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Over the past few years, there have been a number of independent attempts to improve on the Born 
approximation calculation of scattering phase shifts. The similarity of several of the first-order results for 
central potentials has led to misconceptions as to their interrelationship. The interpretation of the approxi
mations has now been put on a firm basis (sometimes at variance with the previous literature). The alterna
tives in going to higher order are sorted out and their meaning is clarified. The extensions to noncentral 
potentials are given. In addition, a numerical exploration of the precision of different higher order results 
has been carried out. 

I. INTRODUCTION 

THE solution of the wave equation for scattering 
by a potential (or its partial-wave decomposition) 

has most frequently been attempted by the Born 
approximation series: Set the potential U=\UQ, where 
X is the strength parameter. Expand ^ in a power series 
in A. Then, in the spirit of perturbation theory, equate 
the coefficients of each power of X. It has been known 
for a long time that the series will diverge if X is too 
large, and much effort has gone into investigating the 
convergence conditions. The most sophisticated analy
sis1,2 invokes the Fredholm determinant solution of the 
integral equation. The determinantal solution takes 
the form of a ratio of two power series in X, valid for all 
regular X. Apart from minor refinements, the first zero 
of the Fredholm denominator (viewed as a function of 
X) determines the radius of convergence of the Born 
series. (For attractive potentials, it also locates the 
first resonance.) 

The implication that, in going beyond the first Born 
approximation, the introduction of a new term in the 
denominator might be at least as important as pro
ceeding to a higher term in the Born series was not 
acted on explicitly until recently. There are now several 
distinct derivations of such an expression, all yielding 
essentially identical first-order results for a central 
potential. All have different starting points and inde
pendent developments. 

It is the purpose of this paper to clarify the con
nections among the various approaches, trace the 
similarities and point out the differences. The impli
cations as to the choice among conflicting expansions 
to higher order are elucidated. While a complete review 
of the subject has not been attempted, a certain amount 
of exposition of previously published techniques has 
been necessary. This occurs primarily where the 
meaning of the technique has been reinterpreted, par
ticularly as to range of validity and as to expectations 

on the convergence of iterative procedures (in this 
respect, some earlier misconceptions are corrected). 

Since the aim of an approximation is to attain 
reasonable numerical values with a limited effort, an 
extensive computational program has been carried out 
to ascertain how well the several variants of approxi
mation reproduce exact results when carried through 
second order (higher for scattering lengths). Results are 
given explicitly for the 1=0 phase shifts for square wells 
and barriers; other cases are alluded to. The quoted 
numerical work is for a range of parameters for which 
the Born approximation fails. 

As the title states, this paper is concerned with phase 
shifts, hence with individual terms in a partial-wave 
decomposition. Such a decomposition is ordinarily 
useful when only a small number of partial waves 
contribute significantly to the scattering. In practice, 
this means in classical terms that the scatterer is 
smaller than the wavelength or, alternatively, relatively 
low energy. The question of how accurate a cross section 
is obtained on summing the phase shifts, which becomes 
crucial as the energy increases, has been left unanswered 
because the scope of computation required was im
practical for the author. There is no discussion of the 
quite different techniques that are geared to the high-
energy region, such as extensions of the WKB method3,4 

and use of a transformation function.5 

Over the past few months, several schemes have 
appeared for transforming the Born series to improve 
its convergence (or cause it to converge where it did 
not).6-8 The motivation is to extend the applicability 
of perturbation techniques in field theory. While these 
schemes are usable in principle for potential scattering, 
the effort required for a specified return is considerably 
greater than for the non-Born techniques discussed in 
the present paper. This comment is not intended to 
depreciate the works in question; it merely points up 
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that, while potential scattering has been a convenient momentum. His transformation is readily generalized 
proving ground for field theory, the optimum strategy to arbitrary /: When the change in the kernel at r'=r 
need not be the same in both areas. is put in explicitly, Eq. (1) can be rewritten as 

II. CENTRAL POTENTIALS 

A. Exact Formulas L J ° 
*i{r) = ji{kAil-ik f rfWU{rr)^l{r,)hl{kr,)\ 

For a central potential, the partial wave satisfies the , .T fr ,n i ,TT/ ,. , ,x_ . /7 N, /T ,N 

integral equation +*kJQ
 rHr>UWiCOD'i(*r)*i(*0 

-hiWjiW]. (7) 

J J The coefficient of the Bessel function in the first term 
y.^i{rf)ji{kr<^)hi{kr>). (1) is a pure number. If a new function ui(r) is defined by 

factoring this coefficient out of the wave function (and 
(The notation, reasonably standard, is as given by the Hankel function in the second term is split into a 
Brysk,9 except that the partial-wave function is used Bessel function and a Neumann function), uh(r) satisfies 
here rather than just its scattered part ; the superscript a Volterra equation involving only real quantities 
(1) has been omitted from the spherical Hankel function 
of the first kind to avoid cumbersomeness further down; /"" 
and the potential range is denoted by b) Expansion of «M = ji(ir)-hJ r Hr U(r )Ul(r )tji(kr)yi(kr ) 
the scattering amplitude ° -yi(kr)ji(kr')~]. (8) 

/<*) = £ . (2H- l )^ (cos0) (2) I n t e r m s of Ui{fX Eq_ ( 3 ) b e c o m e s 

yields the partial-wave amplitudes w 

A,= -k[ r'WUWjiikr'^iir')/ 
Al=-(-iyk r'Hr'Uir'^iir')]^'). (3) J° 

J 0 r- -00 - 1 

c w r^ „ • ui •* t i - xll+ikl rfWU(/)hl(kr/)ul(r
,)\ (9) 

Solution of the scattering problem consists of solving [_ J J 
the Fredholm equation £Eq. (1)] with its kernel whose 
form changes at r' = r, the scattering amplitude being ^ ( m o r e attractively), the phase shift is given by 
obtained by going to the asymptotic limit of ^Ti(r) or 
(in effect iterating an approximate wave function) by fM / 
substitution into Eq. (3). The fact that ¥j(r) and the t&nd^-k r*WU(/)jlik/fair*)/ 
equations are complex necessitates special precautions ° 
in any approximate scheme to preserve the unitarity 
of the S matrix. The difficulty is commonly resolved X 
by resorting to the choice of differently normalized 

. , The new system £Eqs. (8) and (10)] has an obvious 
4>i(r)=* exp(-*fc)*iW , (4) s u p e r i o r i t y o v e r t h e o l d CEqs< ( 1 ) a n d ( 3 ) j o r ( 5 ) a n d 

which turns Eqs (1) and (3) into ( ^ f° r exact numerical solution. I t also turns out to 
be a very fruitful starting point for the analysis of 
approximation techniques. 

J a 
1-k r'Hr'V{y)yl{kr,)ul{r') (10) 

J 0 

sind^-k rf2dr'U{r,)4>l{r,)jl{krf)1 (5) 

B. Perturbation Expansions 

<hl(r) = co$&iji(kr)+k I rf2dr'U(rr) ^ e Born approximation amounts in essence to a 
J 0 perturbation expansion based on Eq. (1), i.e., to setting 

X4>iV)jiU*<)yiQr>)- (6) U=\U0, ¥ ,=E»X n *i ( n ) , Al=j:n\-Al^ (11) 

This makes everything real, and thereby ensures that so that 
unitarity will be preserved in the further calculations. /•<*> 

This familiar set of equations has been elegantly Aiw = —kj r,Hr,U{r,)j${krf), e t c . - - - . (12) 
modified by Drukarev10 for the case of zero angular Jo 

9 H. Brysk, Phys. Rev. 126, 1589 (1962). The Fredholm determinantal solution, on the other 
10 G. F. Drukarev, Zh. Eksperim* i Teor. Fiz. 25, 139 (1953). hand, leads to a ratio of power series in X. Using the 
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Schwinger formalism, Falk11 has explicitly evaluated 
this solution to terms of first order in X, obtaining 

t anS^ = - * f r'2dr'U(r')ji2(kr')/ 

M r'WUWjtik^yiikr' '»] (13) 

A perturbation expansion for uiif) has been carried 
by Drukarev,12 leading to a ratio of power series in X 
upon substitution into Eq. (10). To lowest order, Eq. 
(13) results. It has been proven by Brysk13 that the 
Drukarev expansion is identical with the Fredholm 
solution. Thus, an iterative (successive approximation) 
solution of the Volterra equation £Eq. (8)] generates 
the Fredholm determinants, just as an iterative solution 
of the partial-wave equation £Eq. (1)] generates the 
Born series. In other words, the effort normally ex
pended on the Born approximation suffices to obtain 
the Fredholm solution with the Drukarev 
transformation. 

C. Other Approximations 

So far, Eq. (13) has been obtained in a weak-potential 
approximation (i.e., by discarding in the expansion all 
terms involving the potential to a power greater than 
one). It also emerges under other circumstances, not 
necessarily amenable to a perturbation expansion. For 
instance, Eq. (13) yields the exact solution for a 
potential U(r) = U08(r—a), as is readily verified by 
solving Eq. (8) with the 8 function and substituting 
the answer into Eq. (10). 

Equation (13) has been obtained by Brysk9 from a 
different approximation. The starting point is Eq. (1), 
which is rewritten as the sum of terms involving an 
infinite and an indefinite integral much like Eq. (7) 
except that, instead of splitting off an integral from 0 
to r, an integral from r to oo is now split off. The 
approximation consists of discarding the indefinite 
integral (the "tail"). This is in the nature of a short-
range approximation. It can be viewed equivalently as 
an approximation of the Green's function in Eq. (1): 

-ikji{kr^)hi(kr^) ~ —ikji(krf)hi(kr). (14) 

The remaining expression is a linear combination of a 
Bessel function and a Hankel function (since the infinite 
integral is a number). It can be written as 

*i(r) = ilji(kr) +il^A Mkr) , (15) 

where Ai is the partial wave amplitude as defined by 
Eq. (2). The value of A i is obtained by substituting 
Eq. (15) into Eq. (3). Again Eq. (13) emerges. 

11 D. S. Falk, Phys. Rev. 129, 2340 (1963). 
12 G. F. Drukarev, Vestnik Leningrad Univ. 22, 65 (1958). 
13 H. Brysk, J. Math. Phys. 4; 1536 (1963). 

The relation to the Drukarev formalism is most 
easily seen by inserting the approximation into Eq. (8) 
by raising the limit on the integral in the latter to 
infinity. Using the exact Eq. (10), this can be recast as 

Ui(r) • W SWU^uiWy^kr1 *>] 
X[ji{kr)-tw8iyi{~kr)~]. (16) 

If Eq. (16) is substituted into the numerator of Eq. 
(10) and the resultant equation is solved for tan5;, Eq. 
(13) results again. Thus, while the same phase shift is 
obtained as in the lowest order of the Drukarev ex
pansion, it is obtained with a different wave function. 

If the potential vanishes for r>a, then Eq. (15) gives 
the exact wave function for the region r>a (if A\ is 
exact). The approximation thus amounts to using the 
external wave function everywhere when computing A \ 
from Eq. (3), or in effect performing an iteration on 
the wave equation with the external wave function as 
trial function. Swan14 starts nearly from the last point, 
although with a different outlook. He uses the alter
native normalization of the partial wave functions given 
by Eq. (4). The essential features of the internal wave 
function (Swan argues) are that it should join smoothly 
to the external one and that it should behave as rl near 
the origin. On the other hand, if Eq. (15) were extended 
to the origin, the first term would behave as rl but the 
second one as r~l~\ In principle then, it should be 
possible to express the wave function everywhere by 

<fo(r) = cosbiji(kr) -sin8igi(r)yi(kr), (17) 

where gi(r) is a smooth function which becomes 1 at 
the cutoff (or more generally goes to 1 as r —-» oo) and 
which behaves as rn+l as r—>0. [It should be noted 
that this is not equivalent to multiplying the second 
term in Eq. (15) by a similar factor]. Substitution of 
Eq. (17) into Eq. (5) leads to 

tzn&i=-k[ r'WU^jfikr')/ 

xll-kf rfWU(rf)gl(r
f)ji(krf)yi(krf)], (18) 

which differs from Eq. (13) only in the factor gi(r') in 
the denominator. The essence of the Swan approxi
mation consists of guessing at the unknown function 
gi(r) subject to the general conditions just enumerated. 
The primary choice is 

gi(r) = IC(2/+3) ( r /*)»m- (2/+1) (r/U)*"*], 
r<R (19) 

= 1, r>R 

14 P. Swan, Nucl. Phys. 18, 245 (1960). 
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where R is the cutoff of the potential. There is usually 
some arbitrariness in the choice of precisely where to 
truncate the potential, and Swan views this as sup
plying an adjustable parameter to be exploited to fit 
an additional bit of information. His own preference 
is to match the scattering length 

a= — lim k~l tando, (20) 

a quantity which is easier to obtain accurately (for 
instance, it can be bounded by a variational principle15). 
For longer tailed potentials, Swan resorts to more 
elaborate form factors.16,17 

The formally sound procedure for achieving a 
systematic improvement in approximation lies in 
carrying out the Fredholm determinantal solution 
(or, equivalently and more simply, iterating the 
Drukarev expansion) since ultimately the expansion 
will converge to the exact answer. I t does not follow 
a priori that this is the optimum procedure when one 
stops in low order (especially for strong potentials), as 
formal convergence does not imply anything as to the 
early rate of convergence. A valid alternative to the 
second-order Fredholm result might be a variational 
calculation using as trial function the Born wave 
function18 or (more elaborately) the Brysk or Swan 
wave functions. Another plausible course is outlined 
by Swan19: If Eq. (6) is schematized by the operator 
relation 

0 z = / i + G ^ z , (21) 

continued iteration yields 

4>i=fi+G*l>i=fi+Gifi+G?4>i=fi+Gifi 
+ G t f r h G t o = • • •. (22) 

Neglect of the last term on the right leads to the Born 
series. The Swan iteration consists of substituting for 
(j>i on both sides of Eq. (22) the Swan wave function 
£Eq. (17)] and solving for the parameter tanSj. If the 
last term on the right ultimately dwindles, the Born 
series and the Swan iteration will approach the same 
limit. On this basis, Swan suggests that he has obtained 
in effect a reordering of the Born series with an im
proved early rate of convergence. There are no formal 
results on convergence beyond this. In some particular 
instances, the Swan iteration appears to converge to 
the exact answer while the Born series oscillates; thus 
the two remain both numerically and conceptually 
apart. In other cases, both oscillate. 

D . Numerical Results 

In this section the focus shifts from formal relations 
to numbers. The purpose is to ascertain by example 

15 L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959). 
16 P. Swan, Nucl. Phys. 21, 233 (1960). 
17 P. Swan, Australian J. Phys. 16, 177 (1963). 
18 J. Sokoloff and M. Hamermesh, Ann. Phys. (N. Y.) 2, 157 

(1957). 
19 P. Swan, Nucl. Phys. 27, 620 (1961). 

just how effective the approximation technique is: How 
dependable are the first- and second-order results? What 
is the optimum strategy beyond first order, which 
second order approach is preferable? How much is 
gained by going to a moderately higher order? How 
high an order does it take to get an accurate answer? In 
order for the numerical exploration to be instructive, 
it is necessary to push beyond the comfortable range of 
parameters to borderline cases—to find out where the 
borderline is. The numerical results quoted are for 
parameters for which the Born approximation fails 
completely and the more elaborate techniques are 
overextended; this should not obscure the successes 
under less demanding conditions. 

The first set of computations is for the scattering 
lengths in neutron-proton scattering as obtained by 
the various iterative schemes up to terms of fourth 
order. The scattering length is a rather sensitive func
tion and the potential is of fair strength. A comparison 
is thus obtained of the rate of convergence of the 
alternative approaches when the first order is not 
adequate. 

The second set of computations is of / = 0 phase 
shifts for square wells and barriers, carried through 
second order in the different versions. Here the em
phasis is on discovering the dependence of the accuracy 
on the range and on the magnitude of the potential 
when the calculation is restricted to first or second order, 
and also on comparing the performance of the second-
order variants. In essence, the questions met are: When 
can a reasonable answer be obtained with moderate 
effort? What is the best way to do it? 

(1) Scattering Lengths 

The scattering length has intrinsic physical interest 
as characterization of threshold behavior. For present 
purposes it is a rather convenient quantity because in 
the low-& limit the approximation integrals for the 
simplest potentials become elementary (though col
lectively tedious) so that it is possible to push on to 
higher orders analytically. I t should be noted that the 
scattering length does not represent a weak-potential 
limit: while kb tends to zero, Uo/k2 tends to infinity, 
and the product Uob2 is kept fixed. Swan's set of 
neutron-proton potentials are quite suitable for a test 
of approximations. The potential strength is moderate, 
too great for the Born approximation yet weak enough 
that iterative schemes have a chance of success; and 
the scattering length is a very sensitive quantity, as is 
evident from its change of sign as well as magnitude 
for the not very drastic difference in well parameters 
between the singlet and triplet states. 

For the square-well potentials, Swan has computed 
the scattering lengths to third order in the Born series 
and in his own.19 The corresponding Fredholm deter
minantal solution (Drukarev expansion) has now been 
carried out. In addition, the Swan wave function has 
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TABLE I. Scattering length (in F) for a square well of radius 
2.0048F and depth 0.87704F~2 (Swan's neutron-proton triplet 
state). Entries in the second row are successive approximations 
obtained from the Born series, in the third row from the Swan 
series, in the fourth row from the Fredholm determinantal solu
tion, in the fifth and sixth rows from Schwinger variational calcu
lations based on the Swan and Brysk wave functions. 

Exact 5.380 5.380 5.380 5.380 
Born -2.355 -5.676 -10.416 -17.185 
Swan 5.745 5.611 5.559 5.534 
Fredholm 3.089 6.231 5.333 5.378 
var. Swan 5.377 
var. Brysk 5.864 

been used in a Schwinger variational calculation. The 
results are given for the triplet state in Table I. The 
pattern is similar for the singlet state. The short
comings of the Born series in this case need no further 
comment. The Swan approximation starts out fairly 
close, and converges to the exact answer in what might 
be described as an "overdamped" manner. The Fred
holm solution is poor in first order, but ultimately 
overtakes the Swan series in convergence. The vari
ational results are remarkably good; the agreement is 
even more striking when the calculation is extended to 
terms of order k2: The correct effective range is obtained 
to three significant figures for both states. This demon
strates that Swan's choice for the form of the wave 
function is very apt in the particular instance. In fact, 
the point of the variational calculation was to explore 
this question. For the exclusive purpose of determining 
accurately the scattering length, the same computa
tional effort would have been more profitable expended 
on a multiparameter Spruch-Rosenberg15 calculation, 
with the overwhelming advantage of known dependa
bility. (To complete the comparison of wave functions, 
the scattering length obtained from a variational calcu
lation based on the unperturbed wave function is 
exactly the same as the first-order Swan result, and a 
variational calculation based on the Brysk wave func
tion gives closely similar answers. Incidentally, Wein
berg's prescription for the scattering length,7 which 
requires about the same effort as a variational calcu
lation, also yields the first-order Swan result.) 

While the square-well potential is the tidiest for 
computation, its sharp cutoff makes it atypical. A 
simple continuous potential with a tail is provided by 
the exponential. The above set of scattering length 
calculations have been repeated for exponential wells 
with Swan's parameters. To save space, the full 
numerical results are not quoted. Again, the Fredholm 
solution starts off poorly but zeros in quickly beyond 
the second order, though not as fast as for the square 
well (the average error is 7% in fourth order as against 
0.1% before); the poorer convergence is presumably 
chargeable to the tail. Calculations with Swan's poly
nomial form factor £Eq. (19)] show an extreme sensi-

I 2 3 4 5 6 7 8910 20 30 405060 80100 

W/k2 

FIG. 1. 5-wave phase shifts for square wells (upper set of 
curves) and barriers (lower set of curves) with range kb = 1 and 
varying potential depths or heights. The curves represent the 
exact solution (solid line), the first-order Swan approximation 
( ), the Fredholm determinantal solution in first order 
( ) and second order ( ), and a Schwinger vari
ational calculation based on the Brysk wave function ( ). 
(From considerations of clarity of display, the second-order 
Fredholm is not shown past its discontinuous jump.) 

tivity to the choice of cutoff radius (affecting even the 
sign of the first-order singlet scattering length). Con
vergence of the Swan iteration is poor when the first-
order result is not close; the variational calculation 
does less well than the second-order result. 

(2) S-Wave Phase Shifts for Square Wells 
and Barriers 

For a set of neutron-proton scattering potentials 
adjusted to fit the experimental scattering length and 
effective range for the singlet and triplet states (corre
sponding to a radius of about 2 F and a well depth of 
about 1/2F-2), Swan14,16 has computed both exact 
values of the phase shifts and his approximation to 
them for energies up to some 200 MeV (kb<4) for 
square, Gaussian, exponential, and Yukawa wells for 
50 and as many other phase shifts as are competitive 
(up to do). For the 5 wave the results are good to 2-3% 
on the average, a remarkable success. Without the form 
factor, the errors are several times larger, and com
parable results can only be obtained in higher order. 
Judging by the rapid deterioration in variational calcu
lations based on the Swan wave functions as k increases, 
the phase shifts are much better than the wave 
functions. 

From the more general point of view of studying 
scattering approximations, it is obviously desirable to 
examine a much wider selection of potential radii and 
depths (or heights). In the natural set of dimensionless 

X(D a,™ l ( 4 ) 141 
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FIG. 2. Same as Fig. 1 except for kb — 2. 

units, this means mapping out the phase shifts as kb 
and Uo/k2 are varied (with U0 either positive or nega
tive). For a full survey of resources through second 
order, exact 1=0 phase shifts have been compared with 
the first-order Fredholm (or Drukarev or Brysk) and 
Swan solutions, the second-order Fredholm solution, 
second-order Swan-type iterations on Brysk and Swan, 
and Schwinger variational calculations with the un
perturbed wave function and with the Brysk and Swan 
wave functions. The second-order Swan is useful in 
improving the already good first order for very small 
kb, but not remarkable otherwise. Generally, the Swan 
iterations show no consistent improvement over the 
first order for stronger potentials. The same comment 
applies to the variational calculation based on the Swan 
wave function. The variational calculation with the 
unperturbed wave function is numerically close to the 
first-order Swan for smaller kb; it is a bit better for 
positive potentials, a bit worse for negative. The re
maining variants are exhibited for kb= 1, 2, and T as a 
function of the potential in Figs. 1-3. Brysk9 has 
graphed his first-order results for £6 = 0.1, 0.5, 1.0, and 
2.0. For kb = 0.1 and 0.5, these are already quite good; 
on the scale of the curves, the deviation of the Swan 
and higher order results from the exact would barely 
be noticeable (except for the resonance at the upper 
end of the 0.5 curve). 

Even at a superficial glance, the rapid weakening of 
calculational resources as kb increases is striking. This 
is the more damaging in that greater precision is 
required just then because the phase shifts are larger 

and different partial waves interfere. The effect is 
expected for the Swan approximation, which is essen
tially a small kb rather than a weak-potential approxi
mation, but it is stronger than anticipated on formal 
grounds for the Fredholm solution to low order. 

The simplest approximation considered is the first-
order Fredholm (or Drukarev or Brysk). The effort 
required is about twice what the Born approximation 
takes (two comparable integrals instead of one) and 
the precision is overwhelmingly superior even for very 
small phase shifts (say, 0.01), while the range of 
applicability is vastly greater. In the range of parame
ters of this section, this is the approximation to use if 
10 to 30% quality results are satisfactory (getting 
worse with larger kb), short of the resonances. 

Next in complexity is the Swan approximation. An 
exact determination of the scattering length is nor
mally required, and the form factor renders the com
putations more tedious. Short of resonances, this 
approximation is good to a few percent for small kb 
regardless of potential strength. As kb increases, the 
form factor loses its effectiveness. In fact, for large kb 
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the variational calculations would seem to indicate 
that the shape of the wave functions is better without 
it. The Swan approximation does better for negative 
than positive potentials of the same strength (again 
short of resonances). Even for kb=w, it still holds up 
for the neutron-proton potential (about Z7o= — 0.5&2) 
to within 1%, as against 30% for a comparable positive 
potential, but fails rapidly as the potential strength is 
increased. For small kb, the Swan approximation can 
be viewed as a very sophisticated interpolation formula: 
For small Uo9 it yields the correct Born limit. For large 
Uo, adjustment to the exact scattering length via the 
form factor amounts to fixing the asymptotic limit 
correctly. A reasonably shaped wave function links the 
two limits. 

The second-order Fredholm (or Drukarev) solution 
is more complicated in that it involves double integrals. 
(On the other hand, as against the Swan approximation, 
it does not require the exact evaluation of the scattering 
length nor carry along the form factor.) For the larger 
values of kb, it is markedly better than the Swan 
approximation for positive potentials. (For kb = 2 it 
remains within an 8% error margin, four times better 
than Swan. For kb = ir, it survives to a significantly 
higher UQ.) For negative potentials, it does give one 
resonance, but for appreciably too shallow a well (for 
smaller kb, there is an abrupt drop in the phase shift 
followed by a discontinuous jump); beyond that point, 
the mistiming is too large for dependable phase shifts 
to be obtained, though at least there is a warning of 
the approach of the true resonance. 

Most consistently successful, but also more work, is 
the Schwinger variational calculation based on the 
Brysk wave function. Through kb=2, it tends to be 
just barely better for positive potentials and for nega
tive potentials prior to the first resonance. It is clearly 
superior for the first resonance, which it reproduces 
with a lag but much more nearly correct than the 
second-order Fredholm solution. Higher resonances are 
ignored. The most clear-cut success is for kb~ir where 
phase shifts for positive potentials and for negative 
potentials through the first resonance are given with 
reasonable accuracy while all other approximations fail 
at very low Z7o. 

III. NONCENTRAL POTENTIALS 

The exact spherical harmonic decomposition for an 
arbitrary noncentral potential is derived by Brysk.9 

With the wave function and the potential both ex
panded in terms of spherical harmonics, the partial 
waves are coupled: 

^im(r) = 8m^lji(kr)-ik £ (-)m~s(2p+l) 
nps 

XC(pln;O0)C(pln;m-s, -m) 

xf r*drfjl(kr<dk,(kr>)*..(r,)Upm-t(r
r), (23) 

J 0 

where the C's are Clebsch-Gordan coefficients. Brysk 
applies his Green's function approximation [Eq. (14)] 
to obtain for the scattering coefficients A\m the set of 
coupled linear equations 

Atm= -k ZnP in-l(2p+l)C(pln;00) 

X C (pin ;m,—m) I rHrji (kr) j n (kr) Upm (r) 

+i Us AnsC(pln;m—s, —m) 

xj rHrjl(kr)hn(kr)U^s(r)\ (24) 

A generalization of the Drukarev transformation for 
noncentral potentials is possible, though not as simple 
as for central potentials. Just as with Eq. (1), Eq. (23) 
can be rewritten as the Bessel function times a numerical 
coefficient Nim which includes infinite integrals, plus an 
integral from 0 to r. Because of the coupling of the 
partial waves, however, a simple factorization no 
longer works. Taking a cue from Drukarev's treatment 
of electron-atom collisions,10 the transformation is 
achieved by setting 

^»( f )=-E«^o^z* o / ? W. (25) 

This substitution turns both sides of Eq. (23) into sums 
over a and (3 every term of which contains Nap as a 
factor. A solution of the equation can be obtained by 
requiring that the cofactor of each Nap should vanish, 
leading to the system of coupled Volterra equations 

Uim
aP(r) = 8al8pmji(kr)-k E n , 8 (-)m~*(2p+l) 

XC(pln; 00)C(pln;m-s9 -m) 

Jo 

XUi(kr)yl(kr')-yl(kr)jl(kr')l. (26) 

Once the Volterra equations are solved and the infinite 
integrals involving the Uim

aP(r)'s are carried out, there 
remains a system of linear algebraic equations for the 

A perturbation expansion can be applied to the 
extended Drukarev transformation, at least in prin
ciple. To lowest order, only the first term on the right-
hand side of Eq. (26) is retained. There results an 
explicit system of linear algebraic equations 

Nim=8moil~-ikY,nPS (-)m~s(2p+l) 

XC(pln',00)C(pln;m-s, -m)Nns 

X rHrhl(kr)jn(kr)U pm—s 

(r). (27) 

Jo 

The scattering coefficients are now obtained by sub-
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stituting the solution to Eq. (27) into 

Alm=-(-iykZnPS (~y(2p+i) 

XC(pnl;00)C(pnl',m-s, -m)Nns 

/•00 

X fWjl(kr)jn(kr)UPm-.(r). (28) 
Jo 

For a noncentral potential, Brysk's answer from the 
Green's function approximation [Eq. (24)3 a n d the 
Drukarev expansion result [Eqs. (27) and (28)] differ 
even in lowest order. The Fredholm solution consists 
in forming the determinantal integrals without first 
expanding the potential into spherical harmonics1 and 

is clearly distinct from either of the above. Thus, the 
mutual agreement is limited to central potentials, and 
there is no underlying equivalence: Different ways of 
thought lead to different results in general, though 
there may be coincidence in a restricted range. 
Numerical comparisons would be interesting, but a 
meaningful analysis would require a sizeable digital 
computer effort (which is not feasible for the author). 
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