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In this paper, we show that the Klein-Gordon quantum-mechanical operator, operating on the function 
eis/ft} where S is the relativistic action of a free particle or of a particle in a field denned by a four vector, is 
completely equivalent to the relativistic Hamilton-Jacobi equation, provided one takes into account the 
vanishing of the divergence of the energy-momentum four vector. From this we see that classical relativistic 
mechanics can be formulated in terms of operators which are identical with those used in quantum mechanics. 

INTRODUCTION 

IN a previous paper,1 it was shown that one can obtain 
the Schrodinger wave operator from the classical 

Hamilton-Jacobi equation by simple algebraic trans
formations. From this derivation it appears that even 
in classical mechanics we can assign a "wave function" 
to a particle moving in a definite, well-defined orbit. 
This "wave function" is just ei8lh

9 where S is the classi
cal action taken along the path and is defined by the 
time integral of the classical Lagrangian 

s[x(*)]= fitX(t),x(tW. 

The significance of this classical "wave function" 
interpreted as a classical "probability amplitude," is 
that the probability of finding a particle somewhere 
in its classical orbit is exactly one. This, of course, is 
what is to be expected in the classical picture since 
according to this picture, a particle can be in only one 
well defined and experimentally observable state at 
any time and therefore can have associated with it 
only one probability amplitude. One now passes over 
to the quantum mechanical picture by assigning to the 
particle an ensemble of possible classical orbits, each 
with its own classical action and its own probability 
amplitude which is again of the form AeiSnlh, where 
n refers to the nth. classical orbit and A is a normaliza
tion constant. Since according to the quantum picture 
there is no way of knowing exactly in which of these 
classical orbits the particle is, we must superimpose all 
of these states and assign to the particle a probability 
amplitude that is the sum of the individual classical 
"probability amplitudes." Since the probability for 
finding the particle in any volume element is just the 
square of the absolute value of the probability ampli
tude, we obtain the well-known interference effects that 
are characteristic of quantum mechanics. 

I t is clear from this analysis that as long as a particle 
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is in field-free space, there can be only one classical 
path associated with it and the classical and quantum-
mechanical descriptions are equivalent. However, 
when a particle interacts with a force field, its classical 
action will change from moment to moment in an un
predictable way because of the Planck quantum of 
action; we must then assign to it an ensemble of orbits. 

In the previous paper, the results were not expressed 
in a relativistically covariant form. We shall consider 
the relativistic case in this paper and give a more 
detailed analysis of a particle in a force field. 

The Relativistic Case of a Free Particle 

We start with the energy-momentum four vector 
(p, iE/c) that defines a particle with momentum p 
and total energy E moving in field-free space. If m0 

is the rest mass of the particle, then the length of this 
four vector is given by 

P2—E2/C2=—MQ2C2 (1) 

Moreover, since this four vector satisfies the conserva
tion equation, its four-dimensional divergence must 
vanish and we have 

divp+ ( ! /<?)$=0 

or 
dpx dpy bpz 1 dE 

+ +—+ -0. 
dx dy dz c2 dt 

(2) 

Equations (1) and (2) are the basic equations of our 
analysis. 

We now introduce the invariant space-time function 
S(x,y,z,t) which we define as the action of the particle, 
which is obtained from the relativistic Lagrangian in 
the usual way. We may then define the energy and the 
momentum in terms of this action as follows: 

E = - dS/dt, p* = dS/dx, etc. (3) 

If we substitute these expressions into Eqs. (1) and 
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(2), we obtain 

dS\2 

dt/ 
{-)+' r/ds\2 

\dx) 

/ss\2 /ds\2i 

\dy/ \dzJ J 
+mo2c2 = 0 

1 d2S d2S d2S d2S 
+—+—+—=0. 

c2 dt2 dx2 dy2 dz2 

(4) 

The first of these equations is just the relativistic 
Hamilton-Jacobi equation of a particle and the second 
describes the propagation of the action. I t is obvious 
that the action function, 

5= -Et+pxx+pyy+pzz, (5) 

satisfies these two equations in virtue of (1) and (2). 
From (3) we see that we may write 

dS 
£ = =-e~ 

dt 

and 

Hence 

p*-
dS 

dx 

/ft d \ 
_e-iSIhl eiSlh j 

\idt ) 

/ * d \ 
I eiS'h ), etc. 
\i dx / 

(6) 

/AS* 

\dt 

f—Y= 
\dxJ 

-iS/ft 
fiifi d2 

PiS/h_piSlh_ 

iVidt2 

d2S 

dt2 

d2S fiih d2 

e-iSlh\ eiSlh__eiSlh_ 
i [ i dx2 dx2 

(6a) 

etc. 

If we substitute these expressions into the first of 
Eqs. (4), we obtain 

-iS/i 
r d2 / d2 d2 d2\~\ 

¥ c2M—H + — J \ei8i*+m<?<? 
L dt2 \dx2 dy2 dz2) A \dx2 dy2 dz2. 

fifd2S ftrd2S /d2$ d2S d2S\~] + J c 2 ( _ + _ + _ ) L 
ildt2 \dx2 dy2 dz2/J 

Since the expression in the second bracket vanishes 
because of the second Eq. (4), we have 

¥ d2 

c2dt2 
eisih^ __fpy2e%sih+mg(&eiaih9 (7) 

We see that this is just the Klein-Gordon equation 
for a free particle, and again just as in the nonrelativ-
istic case we have derived it without first introducing 
p and E explicitly as operators. Of course, we obtain the 
operator equivalents of the momentum and the energy, 
but these are derived from the classical expressions by 
straightforward algebraic transformations and without 
introducing any specifically quantum-mechanical con

cepts. In other words, from a purely formal point of 
view, we may say that a free particle in classical 
mechanics is described by the same wave equation as 
in quantum mechanics. Indeed, the wave equation (7) 
is equivalent to the two classical equations (4). We can 
go from one to the other by simple algebra. 

Again we may consider ei8,h as the classical wave 
function or probability amplitude of a free particle. 
This means, of course, that the probability of finding 
the particle in its classical path is just one. This, of 
course, has meaning only if a particle is moving in a 
single well-defined classical orbit which is described 
by a single well-defined classical action. But herein 
lies the difference between classical and quantum 
mechanics. The latter takes into account the quantum 
character of action and hence denies the possibility of 
assigning a well-defined classical path or a single classi
cal action to a particle. Indeed, we could never verify 
that a particle is moving along a single classical path 
since our very act of observing it would change its 
action by an amount that cannot be smaller than h. 
Our description of the particle would then require an 
ensemble of classical paths and S values, and, as Feyn-
man2 has pointed out, this requires a quantum mechani
cal analysis. 

The Action and the Phase 

In the case of a force-free particle, the action is given 
by the simple expression (6) which may also be con
sidered the phase of the classical wave. We can rewrite 
it in the form 

E/ n - r \ /E 
S=-2ir—l t ) = -27 r ( — t-

h\ E/pJ \h 

E n r \ 

h/p/' 
(8) 

where p is the magnitude of the momentum and n is 
a unit vector in the direction of the momentum. 

From this we conclude that the frequency, the wave
length, and the phase velocity are given by 

E/h, h/p, and E/p=c2/v, 

respectively, where v is the velocity of the particle. 
Thus, in the classical relativistic case we may formally 
assign to a free particle a frequency, a wavelength, and 
a phase velocity. 

We can also obtain the commutation rules that our 
classical operators must obey, again without introducing 
any quantum-mechanical assumption. Since the order 
in which the momentum and the position of a particle 
are measured is immaterial in classical mechanicSj we 
have 

pxx—xpx=0, etc. 

JR. Feynman, Rev. Mod, Phys, 20, 367 (1948). 
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Hence 

or 

fl d fl d 
e—iS/h eiS/ft_e—iS/hx giS/ti— Q 

i dx i dx 

fl d fi fi d 
e—isih (xeiS/h) e~iS,hx eiSlh—0 

i dx i i dx 

from which we ob ta in 

~fi d fl d "1 fl 
rftd ft d -i ft 

— x — x \e^i^=-( 

Li x i dxJ i 

.iS/h 

or 

(px)ot>x—%(px)ov=fi/i. e tc . (9) 

These are jus t the quan tum-mechan ica l commuta t i on 
rules. 

Part ic le in a F ie ld 

T o analyze the mot ion of a part icle in a field we in t ro
duce the 4 vector (A, icj>) a n d choose the gauge so t h a t 
the Loren tz condit ion is satisfied 

d i v A + ( l / c ) « H 0 . (10) 

If we mul t ip ly th rough b y e/c a n d sub t r ac t from 
E q . (2), we ob ta in 

1 d 

c2 dt 

If we form the 4 vector 

/dpi e dAA 
( E - e # ) + E ( ) = 0 . (11) 

i,2,z\dxi c dxi' 

and place its length equal to — moc as in (1), we have 

Z(pi--A)j -{E-e<j>y=-m<?c\ (12) 

1,2,3\ C / C2 

Again we in t roduce the invar ian t act ion S in t e rms of 
which we define the energy and m o m e n t s as in (3). 
Equa t ions (11) a n d (12) then become 

b y using (6) a n d (6a) 

'dS /dS Y r d2 ft d ft d 
( he<£ ) =e-iSIh\ -fi2~eiSlh+e<l>~ —eiS?h+e- — 
\dt / L dt2 i dt i dt 

1 fi/d2S d4>\ 

Xfoe**/*) + eW5 /* —( +*— } 
J i\dt2 dt/ 

= e~iSlh(ih e<j>)(ih e<j>\iSlh 

\ dt J \ dt / 

I n the same way, we h a v e 

/dS 

\OXi C 

\ =e-ism\. a2 

2 

dXi2 

9%&lh 

hd /dS 

i dt\ dt 

fl € d 
---Ai—ei8,h 

i c dxi 

• ) • 

efi d 

c i dx, 

h/d2S 

-{A%eiS'h)-\—A?eiSi*\ 

1 d/dS 
(—+64 

c2 dt\ dt 

\ d /dS e \ 
* ) + E — ( — A i ) = 0 (13) 

/ 1,2,3 dXi\dXi C / 

a n d 

/dS e \ 2 1/dS \ 2 

E AA ( _ + € 0 ) = - W o 2 C 2 . (14) 
1,2,3 \dXi c / c2\dt ' 

E q u a t i o n (14) is j u s t the classical Hami l ton-Jacob i 
equat ion of a charged part ic le in a field. W e now obta in 

h/dlS edAA /ft d e \ 
— ( \ = e-isikl A . \ 

i \dXi2 c dxi / \i dXi c / 

/fi d e \ h d /dS e \ 
x l - - — A i ) e i S ^ - ~ - - ( Ai). 

\i dxi c / i dX{\dXi c / 

If we subs t i tu te this and the previous equa t ion in to 
(14) and t ake account of (13), we obta in 

1 / d \ 2 /fl d € \ 2 

— l i b €01 «**'*= E ( - AAeiSih 

c2\ dt / 1,2,3 \ i dxi c / 
+m0c

2e2iSlfi. (15) 

Th i s is jus t the Kle in-Gordon opera tor for a charged 
part ic le in a field applied to t he classical " w a v e 
funct ion" eiS/h. Again we see t h a t as far as the opera tor 
goes, we can speak of i t ei ther as the classical opera tor 
applied to a single well-defined wave ampl i tude of u n i t 
absolute value, or as the quan tum-mechan ica l opera tor 
applied to a sum of ampl i tudes , each one of which is 
derived from a different classical act ion function. 

W h a t appears to us to be i m p o r t a n t in all of this is 
t h a t q u a n t u m mechanics does no t differ from classical 
mechanics because one deals wi th opera tors in the 
former and no t in the la t te r . W e see t h a t classical 
mechanics can be formulated in te rms of the same 
opera tors as are used in q u a n t u m mechanics . Fu r the r 
more, the classical opera tors obey the same c o m m u t a 
tion rules and the same equat ions as do the q u a n t u m -
mechanical ones. T h e difference, then , be tween the 
quan tum-mechan ica l descript ion a n d the classical 
description lies in the ensemble of classical orbi ts t h a t 
one m u s t assign to a part icle in the quan tum-mechan ica l 
case as against the single well-defined orbi t t h a t one 
has in the classical case. 


