information about the forces is thus introduced through ao, 
bo, and SQ. They find the approximate trajectories calculated in 
this way to be surprisingly accurate at low energies. Asymptoti­
cally, of course, they become seriously wrong. For our purposes, 
however, the presence of unspecified parameters renders this 
approach useless. 

has been proposed by Khuri.2 It has the virtue of, under 
certain plausible conditions, incorporating the entire 
background integral contribution into the contribution 
of the Regge poles. It looks like this: 

A (,./) = £ — ^ — e x p [ - (/-«„ W)fl , (3.1) 
n l—an(s) 

where £= coshr1(l+m2/2s) and where m is the potential 
range; tha t is, the potential is assumed to be expressible 
as 

/.oo 

7(r) =/ M^/rXji) (3.2) 
J m 

with 
/•OO 

g 2 = - / dfjLa(fx). 
Jo 

Using this form for the partial-wave amplitude, the 
analog of Eq. (2.9) is simply 

1 _ Pn*(s) 

2i(Sy
2 n am(s)-an*(s) 

Xexp[-(am(*)-a„*(*))£], (3.3) 

and in the one pole approximation, this leads to an 
integral equation for Ima slightly different from (2.11). 
The phase of p(s) is now just minus 2£(s) Ima(s), so 
by using (2.6) again, we obtain 

g2 r l r° ds' 
Ima(s) = exp - / Ima(s') 

2(s)V2
 LTTJO S'-S 

X ( l i w A / - 2 f ( 0 ) l . (3.4) 

The principal value is necessary on the integral, in 
contrast to Eq. (2.11), since the J term does not vanish 
a,ts—s'. 

Equation (3.4) retains the first two of the pleasing 
features of Eq. (2.11). I t is still true tha t Ima(s) 
asymptotically approaches g2/2(s)1/2; it is also still 
true tha t near threshold lma(s) behaves like sa(-0)+112. 
On the negative side, the unitari ty condition is no 
longer satisfied by the "one pole" approximation to the 
scattering amplitude, except, of course, a t 1= a. 

Numerical solutions to Eq. (3.4) have been obtained, 
and compared with the exact solutions of Amadzadeh 
et al.9 for a single Yukawa potential. The general shape 
of the exact results are reproduced by the approxima­
tion, but in magnitude the exact Ima lies considerably 
above the approximate one. The difference in magnitude 
is about a factor of two for a coupling of g 2 = 1 . 8 ; a 
factor of three to four for g2= 5. 

In this form, the approximate trajectory now does 
depend on the potential strength and range in a non-

9 A. Amadzadeh, P. Burke, and C. Tate, Phys. Rev. 131, 1315 
(1963). 
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trivial way; it does not, however, depend on more subtle 
details. One way to bring in more features of the 
potential, through the inclusion of more Regge poles 
in the approximation, will be described in Sec. IV. 
Another way to do the same thing, by explicitly 
extracting the Born-approximation term so that it 
stands out by itself in the expression for the partial-
wave amplitude, will be described next. 

For a single Yukawa potential, the Khuri representa­
tion is perhaps still not all we could desire. The original 
motivation for constructing the Khuri form was to 
arrange that each Regge pole term by itself had a cut 
in the cos# plane (6 is the scattering angle) from 
\-\-m2/2s to oo, and thus eliminate the miraculous 
calculation of cuts between 1 and l+m2/2s required 
among the Regge poles and background integral of the 
old representation. For a superposition of Yukawa 
potentials, as in Eq. (3.2), where the scattering ampli­
tude actually does have a cut all the way from cos0 
= l+m2/2s to oo} the Khuri form is thus eminently 
suitable. However, for a single Yukawa, the cut really 
begins at cos#= l+Am2/2s; there is only an isolated 
pole at cos0= l+m2/2s, I t would therefore be desirable 
to have available a modified Khuri form in which each 
Regge pole term has only these singularities in cosfl. 

Such a form may easily be constructed. We have only 
to consider the difference of the scattering amplitude 
and the Born approximation, and apply Khuri's argu­
ments to this function. Let 

A(s, cos6) = A(s, cos0)—AB{s, cos#), (3.5) 

where the Born approximation is 
, 2 t 

AB(S, COS0) = 
2s (l+m2/2s)-cosd 

(3.6) 

and contains the pole at cos0= l+m2/2,y. Since A 
satisfies a dispersion relation in cos0, with l+4w 2 / 2^ 
as the lower limit on the dispersion integral, it is 
reasonable to expect that the partial-wave amplitude is 
bounded as follows: 

4 ( * , 0 < ( 0 - 1 / 2 e x p ( - R e ^ ) , (3.7) 

where |=cosh~ 1 ( l+4m 2 /2^) . Blindly following Khuri's 
arguments then yields trivially the representation10 

^ W ) = E e x p [ - ( Z - a „ ) | ] +-Ql(l+m2/2s) 
l—an 2s 

£ e x p [ - ( /+») Q. (3.8) 
2s »=i l+n 

This procedure has provided everything we asked 
for, in that in this way we have constructed Regge pole 

10 A. Ahmadzadeh, Lawrence Radiation Laboratory Report 
UCRL-10929 (unpublished), has also written down Eq. (3.8). 
His numerical analysis of it encourages the belief that it will be 
more useful than the original Khuri representation. 

terms each of which has a pole at cos0= l+m2/2s and 
a cut starting at cos0= l+4m 2 /2^. I t is, of course, not 
true that each Regge term in this form of the representa­
tion satisfies the Mandelstam representation with the 
correct boundary on the double spectral function. The 
integration region here is just s>0, />4^ 2 . 

To obtain the "one-pole approximation" following 
from this modified Khuri representation, we drop all 
of the sums over Regge poles in Eq. (3.8) except that 
containing the leading trajectory. In addition, we shall 
throw away the sum n= 2 to oo in the last term of (3.8), 
retaining only the n= 1 term. The partial-wave ampli­
tude then contains a moving pole at l=a, the largest 
Regge pole, and in addition has fixed poles at l= — 2, 
—3, — 4, • • •, etc., coming from the Qi term. The pole 
at 1= — 1 in Qi is cancelled by the piece we have kept 
of the last term in Eq. (3.8). In this way, the approxima­
tion consists effectively in fixing all the trajectories 
except the largest at their s— oo values, and allowing 
only the largest one to move as s is increased from — oo. 
If we did not discard all but the n= 1 part of the last 
term in (3.8), but, say, kept all of it, our approximate 
partial-wave amplitude would have only a single pole 
in the / plane, namely, that at I—a. By retaining only 
the n=\ piece, then, we have kept at least some effect 
of the lower Regge poles in the approximation. Approx­
imately, then, we may write 

A (s,t) = — e x p [ - ( / -« ) | ]H—e,(H-f» 2 /2^) 
I—a 2s 

2sl+l 
e x p [ - ( / + 1 ) | ] , (3.9) 

and consequently, by using the unitarity condition at 
l=a, we have 

/ 1 g2 

P = Tma e x p ( - 2 i Ima£)( -7^7-K—Qa*(l+m2/2s) 
^ ) 1/2 

-1 e x p [ - ( « * + ! ) £ ] j . (3.10) 
s « * + ! 

From this equation it is straightforward, though messy, 
to calculate the phase of /3 in terms of a, and therefore, 
through the dispersion relation for a, in terms of Ima 
alone. This phase and /3 itself may then be inserted into 
Eq. (2.6) to get a frightening looking and remarkably 
nonlinear integral equation for Ima. We shall not 
explicitly write this equation. 

Even though the integral equation for Ima is terribly 
complicated, it is not out of the question to obtain 
numerical solutions of it, and attempts to do this are in 
progress, again with the intent of comparing with the 
exact results for a Yukawa potential. 

I t is not difficult to see, in spite of the complexity of 
the integral equation, that the solution will have the 
correct threshold and asymptotic properties. As s —>oo, 
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for example, Eq. (3.10) becomes 

(sY^^Ima, (3.11) 

and, from Eq. (2.6), we see that consequently Ima 
->g2/2(s)1 /2 . As s - > 0 , Eq. (3.10) also reduces to 
(3.11) if a ( 0 ) > - i , and Eq. (2.6) shows us that 
Ima^^ a ( 0 ) + 1 / 2 . Furthermore, the correct analyticity 
properties of a are, of course, guaranteed, since the 
whole approximation is based on use of the dispersion 
relation for a. Unfortunately, A(s,l) as expressed by 
Eq. (3.9) does not satisfy unitarity except at l=a. 

The entire Born-approximation term appears explic­
itly in Eq. (3.9), so that the result depends on the full 
details of the potential. Furthermore, through the 
presence of the Born term, the correct asymptotic 
behavior of A (s,l) in I as well as in s is guaranteed. 

For these reasons, it may be desirable to use the 
modified Khuri representation, and the approximations 
generated from it (appropriately corrected, of course) 
in the case of a superposition of Yukawa potentials, 
even though the original motivation for constructing 
the representation was present only for a single Yukawa 
potential. 

IV. COUPLED TRAJECTORIES 

To derive the number of zeros11 in bn for normal 
trajectories (those with no left-hand cut), we need only 
compare the known asymptotic limit, 

bn(s) -> (g2/2)sn~l as s-*oo , 

for potential theory with the representation 

bn(s) = cJl is—Si) exp 
™ <i>(s')ds'-

-s J 
(4.1) 

for a function analytic in s with only a right-hand cut. 
The phase <j> of bn is known to vanish both at s=Q and 
s = o o . Therefore, the exponential in (4.1) approaches 
a constant asymptotically, and bn^sN. By comparison 
with the known asymptotic form of bn, one finds 

2 V = » - 1 . (4.2) 

Thus, the first trajectory has no zeros, the second has 
one zero, and so forth. Cheng and Sharp11 have also 
considered trajectories which have a left-hand cut and 
find that the asymptotic form is still valid and the 
phase still vanishes asymptotically; Eq. (4.2) holds 
in general. 

In the case of potential scattering, the zeros of bn(s) 
are roots of finite polynomials, with coefficients easily 
determined in terms of moments of the potential. For a 
normal trajectory, the zeros of bn(s) are the zeros of the 
residues fin (s). 

If the S matrix is expressed by 

S(sJl) = ei-lD(s-,l)/D(s+,l), (4.3) 

then the conditions for a zero of ($n(s) become 

D(s+,l) = D(s~,l)=0. (4.4) 

This is the condition for indeterminacy points.12'13 The 
condition can be met only at negative integer and half-
integer I values, as can be seen from the equation 

D(s+,l)D(s~, ~l-l)-D(s~,l)D(s+, -1-1) 

= -(2vV>+sin27rZ. (4.5) 

In the right-hand I plane, the wave function which 
goes as rl+1 at the origin is regular, and therefore D(s+,l) 
and D(s~yl) cannot vanish simultaneously since this 
would make the wave function vanish identically. In 
the left-hand / plane, this restriction does not apply. 
Thus, at negative integer or half-integer / values, 
whenever D(s+,l) vanishes, either D(s+, —l—l) 
vanishes14 and some trajectory passes through the corre­
sponding positive /, or D(s~,l) vanishes, which defines 
an indeterminacy point, and which is a necessary and 
sufficient condition that this l—s combination is some 
an(s) with the corresponding /3n(s) vanishing. 

The calculation of these points is straightfor­
ward.10-12'13 For the potential (3.2), we define the 
moments 

( - l ) n r00 

vn= / fin<r(ji)dfji, v0=-g2. (4.6) 
nl J m 

The power series solution for the wave function which 
goes like rl+1 near the origin is given by the recursion 
relation 

p=0 
(4.7) 

p-.i 
— Sap-2+ S Vndp-l-n 

aP = , 0 o = l . (4.8) 
p£p+2l+X} 

In order to avoid poles in D(s,l) at all negative 
integer and half-integer / values, we normalize by 
putting 

dp=ap/T(2l+2). (4.9) 

Due to this normalization, as a negative integer or 
half-integer / is approached, the first 2 / + 1 coefficients 
will vanish. The coefficient becomes 

-21-2 

—sa-2i-z+ S vna-2i~2-n 

a_2z-i= Hm — 
"° - [ 2 / + l ] e r ( 2 / + 2 + € ) 

( - 2 / - 2 ) ! -2i-2 
= gfr(2H-2) [ - ^ - 2 ; _ 3 + £ ^ _ 2 , _ 2 - J 

- ( 2 H - 1 ) n=o 

11 H. Cheng and D. Sharp (Ref. 1) have already discussed this 
topic. We reproduce the discussion here for completeness. 

/ = —1—iV/2, # = 0 , 1 , 
12 P. Kaus, Nuovo Cimento 29, 598 (1963). 
13 H. Bethe (to be published). 
14 S. Mandelstam, Ann. Phys. 19, 254 (1962). 

(4.10) 
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In general, the coefficient <L_(2/+D is now finite and 
the solution starts with r~l and is therefore proportional 
to the solution at —/—1 starting as rl+1, But for a 
finite number of energies s^ the coefficient <1_(2Z+D 
will vanish. In this case, all subsequent dp vanish and 
consequently so do the functions D(l,Si+) and D(l,Si~~), 
which are the coefficients of the exponentials of the 
large r asymptotic form of the wave function. 

The condition for indeterminacy points is now given 
by 

-2Z-2 
— S»a_2&-3+ X Vna-2l-2-n=0} 

n=0 

l=-l-N/2, N=0, 1, • • , (4.11) 

where ap is given by the recursion relation (4.8). 
For example, one obtains for the first few indeter­

minacy points: 

an(si)= —f Si== —vot+vx 

an(s2)= —2 s2= — (JW+VI—V2/VO 

an(sz) = an(sd= - I *8(4)= ( 1 / 1 8 ) [ - 1 0 ^ + 1 8 ^ 

- ( + ) 4 ( 4 f l 0
2 - 5 4 V 2 

+81t>8)1/2], etc. (4.12) 

In the case of a single Yukawa potential, the indeter­
minacy points reduce to 

a „ ( s i ) = - f Si=g2m-g4 

an(s2) = -2 s2= ~ {\W+£m- (|)g4 

an(ss) = an(sd=-% 3̂(4) = g % - ( 5 / 9 ) ^ - ( + ) ( 2 / 9 ) 
X[(27/2)g 2 w 3 -27g% 2 

+4g 8] 1 / 2 , etc. (4.13) 

When all the relevant trajectories are normal, which 
is the case for strong attractive coupling, the top 
trajectory does not use any of these points, a200 uses 
si to cross /=—•§, a n d az(s) uses s% and s2 to cross 
/ = — § and —2, respectively. To cross higher negative-
integer and half-integer /, the trajectories use the zeros 
of D(—I— 1, s+), i.e., the Mandelstam symmetry.14 

Thus, we have the following information from the 
indeterminacy points: 

0:20*1)=-| 62(^0 = 0 
a3C*3)= ~ i 63 0?3) = 0 
0-3(^2)=-2 bt(s2) = 0, etc. (4.14) 

This process can be continued, the Si appearing as 
roots of polynomials of degree — [7x n +l] for an a 
negative interger and — [ a n + i ] f° r «» a negative 
half-integer. As trajectories with larger n are computed 
and coupled to the others, more moments of the 
potentials are needed for the computation of the s^ 
I t is in this way that the detailed structure of the 
potential eventually gets into the problem. 

In Sec. I I we derived an exact expression for the 
residue function /3n(s) [Eq. (2.6)], which expressed it 
in terms of its phase, its zeros, and Iman(s). In Sees. I I 

and III , we always confined ourselves to the largest 
trajectory; however, with explicit expressions for the 
zeros s^ we are now in a position to extend our discussion 
to include additional trajectories. 

For the second and third trajectories, for example, 
we have 

g2/ sA (1 r dsf 

&(*) = - ( 1 Jexp - / 
2s\ 5 / {TTJO S'—S 

t an -
Im&O') 

Reft(/) 

+Ima2(s') log(^A')]} , (4.15) 

, x *Y 5 2V 5A f1 f ds' 
2s\ s / \ s/ I x J o s—s 

r ImfoOO HI 
X tan-1 +1maz(s

f) logos') 
L Reft OO J) 

(4 16) 

where Si, s2, and s% are given by Eq. (4.12). 
The pn(s) are again coupled to the an(s) through the 

unitarity condition at l=a. If the first N trajectories 
are to be coupled, the N unitarity relations\re 

/ N 1 , * / 3 n W e x p [ ~ ( a p * ( j ) - a n W ) l W ] 
l=_2i (^) i /2 £ 

w=1 ap*(s)—an(s) 

• ^ l / 2 | 
(&„•( . ) (l+ni2/2s) 
L 

e x p [ - ( a / ( s ) + ? O I 0 s ) ] 
£ Pn-i(l+m2/2s) ] ap*(s)+n 

p=l,2,-.-,N. (4.17) 

We now have a system of N integral equations coming 
from (2.6) coupled by the N unitarity equations (4.17). 

The approximate trajectories generated in this way 
will, of course, not in general satisfy the requirements 
that 0:2 0?i) = — f and 0:3 (s2) = — 2,0:3 (sz) = — f. One could 
guarantee these conditions, at the expense of the 
correct asymptotic behavior of the a's, by replacing 
the dispersion relation (2.1) with subtracted equations: 

0:2 ( * ) = • 

3 s—si 

T J (S'~ 

ds' 

/s—s3\ 5/s—s2\ 
a,(S) = - 2 ( ) — ( ) 

\S2 — Sz/ 2\Sd — S2/ 

ds' 

si){s'-s) 

(s—s1)(s—s2) 

Ima2{sf), (4.18) 

X h (Sf-S1)(s'-S2)(sf-S) 
Imaz(s

f). (4.19) 

Whether it is more desirable to use unsubtracted 
equations, thus obtaining approximate solutions which 
behave correctly at large s, and giving up 0:3(̂ 2) = —2, 
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etc., or using subtracted equations and losing the right 
infinity behavior, is an open question. The values sh 

S2, s$, etc., are, presumably, closer to the region of small 
positive s (where we would like to have the least error) 
than s=<*>, and perhaps this argues in favor of the 
subtracted form. On the other hand, use of the sub­
tracted equations leads to a (s) that diverge as a power 
of 5 in the limit s— <*>, instead of merely approaching 
the wrong numerical value. 

I t should be pointed out here that unitarity is not the 
only condition coupling the pn(s) to the an(s). An 
equally valid, though perhaps not as fundamental 
condition comes from the Mandelstam symmetry, 
which states that 

5 ( J , 0 = «*' ( 2 Z + 1 )5 ,(J , - Z - l ) . (4.20) 

Substituting the expression (3.8) for A(s,l) and 
demanding satisfaction of (4.20) at N integers or half-
integers also gives N coupling equations of a similar 
type as the unitarity condition. 

The determination of a trajectory to any desired 
accuracy by coupling in a sufficient number of other 
trajectories would now appear to be simply a computa­
tional question. However, the equations we have 
written down are correct only for normal trajectories, 
which means trajectories for which a and b are real 
analytic functions of s with only a right-hand cut. I t 
is well established12-13 that infinitely many trajectories 
do not have these properties. For instance, infinitely 
many trajectories meet in pairs at a negative energy 
s, split into a complex conjugate pair and meet again 
at $ = 0 and / = —f, which is an accumulation point of 
trajectories.15 The behavior of these trajectories has 
been studied by Newton and Desai.16 In this case, there 
is a left-hand cut in s, from s to 0. The branch point s 
need not be real. In the case of a Yukawa potential 
with g2=2 and m=l, the third trajectory, for example, 
starting at / = — 3 for s= — °°, goes continuously to 
/ = — 5 for s= + °°, indicating a pair of branch points 
in the complex s plane. 

When the a(s) and b(s) have singularities other than 
the right-hand cut, it is necessary to extend the disper­
sion integrals to include the additional cuts. For such 
modified dispersion relations to be useful, it is, among 
other things, necessary to know the locations of the 
branch points and these are not under very good 
control. (There is a possibility that they could be put 
in as undetermined parameters and determined from 
self-consistency, since the two trajectories involved 
must become complex conjugate pairs and meet at 
/ = — | at threshold.) 

I t has been observed by Cheng4 that even though 
two trajectories meet, combinations such as «i+a2, 
aio>2 and similar combinations for the b's remain real 

15 V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters 9, 
328 (1962). 

16 B. R. Desai and R. G. Newton, Phys. Rev. 130, 2109 (1963). 

analytic. I t would be tempting to write the integral 
equations for these combinations. However, it is then 
no longer possible to express all the needed zeros of 
functions such as £i (.?)+£2 (.?) in terms of low moments 
of the potential, since these zeros do not have the 
simple significance of the indeterminacy points. 

There is some indication that the abnormal tra­
jectories may not be of great physical significance. In 
the case of a Yukawa potential with g2= 2, for example, 
the first and the second trajectories are normal, the 
third is not. However, a calculation by Ahmadzadeh10 

indicates that A{s,l) at / = 0 , 1, and 2 is accurately 
obtained by using the modified Khuri representation 
(3.9) with only the two top trajectories included. 
For stronger attractive potentials, more trajectories 
will be needed for an accurate representation of the 
partial-wave amplitude, but more of the top trajectories 
will have become normal. 

V. THE RELATIVISTIC CASE AND APPLICATIONS 
TO BOOTSTRAP CALCULATIONS 

In the preceding sections, a method for calculating 
Regge trajectories and their residues for a superposition 
of Yukawa potentials has been described. The input 
used to formulate the method consisted of dispersion 
relations for an(s) (2.1) and bn(s), unitarity (2.8), and 
a relation allowing calculation of the zeros of bn(s) in 
terms of low-order moments of the potential (Sec. IV). 
The method can be generalized to relativistic dynamics 
by reformulating each input relation in relativistic 
terms. 

We start with the observation that generalized 
potentials 

1 rdt'Pt(t
f
ys) 

Vdirect^,t)=- / (5.1) 
Tjm t'-t 

and 
1 r00 dufpu(u',s) 

Vexchange(s,u) = - / (5.2) 
T J m> u' — U 

can be defined,17 which play the same role in determining 
the amplitude through dispersion relations as does the 
nonrelativistic potential.18 We conjecture that an(s) 
satisfies the dispersion relation 

1 f°° ds' 
an(s) = an(°o)+- / 7lman(s') (5.3) 

7r J SQ s'—s—ie 

and that bn(s) is again an analytic function of s with 
only a right-hand cut (as usual, crossing of trajectories 
will introduce left-hand cuts into an and bn in some 
cases). Due to the more complicated nature of the 
relativistic potential, the high-energy limits of an and bn 

are not generally known in advance. The elastic 

17 Henceforth, s takes on the usual relativistic significance, e.g., 
s = 4m2+4q2 for the equal mass case instead of the nonrelativistic 
definition of s = q2. 

18 G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961). 



B1614 F R A U T S C H I , K A U S , A N D Z A C H A R I A S E N 

unitarity condition is changed from (2.8) only by a 
kinematic factor: 

LA(s,l)-~A(s,l*)*l/2i 

= [(s-4<m*)/sJi*A (s,l)A (s,F)*. (5.4) 

More generally, several channels can be coupled 
together, turning the unitarity condition into a matrix 
relation, but we shall not consider this complication. 
The remaining input conditions, on the zeros of bn, were 
derived in Sec. IV from properties of the Schrodinger 
equation, which does not carry over directly to the 
relativistic case. Nonrelativistic scattering can equi-
valently be described by Fredholm theory, however, in 
which one can work directly with integrals over the 
weight function of a superposition of Yukawa potentials. 
Fivel19 has shown how the zeros of bn appear in 
Fredholm theory, and verified that one obtains the same 
relations as in the Schrodinger method. His procedure 
can perhaps be directly generalized to relativistic 
dynamics, using the energy-dependent Yukawa weight 
functions of Eqs. (5.1) and (5.2). 

Thus, the procedure of the preceding sections for 
computing trajectories and their residues from a given 
potential can be followed exactly, with the obvious 
changes due to the different kinematic factor in the 
unitarity relation. The exchange potential (5.2) makes 
it necessary to consider even and odd signatures20 

separately, thus reducing the problem to one where the 
singularities in the potential occur only at positive t. 

In our previous discussion, the details of the potential 
could be introduced either through the zeros of bn, or 
by explicitly adding the potential, or by both methods. 
We shall continue to use both methods, but since the 
relativistic potential is a complicated energy-dependent 
function it seems best to place our main reliance on 
including it explicitly in the amplitude. In other words, 
the description of the potential through zeros of bn 

probably converges more slowly when the potential is 
energy-dependent. 

In potential theory, we also had the option, for 
trajectories starting to the left of 1= — 1, of fixing an(s) 
at known indeterminacy points such as / = — f, or 
fixing an(«)) . Relativistically, we do not know the 
asymptotic behavior of an(s) or bn(s) in advance, and 
this increases the motivation for fixing an at known 
indeterminacy points whenever possible. 

Now the relativistic potential can be described in 
terms of scattering in crossed channels; in particular, 
it can be related to the leading Regge trajectories in 
the crossed channels. When this information is inserted 
into the potential, we have a bootstrap calculation, 
where the Regge poles parameters computed in the 
s channel are required to be consistent with those in 
the crossed channels. 

19 D. Fivel (private communication). 
20 S. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev. 

126, 2204 (1962); and E. Squires, Nuovo Cimento 25, 242 (1962). 

The description of the potential in terms of leading 
Regge trajectories has been given by Chew,3 and we 
can simply take over his results. I t is convenient to 
retain only the fairly long-range parts of the potential, 
and an(s) and bn(s) at fairly low s (strip approximation), 
since we cannot calculate accurately the very short-
range potential or the asymptotic behavior of an(s) and 
bn(s) anyway. Use of the strip approximation also 
reduces the amount of doublecounting when the 
potential and Regge terms in the s channel are added 
together to form the amplitude; this is not a serious 
problem in any case because each time a Regge pole is 
added in the s channel, our procedure calls for subtract­
ing the corresponding pole out of the potential, as in 
Eq. (3.9). 

One final comment concerns the convergence of the 
method. At / > 0 , leading trajectories in the potential 
may rise to J(t)>l, creating the possibility of diver­
gences. At t<0, however, all trajectories must remain 
within the Froissart bound21 J(t)<\. I t is thus desirable 
to express the partial-wave amplitudes A±(s,l) for 
signatures ± in terms of an integral over / < 0 instead of 
the usual integration over A^ at / > 0 . The appropriate 
formula has been given by Chew,8 following a suggestion 
of Wong22; 

1 r1 

A±(sJl) = - / dzPi(z)A±(s,z) 
2 i_x 

sin7r/ r~l 

- / dzQl(~z)AHs,z). (5.5) 

VI. DISCUSSION 

Our proposal for making bootstrap calculations in 
terms of Regge parameters is rather closely related to 
the "generalized strip approximation" of Chew.3 The 
difference is a technical one; we work directly with the 
Regge parameters whereas Chew's approach involves 
the N/D method. A possible drawback of our proposal 
relative to Chew's is that we are involved with nonlinear 
equations even at the level of potential theory, where 
the N/D method is still linear. 

Both of these methods have certain deficiencies in 
common. The asymptotic behavior of an(s) and bn(s) 
is not known as s —*<*> in the relativistic case; this may 
not be of great importance because we are primarily 
interested in these parameters at small s. Even at 
small s, the usual Khuri factor gives correct threshold 
behavior for A{sil)^qs

n
1 but not for ImA(s,l)^qs

4l+1 

This is directly related to the fact that the Khuri 
factor implies a double spectral function with boundary 
qs

2=0J t=4:u2, instead of the correct curved boundary. 
I t is also presumably related to neglect of the infinite 
set of trajectories that converge on 1= — | at threshold. 
As discussed at the end of Sec. IV, there is some reason 

21 M. Froissart, Phys. Rev. 123, 1053 (1961). 
22 D. Wong (private communication to G. F. Chew, 1962). 
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to hope that these neglected trajectories are not of 
great physical significance except in the immediate 
vicinity of threshold. 

Independently of our work, Mandelstam and Sharp23 

have also generalized the one-pole equations described 
in Sec. I I . They continue to consider only one pole, 
adding the relativistic potential and treating the Khuri 
£ in a rather different manner. 

Numerical calculations based on the potential theory 
relations of Sees. I I and I I I are in progress. I t is hoped 

23 S. Mandelstam and D. Sharp (private communication). 

that comparison with the exact results of Ahmadzadeh 
et al.9 will give an idea of how rapidly the addition of 
more Regge poles converges to the full potential theory 
answer. 
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