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The exact equation of state, two-time correlation function, and linear response function, are calculated in 
the limit of infinite N for a classical i^-spin system with a ferromagnetic phase transition, in a particular non­
uniform magnetic field. The correlation function can be analytically continued in temperature (or magnetic-
field strength) from the nonferromagnetic to the ferromagnetic region of the T-H plane; the result of such 
continuation is not, however, the correlation function for the ferromagnetic region, but a function which 
grows exponentially in time. The frequency-dependent linear response function has a pole at zero frequency 
throughout the ferromagnetic region due to a broken symmetry; the corresponding function in the non-
ferromagnetic region developes a pole at zero frequency as the ferromagnetic region is approached, but when 
the function is continued in temperature (or field strength) into the ferromagnetic region, the pole detaches 
itself from the origin and moves up into the complex frequency plane, signifying an exponential growth in 
time of the linear response. The purpose of the model is to demonstrate that this kind of behavior does 
not contradict any general structural properties of equilibrium thermodynamic correlation or response 
functions. The possible general significance of such behavior for a theory of metastable states is discussed. 

I. INTRODUCTION 

IN this paper the exact equation of state, two-time 
correlation functions, and linear response functions 

are calculated, in the limit of infinite N, for a simple 
iV-particle system which undergoes a phase transition. 
The model establishes the possibility that, in a system 
capable of a phase transition, instabilities—i.e., ex­
ponentially growing time dependence—can be asso­
ciated with exact equilibrium correlation and response 
functions. 

This conclusion will be put in a mathematically 
precise way in Sec. II, but I would first like to give a 
less formal description of the result, since it is a simple 
one which might be obscured by the number of defini­
tions required to state it with care. The system we will 
examine has the following properties: 

(a) It possesses a phase transition; i.e., in the limit 
as N —»oo, some derivatives of the free energy become 
discontinuous at certain values of the temperature (and 
other parameters necessary to determine the thermo­
dynamic state). (We call such values of the thermo­
dynamic parameters transition points.) 

(b) The equilibrium two-time correlation functions 
and linear response functions, considered for fixed time 
as a function of the thermodynamic parameters, are, 
in the limit of infinite N, analytic at all real values of 
the parameters except the transition points. 

(c) The unique result of analytically continuing a 
correlation or linear response function in a thermo­
dynamic parameter through a transition point, is not 
the equilibrium function on the other side of the tran­
sition point; instead, such a procedure leads to a func­
tion which grows exponentially in time. 

It is the last property that interests us. Since the 
model is strikingly unlike anything to be found in 
nature, this result would appear to be of little conse­

quence. Its importance lies in the fact that it establishes 
the mathematical possibility of such behavior. For al­
though there is no reason to reject a priori the occur­
rence of instabilities in analytic continuations of 
correlation or response functions through transition 
points, when found in approximate calculations, they 
have generally been blamed on the inadequacy of the 
approximation.1'2 In a sense this is correct, since an 
unstable response function signifies that the approxi­
mation may be giving the response of a state that is 
not the true equilibrium state. On the other hand, the 
possibility has not, to my knowledge, been considered, 
that the dynamically unstable response or correlation 
functions associated with this thermodynamically un­
stable (or possibly metastable) state, may be found 
from the exact equilibrium functions by analytic con­
tinuation. This is probably due to the valid belief that 
an exact correlation function describes only thermo­
dynamically stable states with stable linear response.3 

This view obscures but does not prohibit the possibility 
that dynamic instabilities may nevertheless be implicit 
in the exact functions, as described in (c). 

This paper might therefore be regarded as an exist­
ence proof. We shall produce a Hamiltonian which 
leads to exact equations of state and two-time functions 
having properties (a)-(c), thereby demonstrating that 
the association of exponential growth with such func­
tions is not in contradiction to any of their general 
structural properties. 

There are two kinds of reasons for suspecting that 
this kind of behavior may be a general feature of phase 
transitions. There is first the experience gained through 
approximate calculations. We mention three examples: 

(1) If the pair correlation function is calculated (in 
the ladder approximation) for a Fermion system which 

* Supported in part by the Office of Naval Research of the 
U. S. Navy. 

1 L. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 (1961). 
2 N. D. Mermin, Ann. Phys. (N. Y.) 18, 421 and 454 (1962). 
3 And also because one is usually not interested in the non-

equilibrium states. 
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has a superconducting phase transition (in the BCS 
approximation), the analytic continuation of its Fourier 
transform from above to below the transition tempera­
ture, has poles with nonvanishing imaginary parts on 
the physical sheet, i.e., the analytic continuation of the 
time dependent function grows exponentially.1 

(2) In a crude random-phase approximation theory 
of the classical gas-liquid transition, it is found that 
the analytic continuation in volume (for fixed tempera­
ture) of the time-dependent density autocorrelation 
function through the transition point into the metas-
table region, develops an exponential time dependence 
as the metastable region is left and the unstable region 
entered.2 

(3) Consider as a very crude model of an electron 
gas, a set of spin-J Fermions with very short-range 
repulsive interactions. In the Hartree-Fock approxi­
mation such a gas is ferromagnetic. If time-dependent 
spin autocorrelation functions are calculated in a 
linearized time-dependent Hartree-Fock approximation, 
it is found that the imaginary part of the spin-wave 
poles found in the nonferromagnetic region, moves, as 
one analytically continues in temperature through a 
transition point, from the unphysical sheet in the lower 
half-plane to the physical sheet in the upper half-plane. 
This means that the nonferromagnetic correlation 
function, when continued into the ferromagnetic region, 
grows exponentially in time.4 

In all three cases the approximate correlation func­
tions have properties (a)-(c). It is possible to prove in 
each case that at values of the parameters where one 
finds unstable response functions, there must exist 
additional solutions to the same (approximate) equa­
tions which are stable.5-7 One may therefore always 
reject unstable functions in favor of stable ones, without 
going beyond the original approximation. Nevertheless 
the unstable functions are implicit in the stable ones, 
can be recovered by analytic continuation in the 
thermodynamic parameters, and, within the approxi­
mation, describe the response of a definite nonequi-
librium state. 

A second reason for establishing the possibility of 
property (c) is more speculative. It is generally held 
that the analytic continuation (or some smooth 
extrapolation) of the equation of state through a 
transition point, although it no longer describes the 
stable equilibrium state, may still describe a physical 
nonequilibrium state of the system. There seems to be 
no fundamental theoretical basis for this belief, but it 

4 The static Hartree-Fock stability of this model is considered 
at zero temperature by D. J. Thouless, The Quantum Mechanics 
of Many Body Systems (Academic Press Inc., New York, 1961). 
I know of no discussions in the literature of the spin-wave stability 
at nonzero temperatures. 

«D. J. Thouless, Nucl. Phys. 22, 78 (1961). 
6 D . J. Thouless, Ann. Phys. (N. Y.) 10, 553 (1960). 
»N. D. Mermin, Ann. Phys. (N. Y.) 21, 99 (1963). 

is convincingly supported experimentally.8 If one 
accepts it, one may ask whether analytic continuations 
through transition points of more complicated proper­
ties of the equilibrium state, will describe the corre­
sponding properties of this nonequilibrium state. If 
this is so, then a linear response function for the 
equilibrium state, provided it describes the response 
to a perturbation capable of destroying the non-
equilibrium state, should, when continued through a 
transition point, develop an unbounded growth in time. 

No answers will be given here to the difficult question 
of whether analytic continuations through transition 
points do, in general, describe physical nonequilibrium 
states, or to the question of whether realistic systems 
have property (c). What I wish to offer is a first step 
toward the consideration of these problems: a model 
that establishes the consistency of exponential growth 
in analytically continued two-time functions, and which 
is suggestive of further problems that will have to be 
faced in deciding whether such analytic continuations 
are of more general significance. 

II. THE MODEL 

The model consists of a set of N spins (N even), half 
of which are in a magnetic field H directed along the 
positive z axis, and the other half, in a field — H. Their 
interaction energy is to be negative and proportional 
to the square of the total spin. Thus the Hamiltonian is9 

3 C = - I ; H . S 4 - £ H . S * - — ( E s O 2 , (2.1) 

and the equations of motion, 

g N 

s*= T H x s* ( £ ' sj) x s{, 
N y-i 

( , ) . (2.2) 

(The interaction strength must be proportional to 1/N 
in order that the mean energy per spin be independent 
of N, as N—>oo.) This is just the Hamiltonian for a 
Weiss-model ferromagnet in a particular nonuniform 
magnetic field.10 The customary way of finding its 
equilibrium behavior, via a self-consistent molecular 
field, is exact only in the limit of infinite N\ since we 
shall need to study the behavior for large but finite N, 
a more thorough analysis is necessary. 

8 An obvious example of this is an equation of state of the 
van der Waals type, which can describe a metastable supercooled 
gas. The equilibrium equation of state, obtained from the van der 
Waals equation by applying the Maxwell construction, makes no 
reference to the metastable states, but they can be recovered from 
it by extrapolation through a transition point. 

9 We measure H in units such that the energy of a spin s in the 
magnetic field is just — H*s. 

10 The Weiss model in a uniform magnetic field does not lead to 
growing correlation and response functions. The explanation for 
this is mentioned in Sec. VI, part E. 
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An understanding of the relevant (for our purposes) 
properties of the system is made much easier by taking 
the spins to be classical variables. Thus the s* are 
vectors of fixed magnitude <r, and orientation deter­
mined by their initial values and the equations of 
motion. [The fixed magnitude is, of course, consistent 
with (2.2).] We take the spin system to be in thermal 
equilibrium, so the mean value of any function F(sl) 
is given by the canonical average 

< W > = f fl dat exp[-/33C(s*)]F(8*)/ 

/

N 

n ^ e x p [ - / 3 3 C ( s * ) ] ; (2.3) 

£ = 1/KT, and the integrations are over all orientations 
of each spin. The time-dependent spin autocorrelation 
function is defined to be 

g * ( 0 = lim 7V((s*({s^},0-s0sJ). (2.4) 
N-+00 

Several remarks should be made about (2.4): 
(a) s*({s^},^) is the ith spin at time /, given that at 

time zero the initial spin values were {sk}. We have 
written it as an explicit function of the initial values to 
emphasize that it is these initial values that are being 
averaged over in (2.4). Unless there is a particular 
reason to emphasize this dependence, we shall use the 
shorter form, s*(/). 

(b) We shall see that the factor N is necessary to 
give a nonzero result. I t also arises naturally if we 
consider not the correlation function, but the linear 
response function. 

(c) A more conventional definition would have 
replaced the average in (2.4) by 

<s^)s>'>-<s<><s>). (2.5) 

However the two differ only by a time-independent 
term which can be calculated from the equilibrium 
thermodynamics. In an exact calculation (2.4) seems 
easier to work with. 

(d) As defined in (2.4) each g*> is a 3X3 tensor. We 
will be interested only in particular components, e.g., 
Qxyu—but it seems desirable to use the tensorial form 
whenever possible to keep indices to a minimum. 

(e) Qij depends on which group of spins—those in 
the field H or those in the field — H—the ith and jth 
spins belong to, but not on the particular choice of 
spins within each group. If we define s(1) to be the 
contribution to the mean spin per particle from all 
spins in the first group, 

1 hN 
8 « = - Z s V (2.6) 

Ni-i 
and similarly, 

1 N 
S(2) = _ £ s*, (2.7) 

then we need only deal with 

G«*(0=Hm<(8<«>(/)-8<«>)s<*>>, a, 7 - 1 , 2 , (2.8) 
iV-*co 

in terms of which 

g*(0 = 4Gn(0 , l < i , jy <±N, etc. (2.9) 

We would also like to calculate the linear response 
functions. If the system, initially in thermal equilibrium, 
is subsequently perturbed by a weak magnetic field 
h*(/) (which in general may vary from spin to spin), 
then to lowest order in h the change in (s*) from its 
equilibrium value will have the form 

«<8<(/)>= / dt' £ L^t-O'W) • (2.10) 

I t is a consequence of the classical fluctuation dissi­
pation theorem11 that the linear response tensor L is 
given by 

Li>Xt-t') = t3(d/dt,)(si(t)si(0). (2.11) 

I t follows that the lowest order changes in (s(1)) or 
(s(2)) in the limit of an infinite system are 

rl 2 d 
6<8<«>(/)> = 0 / At E - G * * ( / - 0 - h ( T ) ( 0 , (2.12) 

J -oo 7=1 dt 

where h(1) and h(2) are the average magnetic fields 
perturbing each group: 

1 kN 

h^(/)=iim-i:h*(/); 
(2.13) 

1 iv 
h(2>W=lim— £ h*(0. 

Evidently if the linear response function grows ex­
ponentially in time so will the correlation function, and 
vice versa.12 

The function that usually arises in practical calcu-

11 We indicate how it can be derived for the peculiar case of a 
classical spin system in Appendix A. A general discussion of 
fluctuation dissipation theorems can be found in H. B. Callen and 
T. A. Welton, Phys. Rev. 83, 34 (1951). 

12 This becomes rather puzzling if one wishes to take ex­
ponentially growing functions seriously, for although a growing 
response function has a simple interpretation, it is not immediately 
clear what one should make of an exponentially growing corre­
lation function. The problem does not arise for nonequilibrium 
states since there is no fluctuation dissipation theorem to connect 
the two. If, however, we wish to interpret the analytic continuation 
of the correlation and response functions through a transition 
point as describing the properties of some physical nonequilibrium 
state, then, if the continuations are unique (i.e., if the transition 
point is not a branch point), they will continue to be related by the 
fluctuation dissipation theorem. This puzzle has a simple resolution 
in our model. It is discussed in Sec. VI, part B. 
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lations is 

L°y(z)= l dteUtL«y(t)=pl dteizt—Gay{t), (2.14) 
'o Jo dt 

and 

Jo 

where z is a complex variable in the upper half-plane. 
Ordinarily L is analytic in the upper half-plane, with 
possible poles only on the real axis (giving the fre­
quencies of undamped resonances) or in its analytic 
continuation into the lower half-plane (representing 
damped resonances). If, however, L(f) increases 
exponentially, then L(z) will have a pole in the upper 
half-plane. I t is through such complex poles that the 
type of instability we shall find in the model has 
appeared in the approximate calculations described in 
the Introduction. 

Our task is to calculate Gay(t) for all temperatures, 
and to demonstrate that it can be analytically con­
tinued in & (or H) through a ferromagnetic transition 
point to a function which has exponentially growing 
time dependence; alternatively, we wish to show that 
the exact L(z) can be analytically continued in /3 (or H) 
to a function of z which has poles in the upper-half 
z plane. 

Without going to the limit of infinite N we can 
simplify things considerably. I t follows from (2.1) that 
s(1) and s(2) satisfy equations of motion involving only 
themselves: 

s<2) = H x s ( 2 ) - g s ( 1 ) x s ( 2 ) . 
(2.15) 

They thus depend only on their own initial values and 
not on the detailed spin configuration within each group. 
This reduces the ensemble average (2.8) to 

G°i(f)= lim N fdsVdsWP(sW,$w) 
N-*oo I 

X([><< '>(8<1>,B<»,*)-8<«>]8<rt)/ 

/ 
dS(D<fS(2)p(S(l)?s(2))? (2.16) 

where 

/

N 

n ^ e x p [ - i S 5 C ( s i ) ] 

/ 1 ** \ 
X 5 ( s ( i ) £ S . ) 

\ tfi-i / 

x / s ( 2 ) — £ SA 
\ N i-*tf+i / 

= exp{Ar/3[H.(s<1>-s<2>) 

+hg(*il)+*™)*lW(sM)W(s™)., (2.17) 

w(s)= / n ^ 4 s — £ s ' ) - (2-18) 
J i_i \ N i=i / 

If one inserts the Fourier representation of the 5 
function, 

5(x)= jdne~iu'x/ (2TT)3, 

into (2.18), then the integrations over spin directions 
factor into N/2 identical elementary integrations, after 
which the integration over directions of u is equally 
trivial. Up to an irrelevant constant factor which 
disappears from the normalized P , 

W(s) 
a f00 /Ns WsinfX** 

(2.19) 

The problem for finite N has therefore been reduced 
to evaluating the integral (2.19), placing the general 
solution13 of (2.15) into (2.16), and performing the 
remaining six integrations over the initial values. For 
our purposes, however, this still formidable calculation 
is unnecessary, since we are ultimately interested in G 
only for strictly infinite N. I t is only in this limit that 
the singular behavior going with a phase transition can 
occur, and hence that the analytic continuation of an 
equilibrium correlation function from one value of j8 
to another can lead to something which is not the 
equilibrium correlation function for the new value of 
j8.14 We shall therefore evaluate the integrals by steepest 
descent methods, retaining only those terms which 
continue to contribute to G as N -^oo. 

As it turns out, the infinite N limit not only simplifies 
the integrations in (2.16) and (2.19), but also makes a 
knowledge of the general solution of (2.15) unnecessary. 
This is because P is very sharply peaked (in the limit 
of infinite N, completely concentrated in) values of 
s(1) and s(2) which are time-independent solutions. As 
a result, if one considers s(a)(s(1),s(2),/) as a function 
of its initial values, only the linear term in its expansion 
about the set of initial values giving a stationary 
solution contributes in the limit of infinite N. Therefore 
if one wants G only for infinite N one need only solve a 
version of (2.15) linearized about the stationary 
solutions which maximize P . 

Although our result will be exact only in the limit of 
infinite N, many features of the correlation functions 
for large but finite N will be illuminated in the course 
of discussion. The maxima of P and the equation of 

13 It can be found in terms of elliptic functions. 
14 Since any physical system is finite it must be possible to 

state our conclusions, if the are of any relevance, for finite N. 
They could be put something life this: there exists a function of 
t and j8 which is analytic for all positive real 0, and which, above 
the transition temperature agrees to within terms of order 1/iV 
with the equilibrium correlation function provided the time is 
less than of order N; but below the transition temperature this 
function grows exponentially in time. 
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state are found in Sec. I I I . In Sec. IV certain features 
of the exact equations of motion are examined; these 
justify the subsequent linearization and reveal the sort 
of behavior one would expect for large but finite N. 
In Sec. V the infinite N correlation functions are found; 
their properties are discussed in Sec. VI, along with 
some puzzles and speculations suggested by the model. 

III. EQUILIBRIUM THERMODYNAMIC PROPERTIES 

To find P for a large system we must first know the 
large N behavior of the density of states factors W 
appearing in (2.17). Since W is of the form 

W(s) 

where 
is J-* 

USe r-NUiK) 

<!>*($)=-i(s/<j)S-± ln(sinf/f), 

(3.1) 

(3.2) 

an asymptotic expansion can be found by the method 
of steepest descent. Saddle points occur at roots of 

o=*./(r)--f(jA)-i(cotf-i/r). (3.3) 
When £=ir}, rj real, this becomes 

s/a=Ucothv-l/v) = f(V), (3.4) 

which has a unique positive root 7)(s), when s/a is 
between 0 and ^.15 One easily verifies that this is the 
only saddle point on the line f=^+irj(s), — <*> < £ < <x>, 
and that this line passes through the saddle point in 
the direction of steepest descent. The contour in (3.1) 
may be displaced to run along this line, and the resulting 
asymptotic form is 

W(s) = C(s) exp{-Nl(s/a)rj(s) 

-i\n(sinhV(s)Msm}, (3.5) 

where, up to an irrelevant normalization constant, 

arj(s)j 

Therefore 
V77O)2 sintfy is)/ \N/ 

p(sa) )8(2)) = C(Jr(»)C(^2)) exp[-i\M>(s<»,s<2))], (3.6) 

where 

*(8« > 8«)=- j8H.(8< l >-S<»)- i /%(8< I ) + 8<»)1 

+s(»r,(-1)/<r-iMsinhr)a)/v(1))+saWiV<r 
-Aln(sinrV2>/y2>), (3.7) 

and i?(a) is denned by 

*<a)=krti»(a)), «= i ,2 . (3.8) 

Since C(s) remains a slowly varying function of s 
for large N, in this limit P will be very sharply peaked 
at the value or values of s(1) and s(2) which minimize <£. 
If <£ has its absolute minimum at a single point, s0

(1), 
So(2), then in the limit of infinite N the ensemble 

Hc = g<r- FIG. 1. The nonfer-
romagnetic (I) and 
ferromagnetic (II) re­
gions of the H-T plane. 
Transition points lie 
along the boundary, 
given by H—ga-
XffaH). 

*-T 

average of any TV-independent function, F(s (1 ),s (2 )) 
will just be F(so(1),So(2)). More generally, if $ does not 
have a single minimum but assumes its least value on 
a family of points, then the ensemble average of any 
iV-independent F which assumes the same value at all 
such points, is given by this value, in the limit of 
infinite N. Because of this we can immediately deduce 
the equation of state for the infinite system from the 
minima of <£. These are found in Appendix B, and are 
of two types, depending on the values of p and H: 

I. H/g^af(l3<rH) (nonferromagnetic). $ is minimum 
at the single point 

So' 

a)=(o,o,WOs^), 
« = (0,0,-^/08^)) . 

(3.9) 

I I . H/g<af(p(xH) (ferromagnetic). <£ assumes its 
minimum when s(1) and s(2) are of the form: 

So ( 1>=i(so+H/g), 

So<2>=f(so-H/g), 

5 s/o- cannot exceed i , its value when all J2V spins are parallel. 

(3.10) 

where So is perpendicular to H, with magnitude deter­
mined by 

(*o2+ {H/gm=am<risi+ (H/gyjl>). (3.11) 

The direction of So in the x-y plane is undetermined, 
i.e., $ is minimum on a one-dimensional family of 
points. 

The regions of the H-T plane in which the two types 
of minima are found are indicated in Fig. 1, the 
boundary of the two regions being given by points 
satisfying 

H/g=<Tf(f3aH). (3.12) 

Type I I maxima can occur only for low temperatures, 

T^Tc=ig°2, (3.13) 

H^Hc=g*. (3.14) 

Equations (3.9)-(3.11) give a complete description 
of the equilibrium state of the infinite system in terms 
of the variables (sz

a)), (^2(2)), (<?J.(1)) (the magnitude of 
the projection of s(1) in the x-y plane), (?i(2)), and (s) 
(the magnitude of s ( 1 )+s ( 2 ) , the total spin per par-

and weak fields, 
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tide).16 In region I : 

< * I « > = < * I » > = < * > = 0 . 

In region I I : 

(3.15) 

(3.16) 

In Fig. 2, (s2
(1))—(sgi2)) and (s) are plotted against 

temperature for a typical field strength H<HC. At high 
temperatures (region I) the total spin is zero, and 
(sz

a)) and (ss(2)) are oppositely directed along the 
magnetic field, with magnitude %af(J3<rH). As T de­
creases, (s) remains zero, and (sz

a)) and (sz
(2)) grow 

until their difference equals H/g. At this point region II 
is entered. Further lowering of the temperature leaves 
(sz

a)) and (sz
{2)) unchanged, but the total spin per 

particle now developes a nonzero magnitude in the 
plane perpendicular to H, which grows from zero at 
the transition point to a maximum value of 
(a2-(H/g)2yi2&tT=0. 

Thus the system is ferromagnetic in region II. The 
spin alignment is not perfect because the field H favors 
opposite directions of the z components of s(1) and s(2). 
In region I there is no ferromagnetic alignment at all, 
either because the temperature is above the Curie 
point, or because the anti-aligning field is too strong. 

To calculate correlation functions in the two regions 
we need to know more about P than the location of its 
maxima as N —»°°, since G depends on the fluctuations 
of s(1) and s(2) about their equilibrium values.17 Still, 
it is clear that when N is large only initial values in the 
immediate neighborhood of the maxima will contribute 
appreciably to G. We therefore turn to an analysis of 
the solutions of the equations of motion, paying par­
ticular attention to those with initial values close to 
maxima of P. 

IV. TIME DEPENDENCE OF s<«> 

The solutions of (2.15) most important for the cal­
culation of G are those which are independent of time. 
The general stationary solution either has s(1) and s(2) 

both parallel to H and otherwise arbitrary, or s(1) —s(2) 

= H/g, with s(1)+s(2) arbitrary. In the limit of infinite 
N, P is maximum at a stationary solution of the first 
kind in the nonferromagnetic region, and has a family 
of maxima of the second kind in the ferromagnetic 
region. This fact enables us to calculate G for the infinite 
system (and, for the finite system, to any order in an 

16 The missing sixth variable, <p, the angle of s in the x-y plane, 
is of no interest, since in region I all components perpendicular 
to H are zero and in region II all directions are equally likely. 

17 T h e argument t ha t enabled us to deduce the equation of 
s ta te from the maxima of P does not apply to G because of the 
factor N appearing in i ts definition. 

(*2-H2/g2r MM 

H/g-* 

FIG. 2. Equations of state when H<He. The dashed curve is 
the magnitude of the total spin, which vanishes in region I. The 
solid curve is the difference of the z components of s(1) and s(2), 
which is constant in region II . 

asymptotic expansion in 1/JV) without having to use 
the rather complicated form of the general solutions. 

It is nevertheless worth carrying an exact analysis 
of the time-dependent solutions of (2.15) to a point 
which clearly shows why we are entitled to the simplifi­
cations we shall eventually make. In terms of the total 
spin per particle, s=s ( 1 )+s ( 2 ) , and the deviation of the 
spin difference from the stationary value H/g, A = s(1) 

- s ( 2 ) - H / g , (2.15) becomes 

s= —H x A, dA/dt= —gs x A. (4.1) 

Taking advantage of the fact that sz is a constant of 
the motion, we transform (4.1) to a coordinate system 
rotating about the z axis with angular frequency 

o=ig*#. (4.2) 

(4.3) 

In the rotating frame, 

s= Q x s—H x A, dA/dt= & x A—gs x A, 

where Q=tiR/H. It follows that 

s = f l x (ttx8)—Hx[(2a—gs) x A ] , 

which, by virtue of the particular value of 12, simplifies 
to 

s1=-fi2sx+g(H.A)s I , 

for the components of s in the x-y plane. Furthermore, 

dA d 

dt 
H 

dt 
*=-k—s i 2 , 

so 
H.A = H . A ( 0 ) - i g ( ^ - . i ( 0 ) 2 ) . (4.4) 

In the rotating coordinate system sA therefore satisfies 

8i= — h&M—«»i, (4.5) 

a=^ -g#A<s(0 ) -^x (0 ) 2 . (4.6) 
where 
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This is just the equation of motion for a particle of 
unit mass moving in two dimensions under the influence 
of a central force given by the potential 

U(sl) = as1
2/2+gW/8. (4.7) 

The initial velocity of the particle is 

sx(0) = a x 8x(0) -H x A(0) , (4.8) 

and its conserved angular momentum is 

/ = ( s i ( 0 ) X s x ( 0 ) ) 2 - ^ i ( 0 ) 2 - ^ ( A 1 ( 0 ) . s i ( 0 ) ) . (4.9) 

The magnitude of sx therefore satisfies the radial 
equation 

S i — c t f i - i g V + W , (4.10) 

and its angle, \f/y in the x-y plane is required by con­
servation of angular momentum to obey 

i M A x 2 . (4.11) 

The initial velocity necessary for the integration of 
(4.10) is 

«x(0) = *i(0)-8x(0)Ax(0) 
= H.(sx(0)XA1(0))Ai(0). (4.12) 

Evidently (4.9)-(4.12) all remain valid in the original 
stationary coordinate system except that the angular 
velocity <p now satisfies 

<P=l/sx
2-Q. (4-13) 

Equation (4.10) can be solved in terms of elliptic 
functions, but all relevant features of the motion can 
be understood by considering how a particle would 
move in two dimensions in the potential U.1S Since the 
potential depends, through a, on the initial conditions, 
not all particle orbits in a given U are possible orbits 
for sx; however for given initial conditions U is deter­
mined and the subsequent motion of sx is given by the 
orbit in that particular U followed by a particle with 
the appropriate initial position and velocity. The nature 
of this orbit depends critically on the sign of a. When 
a is positive the motion is in a simple potential well 
with a minimum at sx=0; for negative a, U is minimum 
at Si= (— 2a/g2)1/2, the force is repulsive for smaller sx, 
and the origin is a local maximum of U. 

Consider now initial values of the form 

s*HO)=(Ofl,i*f(0*H))+o(e), 

s&(0)= (0,0,-iaf((3<rH))+o(e). ( * } 

In the nonferromagnetic region these are very close to 
the maximum of P. In the potential that they 
determine, 

a = gH(H/g-<rf(p<rH))+o(e), 

which, for sufficiently small e, is positive within the 
nonferromagnetic region. The initial position and 

18 The motion of sx immediately determines the t motion of 
everything else: A*, by (4.4), and Aj., since Aj .=HXsi /# 2 . 

velocity, Sj.(0) and sx(0) are also of order e. Therefore 
within the nonferromagnetic region, for small enough 
e, sx, and dsx/dt will move along orbits in the neighbor­
hood of zero. This is enough to guarantee that if s(1)(0) 
and s(2)(0) are within o(e) of the nonferromagnetic 
maximum of P, then s(1)(/) and s(2)(/) stay within o(e) 
of this maximum at all times. 

On the other hand, if the initial values are of the form 

8(1)(0) = « J , ( 0 ) ^ ( 0 ) , H / g ) + 0 ( e ) , 

s(2) (0) = 4(^(0) , sv(0), -H/g)+o(e), {- } 

which puts them in the neighborhood of a ferromagnetic 
maximum of P , then a= — hg2Si(0)2-\-o(e), and U is 
minimum at Si within e of Si(0). The initial velocity is 
still of order e so sx can only undergo small oscillations 
in the neighborhood of its initial value. The angular 
velocity (in the stationary coordinate system) will be 

<p= -H(Ax(0)-sM)/so2+o(e2), (4.16) 

which is of order e, and, to this order, time-independent. 
There will thus be a slow uniform precession of sx 

about H superimposed on the small oscillations in its 
magnitude. As e —» 0 the period of precession becomes 
infinite. 

We shall draw further on this helpful reduction of the 
two-spin problem to a problem of two-dimensional 
motion in a central force, in the concluding discussion 
in Sec. VI. 

V. CALCULATION OF CORRELATION AND 
RESPONSE FUNCTIONS 

We shall calculate correlation functions involving 
components of s=s ( 1 ) - f s ( 2 ) and 2 = s(1) —s (2 ) , since 
these follow more naturally from the equations of 
motion. The s(1), s(2) correlation functions can then be 
found by taking simple linear combinations of the s, 
2 functions; the time dependence of the latter follows 
from a knowledge of the two functions 

G „ * z ( 0 = Km N((2,(t)-2*)?*), (5.1) 

and 

G + - M ( 0 = l i m 7V<(2+(/)-2+)2_>, 
N-+0O 

2± = 2x±i2y. (5.2) 

This is because: 

(a) Correlation functions pairing a z component with 
a ± component, a plus with a plus, or a minus with a 
minus, vanish even for finite iV due to the symmetry 
under rotations about the z axis; 

(b) sM(f)=s.(0); 
(c) ds±(t)/dt=?FiH2±(t); 
(d) the — + functions are complex conjugates of 

the H ones; 
(e) < ( 2 + « - 2 + > _ > = < M - 0 - * + ) 2 - > * . 



T I M E - D E P E N D E N T C O R R E L A T I O N S A119 

Due to (a) and (b), Gzz^(t) is the only nonvanishing 
s—2 correlation function involving z components; 
using (c)- (e) we can obtain the remaining nonvanishing 
s—2 correlation functions from £+_(/) by time inte­
gration, complex conjugation, and a knowledge of the 
equal time correlation functions 

lim iV<2+2_) and lim N(s+XJ). 

I t is also convenient to write the correlation functions 
in terms of the deviation of 2z(t) from its (stationary) 
value at the maximum of P , 2oz=H/g. We can replace 
(5.1) by 

G „ » ( 0 = Hm iV<(S . (0 -2 . ) (S . -2 0 l )> , 
N—>oo 

since this only adds a term which vanishes even for 
finite N due to the translational invariance in time of 
canonical ensemble averages. Furthermore, if we define 

Gzz^(t) = lim ^ < ( S . ( 0 - 2 o . ) ( S . - 2 0 . ) > , (5.3) 
iV—>oo 

then 
Gzz^(t) = Gzz^(t)-Gzz^(0), (5.4) 

so it suffices to find G. Similarly, if 

(?+-"(*) = lim N(2+(t)2J), (5.5) 
N—>oo 

(2o± vanishes in both regions), then 

G+_SS0) = G+_SS(0-G+_SS(0). (5.6) 

The analysis now depends on which region /3 and H 
lie in. 

A. Nonferromagnetic Region 

Because P is very sharply peaked at So, So, for fixed 
/ we expand 2(s,2,J) about this point and examine the 
contribution of each term to (5.3) and (5.5). The 
leading term is just S 0 = (0,0,2o,), and therefore gives 
no contribution. The linear term gives a contribution 
that goes as N times a mean-square fluctuation, and is 
therefore of order unity.19 All higher order terms give 
no contribution, since the m\h order terms give N times 
a mean mth power deviation, and are therefore no 
larger than N~^m+1. 

We may therefore replace 2(s,E,tf) by its lowest 
order term in s—s0 and 2 — 2 0 . But this is found 
simply by solving the equations of motion linearized 
about the stationary solutions s(/) = So=0, 2(/) = 2 0 

= (0,0,0-/(/3<TH)). The exact equation (2.15) in terms 
of s and 2 is 

s=-Hx2, d2/^=-Hxs+g2xs, (5.7) 

which linearizes to 

s = - H x 2 , 

d2/dt= - ( 1 - (g<j/H)f(/3aH))(H x s) . 

The required solutions to (5.8) are 

2 , ( s , 2 , 0 ^ 2 , , (5.9) 

2 + ( s ,2 ,0 = 2 + coscoo^—i(uo/H)s+ sinco0£, (5.10) 

where 
oo-lHin-gtrffaHVJl*. (5.11) 

From (5.9) it follows that Gzz^(t) is independent of 
time, so 

G„™(t) = 0. (5.12) 

Equation (5.10) gives G+_ s s( / ) in terms of equal time 
correlation functions. These are evaluated in Appendix 
C, and the result is 

G + _ s s ( 0 = (2<r/f3H)f((3(TH) cosco0/, 

or 

(5.8) 

19 The equilibrium fluctuations are discussed in Appendix C. 

G+-22!(0 = (2<r/PH)f(p<rH) (cosuQt-1). (5.13) 

If we integrate G+_ s s( / ) between 0 and /, we find 

G+_«2!(0= ( -2 ie r / j f a 0 ) / (M0 sinco0^G+-Js*(0. (5.14) 

Again integrating (5.14) and using the fact that 
<j+(0)2_(0)) = 0 (Appendix C) we have 

G+„ss(t)==(2crH/l3a>o2)f(l3(TH)(cosa>ot-l). (5.15) 

The linear response functions corresponding to 
(5.12)-(5.15) can be found at once from (2.14) and are 

Lz™(z) = 0; (5.16) 

L+_ s s(s) = 2<jf{f$<jHW/(z*-^)H; (5.17) 

L+^(z) = L+^*(z) = 2*f(P(rH)z/(s?.-ui?); (5.18) 

L±-ss(z) = 2af(t3aH)H/(z2-W). (5.19) 

B. Ferromagnetic Region 

We can deal with the added complexity due to the 
family of maxima of P(s (1 ) ,s (2 )) by using the cylindrical 
coordinates s^\ s,™, 0(1), sx<*\ sz®\ 0<2). In its 
angular dependence P is a function only of 0= 0(1) — 0 (2): 

P ( s ( i ) j S ( 2 ) ) = j p ( , i ( i ) ^ ( i ) ) , i ( 2 ) ^ ( 2 ) ^ ) j ( 5 > 2 0 ) 

and P has a single maximum at 

!*.<*> =-so,™ =H/2g, 0o=O, 

[where so is the solution to (3.11)]. Now from Eq. (4.4), 

G . , " ( / ) = - ( g / 2 H ) lim N((s^(t)-s^,). (5.22) 

I t is also true that 

G + J z ( 0 = ( l / f f ) Hm N((s+(t)-s+)s_). (5.23) 

In Eqs. (5.22) and (5.23) the quantities to be averaged 
depend on the initial values 0(1) and 0(2) only through 0. 
We can therefore replace the average over s(1) and s(2) 

by an average over the five variables on which P 
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depends, and then, taking advantage of the unique 
maximum of P, proceed as in the nonferromagnetic 
case. 

We first define, in analogy to (5.3) and (5.5), 

Gz™(t) = - (g/2H) lim N((sx
2(t)-s<?)Az), (5.24) 

G+^t)=(l/H2))imN(s+(t)sJ>, (5.25) 

where A#=2,—2J0t=S;,—H/g [and s+(so,So) = s_(s0,S0) 
= 0], so that 

G(t)=G(t)-G(0) (5.26) 

in both cases. The factors sx
2(t)—so2, Az, s+(t), and 

s_(/) are all, to lowest nonvanishing order, linear in 
the deviations of their initial values from the stationary 
values (5.21). It therefore suffices to replace each by 
the linear term in its expansion about the stationary 
initial values. Equation (5.24) immediately reduces to 

G,™(t)=-(gso/H) lim N((sx(t)-s0)Az). (5.27) 
N—*eo 

We may rewrite (5.25): 

£+-»(*)= (1/fl*) lim N((sx(t)+isx(t)<p(t)) 
JV->oo 

X(si-wi£yi*<»-*3>. (5.28) 

Because sx(t) and <p(t) are linear in the deviation of the 
initial values from equilibrium, for any finite time the 
phase factor in (5.28) makes no contribution as N —»<*>. 
We may also replace sx(t) and sx by their equilibrium 
values, to get: 

(?+_«(<) =(l/fl*) lim £(sx(t)h)+s<?(<p(t)<p) 

2V-*oo 

+ M O « * ( 0 « J > - < 8 I ( 0 ^ » ] . (5-29) 

Now from (4.13), (4.9), and (4.2), 

*(fl=-(ffAo)[(*i«(0)-*0j«) 
- ( * x » ( 0 ) - 5 . x « ) ] , (5.30) 

to lowest order, and this is independent of time; as a 
result, the imaginary term in (5.29) vanishes and we 
are left with 

G+^(t) = H~2 lim Nlim^+s^)-]. (5.31) 
JV-^oo 

It remains to find the linearized solution, sx, of (4.10). 
Since I2 and ft2 are of second order, we can replace 
(4.10) by 

^ W = - k 2 f e 2 W - ^ 2 ( 0 ) ) ^ W + ^ A 2 ( 0 ) ^ ( 0 . (5.32) 

Further linearization of the remaining terms gives 

*i(0 = - g W f e (t)-sx(0))+gHAz(0)s0, (5.33) 

which has as its solution 

sx(t) = sx(0)+(HAz(0)/gs0) (l-cosgsot) 
+ («i(P)/gso) singsot. (5.34) 

The initial velocity is, to lowest order, 

sx(0)=±Hs0e(0). (5.35) 

If we place these results in (5.27) we find that 

6M
sz(*)=lim Nl(A2)(cosgs0t-l) 

2V->oo 

+<^A, )^ 0 s in^ ] , (5.36) 

plus a time-independent term which does not contribute 
to Gzz. The equilibrium ensemble averages are found in 
Appendix C; the result is 

G„»(0 = (1/pg) (cosgsot-1). (5.37) 

To find G+_ss, we differentiate (5.34) and use (5.35) 
to get: 

*i(0»i(O)= (iHs0)
2 cos(^o0^(0)2 

-±H2sosin(gs0t)e(0)Az(0). 

The time-independent term in (5.31) does not con­
tribute to G, and, using the ensemble averages in 
Appendix C, we have 

G+-™(t)=(l/t3g)(cosgSot-l). (5.38) 

The values of the equilibrium correlation functions 
(Appendix C) 

Hm^<2J+(0)S_(0)) = 2/i8g, 
N->oo 

lim 2V<2+(0>_(0)>=0, 
iV->oo 

enable us to find, by time integrations of (5.38), 

G+„*S(/) = G_+*S« = - i - ( — +t\ , (5.39) 

and 

H/singsot 
i—i 

H2/cosgs0t-l P 
G+^(t)=-(- -D- (5.40) 

l( z 1\ 
L+^(z) = L+J>°(z) = -( + - ) , (5.43) 

e \z2— («o)2
 Z/ 

g\ (g^o)2 

The corresponding linear response functions are 

Lz™(z) = gso2/(z2-(gsQ)2), (5.41) 

Z+_^(2) = ^o2/(^2-(^o)2), (5.42) 

Hi 

(gso)2 

H2/\ 1 \ 
L+^(z)=— ( - + — - ) . (5.44) 

g\z2 z2-(gs0)
2/ 

VI. CONCLUSIONS 

There are several remarks to be made: 
(A) The correlation functions have the properties 

described in the Introduction. In particular coo [Eq. 
(5.11)] is real in the nonferromagnetic region and 
becomes imaginary as the ferromagnetic region is 



T I M E - D E P E N D E N T C O R R E L A T I O N S A121 

entered. Since all the nonferromagnetic correlation 
functions are even functions of coo, as a transition point 
is approached they remain analytic functions of /§ and 
H, and have unique analytic continuations into the 
ferromagnetic region, which grow exponentially in time. 
Similarly, as the ferromagnetic region is approached, 
poles of the response functions, (5.17)—(5.19), move 
toward the origin, reaching it at the transition point. 
Beyond the transition point the correct response func­
tions are the ferromagnetic ones, (5.42)-(5.44). These 
join continuously to the nonferromagnetic ones. The 
pole at 2=0 remains there throughout the ferromag­
netic region, being just the Goldstone pole associated 
with the broken symmetry of the ferromagnetic 
state.20 However, in the analytic continuation of the 
nonferromagnetic response function the Goldstone pole 
does not stay at the origin, but moves up into the 
complex plane, reflecting the exponential growth of the 
time-dependent function. 

(B) An exponentially growing linear response func­
tion signifies the failure of the assumption that a weak 
disturbance produces a weak response, but what is one 
to make of a correlation function that grows expo­
nentially? To answer this we first re-emphasize the fact 
that the infinite N case is not only the only one in which 
it is easy to calculate exact results, but also the only 
case in which our conclusions apply. When N is finite 
there is no mathematical phase transition, and all 
analytic continuations of equilibrium correlation func­
tions remain equilibrium correlation functions. Expo­
nentially growing correlation functions can therefore 
be associated only with the mathematically infinite 
system. But in the infinite system growth from order 
unity to order N is indistinguishable from unbounded 
growth. 

To see how this accounts for the unbounded growth 
of the correlation functions, consider, as the simplest 
example, the function 

G^iQ) = lim #<[*.(/)-*>i> 
iV->oo 

= (2aH/!3wo
2)f(0aH) (coso)0t-1), 

in the nonferromagnetic region. [Although this is one 
we have not explicitly calculated it must be the same as 

G+_"(0= lim N((sl(t)e
i^*>-^-sl)s^9 

JV-*oo 

since Si(t)si is already of order 1/N in the nonferro­
magnetic region, and hence the phase factor can be 
ignored at any finite time.] Its oscillatory behavior is 
due to the fact that P picks out only initial values very 
close to the stable stationary point Si=0. When con­
tinued into the ferromagnetic region it still behaves as 
if only initial values near Si=0 were contributing, but 

20 Symmetry is broken in the sense that the equilibrium (sj) 
in the presence of an additional weak magnetic field perpendicular 
to H does not approach, as the perpendicular field vanishes, the 
value (sx)=0 which holds in the absence of such a field. 

now this is an unstable stationary point. Therefore21 

initial values very near Si=0 will lead to oscillations of 
sx(t) between 0 and a value of order <r, i.e., of order 
unity with respect to N. Thus A7[>x(2)— î(O)] will be 
of order N for almost all times when Si(0) is close to, 
but not equal to, zero. 

We have now reversed the problem and must explain 
why in the limit of infinite N the continuation of Gs±8i 
into the ferromagnetic region is not infinite for all 
nonzero times. The answer to this is that because both 
the initial position and velocity of sx become closer and 
closer to zero with increasing N, the period of the 
macroscopic oscillations becomes infinite as N—>^>. 
Thus, when N is enormous, the initial values con­
tributing to the analytic continuation of Gsis± are so 
close to being stationary that it takes sx an enormous 
time to begin its journey from the origin. When N 
becomes infinite it takes G£isi an infinite time to grow 
to order N, and what we see is an exponential growth. 

The role of the fluctuation dissipation theorem that 
this feature of our model reflects leads to an interesting 
possibility. Suppose it were eventually established that 
analytic continuations of correlation and linear response 
functions through transition points described physical 
nonequilibrium states. If the singularity at the tran­
sition point were a branch point, the continued func­
tions might lie on different sheets and would then no 
longer be related by the fluctuation dissipation theorem. 
If, however, as in our model, the continuation were 
unique, then the equilibrium fluctuation dissipation 
theorem would continue to hold in the nonequilibrium 
states. This would impose stringent restrictions on the 
kinds of perturbations capable of destroying the non-
equilibrium state: They would have to be such that 
the corresponding correlation functions would be 
capable of growing from order unity to order N in 
describing the relaxation back to an equilibrium state. 
In our model this growth can be rationalized for all 
perturbing magnetic fields, but in a realistic system the 
requirement of only physically sensible growing corre­
lation functions would lead to the stability of the 
nonequilibrium state under a large class of pertur­
bations. Although it is fun to contemplate the ramifi­
cations of this idea, it would be foolish to push it any 
further before one knows whether the speculations on 
which it is based, can be put on solid ground. 

(C) The secular terms in the ferromagnetic corre­
lation functions (5.39) and (5.40) are correct. They 
are there as a reflection of the infinitesimal rate of 
precession of sx around the z axis, and appear as an 
unbounded growth in the infinite N correlation func­
tions for reasons essentially the same as those just 
discussed. Since they are due to a zero frequency (the 
rate of precession goes to zero as N —»<*>) mode of the 
system that exists in the absence of any perturbation, 

21 This and subsequent statements about the exact time de­
pendence are easy to prove in terms of the motion of the equivalent 
particle in two dimensions discussed in Sec. IV. 
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they lead to the poles at z=0 in the linear response 
functions (5.43) and (5.44). In this context they are 
much less alarming, being just the Goldstone poles due 
to the broken symmetry that is present throughout the 
ferromagnetic region. 

(D) If analytically continued correlation functions 
describe a physical state, is this state metastable or 
unstable? In our model the nonequilibrium state so 
reached is one which could be described by an ensemble 
in which, initially, sa)(t) and s(2)(/) were very close to 
the unstable stationary points (0,0, db^soj, soz>H/g. 
But even though this point is dynamically unstable, 
the time-dependent22 (s(a)(t)) will remain close to their 
initial values, since the spins of each element of the 
ensemble, although they oscillate between the initial 
point and a macroscopically differing one, still spend 
almost all of their time in the neighborhood of their 
initial values, because of the microscopic difference 
between their initial values and the stationary ones. 
If, however, there were some dissipative mechanism 
present to damp these large oscillations, then after a 
long time the (s(a)(t)) would assume values appropriate 
to an equilibrium state in the ferromagnetic region.23 

The time this took would be of order ln(iV) times the 
number of oscillations possible before the damping 
became macroscopic. Although this is infinite for 
strictly infinite N, for large but finite N the state would 
appear to be unstable in the presence of dissipation.24 

(E) The nonuniform magnetic field is essential. When 
the Weiss model is not in a magnetic field, the con­
tinuations of nonferromagnetic correlation and linear 
response functions into the ferromagnetic region remain 
dynamically stable, even though the corresponding 
stationary point of the spin distribution function is not 
a local maximum. This is because the magnitude of the 
total spin is now conserved. Although a state with total 
spin zero would like, from thermodynamic consider­
ations, to grow into one with a net macroscopic spin, 
it is dynamically incapable of doing so. Nor will in­
stabilities appear in the Weiss model in a uniform 
magnetic field, since sz is conserved, and hence a state 
aligned opposite to H cannot correct itself. 

(F) In the limit of infinite N the random-phase 
approximation gives the exact linear response functions 
of the model.25 It is easy, once one understands the 

22 They are time-dependent since the density matrix is now no 
longer a function of the Hamiltonian. 

23 This can be seen from considering the behavior, in the 
presence of a dissipative term, of the two-dimensional particle of 
Sec. IV. 

24 From a purely thermodynamic point of view we should 
probably call it unstable, since it is not described by a local 
maximum of P . 

25 In our model the random-phase approximation reduces to 
the following procedure: define, as in the theory of the Weiss 
model, an internal molecular field, Hm = g((s(1))+(s(2))), find the 
partition function in the effective field H-f-HTO, and use it to 
determine self-consistently the value of HOT; then calculate the 
response of s (a) to a perturbation h(/) to lowest order in h and the 
deviation of s (a) from a solution to the self-consistent equations. 
There is a slight complication in the ferromagnetic region, since 

structure of P(s(1),s(2)) and the exact equations of 
motion to convince oneself that this must be so. It 
might be instructive in developing further the kind 
of approach Haag26 used to prove that the BCS solution 
was exact in the limit of infinite volume, to try to 
construct along similar lines a rigorous proof that the 
random phase approximation is (or is not) exact in 
the infinite N limit of the quantum version of our model. 
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APPENDIX A 

The fluctuation dissipation theorem for a classical 
spin system may be somewhat unfamiliar, so its proof 
is indicated here. 

Suppose we have a classical system with canonical 
variables qi • • • qx, pv ' -pN (which we shall denote 
collectively simply by x) and with Hamiltonian 3C(#). 
Let the system be perturbed by a potential U(x(t),t) 
which vanishes in the remote past. To linear order in 
U, the time dependence of any function A(x(t)) is 
given by 

A(x(t)) = A(x0(t)) 

+ t LA(xo(t)),U(x0(t')/)ldt', (Al) 
J —oo 

where xa(t) is the solution to the equations of motion 
in the absence of U, and the bracket is a Poisson 
bracket. We wish to specialize (Al) to the case 
A =sm

i(t), U = Y,jn hn
j{tf)srJ{tf), and average both sides 

over a canonical ensemble of initial values at some time 
before the appearance of U. Suitable canonical variables 
for a classical spin are sz and <p (its angle in the x-y 
plane), so the Poisson bracket is 

N dA dU dA dU 
[ 4 , £ a = E — — : — 

i-id<p%ds,% dsz
l <V 

N dA 6U 
= 2 > * X — . (A2) 

i=i dsl cV 
The second apparently noncanonical form is much 
easier to use, since it allows us to remain in rectangular 
coordinates, where, for example, the equations of 
motion are enormously simplified. 

there are many solutions to the self-consistent equations to use as 
initial equilibrium states; however, the random-phase approxi­
mation response of a given ferromagnetic equilibrium state 
averaged over all possible orientations of sj. gives the correct 
result. 

26 R. Haag, Nuovo Cimento 25, 287 (1962). 
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The linear response is therefore Minima of # can only occur at points satisfying 

*<*»'(0>= / di l I I d & exp[-/33e({s*})] +)?(1)s(1>/^(1), (B5) 

0^d^/ds^^K^-g(^l)+^2)))+V(2)^2)/^2). (B6) 

X| 2-*, s •{—sm \\s),t) Such a point will be a local minimum provided the 
matrix of second derivatives at the point, 

*™ 
nW«V<rsM)-pgl+2(sJ«hnM/s^2) 

Xr(l/<j2ff(wia)))—('nia)/2as(a))~] 0; = ^ Now the &th term in the summation will contain an LV ' J w J J ' ' 
integral of the form = -$&mn, a^y, (B7) 

^ ^ is positive definite. 
We first look for 

to s(2). (Consider them parallel when either is 0.) This 

X—SnK{*l)S))hnW)] • (A3) Marn,yn=d2$/dSm^dsJ' 

dsk I J =8mJ(v^/as^ 

/

H H i a positive uciiiiitc. 

<fi2*exp(—jS3C)*J(G*) sw*({s'},/)X—sj({sl},t')' We n r s t lo°k f o r stationary points with s(1) parallel 
dsk dsk to s(2). (Consider them parallel when either is 0.) This 

can only happen if both are parallel to H. If we define 
If we transform this to a volume integral, it becomes 

d / d 
x(«) = r?(«)(sin(^(«)))? (B8) 

f d / d 
a / dsk—• exp(-03C)—J«*({SZ},0 the (3.8) becomes 
Js*«, dSk \ dSk 

J.(a) = W ( x ( a ) ) , (B9) 
d . \ 

X—SnJ({s1}/) ) . (A4) and the stationary conditions are 
ds* / 

But (A4) is invariant under cyclical permutation of the (2)_ _ „ irj_ \ ("*•") 
three functions exp(—/33C), sj, and sn>. Therefore X ~ ^ ' 

/

, where S 2 = J 2
( 1 ) + J S

( 2 ) . The general solution to (B9) and 

dt' f n da* exp(-/33C) (B1°) i s 

-M J i=1 W " } = 0, «=1 , 2; 
XL r.j*'(<W(0]W) *.a>=*«•/[>(#+**•)]; (BH) 

**(2) = - W [ > ( # - ^ ) ] ; 
where sz is any solution to 

X[exp(-j83C), *n*(/)]A»>(0 * . = i ^ C / ^ ( ^ + g ^ ) ) - / 0 5 ^ ( ^ ~ ^ . ) ) ] . (B12) 

/

' One solution to (B12) is ^ = 0 , which leads to the 

dt' E (smKt)sns(t'))kn'Xt')- stationary point given in (3.9). To establish that this 
-*> jn point gives the absolute minimum of $ in region I, we 

APPENDIX B w ^ s n o w that it is a local minimum whenever H/g 
>crf(j3(rH), that no other solution of (B12) gives a 

In the limit of large N, the distribution function local minimum, and that $ has no nonparallel stationary 
P(s(1),s(2)) will be almost entirely concentrated at points unless H/g<af(P<rH). 
points where i>(s^),s(2>) [Eq. (3.7)] is minimum. In Let us label the rows and columns of M by sx

(1\ 
finding the minima of $ we shall need the following Sy

{l\ sz
{l\ sx

(2\ ^ (2), sz
{2\ in that order. At a parallel 

properties of the function f(rf) = cothrj-1/??27: stationary point 

= ( dtfll 
J^ J ;=i 

<ffi'EW) 

/(*) = - / ( - * ) ; f(v)>0,v>0; /(0) = 0; (Bl) 

f'(v)>0; / '(0) = J; (B2) 

/"6?)<0, v>0; (B3) 

*-*(_, j- (m3) 

where 1 is the 3X3 unit matrix, and da) and d(2) are 
^ / ^ (/0?) A) < 0 , r?> 0. (B4) diagonal 3X3 matrices with diagonal elements 

"Equations (Bl) and (B2) are trivial, and (B3) with / ( 0 ) = 0 diM= (x(a)/Pg$*(a))— 1 > i=%, y\ 
implies (B4); the fact that sinh3^-3 sinh#~4s3cosh* has a (B14) 
Taylor series with positive coefficients establishes (B3). a,Ca) = L 2 / ] ^ 2 / ( x C a ) ) J ~ I • 
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One easily verifies that 

1 /d(d<»-v) d \ 
(BIS) 

0g\ d d(d<»-n), 
where 

A* = V f t , i = [ ( d C i ) - M ) ( d W - M ) - l ] - i . (B16) 

The eigenvalues of M are therefore fig times the roots of 

(di^-fi)(di^-fJ)-l = 0, i=x,y, or z, 

all of which must be positive for the corresponding 
stationary point to be a local minimum of $. We must 
therefore have 

diW+di^X), 
and 

j.(i)^.(2) _ _ 1 ; > o ; i=x,y, or z. 

At the stationary points (3.9) 

d^ = d^ = (2H/gaf(paH))-ly i=x, y; 

rf,a) = ^(2) = (2/Pg<T*f(p<rH))-1. 

This reduces (B17) to the conditions 

gaf(PaH)/H<l, 0go*f'(0<rB)<l. 

The second condition is unnecessary, since f(x)/x 
always exceeds / ' (# ) , and the first is just the condition 
that fi and H are within region I. 

At a stationary point with s^O, the second of con­
ditions (B17) always fails when i=x (or y). With (B9) 
and (B14) it requires that 

(B17) 

(B18) 

(B19) 

.g**/f(xw) /(x(2))\ 
1> ( + - V 

V .a) ,(2) 
(B20) 

(B21) 

On the other hand, (B9) and (B12) give 

l = ( ( r / 2 ^ ) ( / ( X
( 1 ) ) + / ( x ( 2 ) ) ) . 

Subtracting (B21) from (B20) and again applying 
(B12) gives 

g//(x(2)) /(x(1))\ 

gs. M) 

Now f(x)/x is a decreasing function of the magnitude 
of x, so either H and sz have the same sign and |x (1 )i 
<Ix ( 2 ) |> o r H and sz have opposite sign and |x ( 1 ) | 
> | x ( 2 ) | - But either possibility is inconsistent with 
(BIO), so there are no parallel minima of <£ other than 
(3.9). 

To see that there are no nonparallel stationary points 
in region I, and to establish the nature of the minima 
of <i> in region I I , we return to the general stationary 
conditions (B5) and (B6), When both hold, 

+ s (2 ) [ ( r 7 (2 ) / ^ (2 ) )_ 2 ^ ] = = o . (B22) 

If s(1) and s(2) are not parallel, then 

^(D/^(i)=^(2)^(2) = 2fig% (B23) 

Since f(rj) and f(v)/v are mono tonic for positive rj, 
(B23) and (3.8) imply 

ri<n = n™, s<n=s<*K (B24) 

Furthermore, (B23) reduces (B5) or (B6) to 

8<«-8<*> = H /g , (B25) 

which requires that (3.10) holds, with s0 perpendicular 
to H because of (B24). Equations (3.10), (B23), and 
(3.8) now lead to (3.11), which determines the mag­
nitude of So, and has a real positive solution if and only 
if /3 and H are in region I I . 

The direction of So is arbitrary, but the value of $ 
is independent of this direction. Since (3.10) and (3.11) 
give the onlyjstationary points in region I I , these 
points must give $ an absolute minimum. 

APPENDIX C 

Nonferromagnetic Region 

Because P(s (1 ) ,s (2 )) has the form (3.6), in a calcu­
lation of the second moments, 

A ^ = l i m Ntts^-is^))^-^))}, (CI) 
JV-»oo 

the leading term is given by taking 

p ( S ( l ) j S ( 2 ) ) = = c o n s t a n t X e x p [ _ l ^ £ Mai.yj 

X ( ^ « > - V a ^ / 7 ) - % ( 7 ) ) ] , (C2) 

where M is the matrix of second derivatives, given at 
the nonferromagnetic maximum hy (B13) and (B18). 
Corrections to the moments given by (C2) due to the 
expansion of C(s ( a )) about s0

(a), or due to higher order 
terms in the expansion of 3>(s(1),s(2)) all give no con­
tributions to (CI) as N—>oo. Furthermore, higher 
moments, 

lim N((Sil™-(Sil™))-- • (sim^-(sin^))) 

have leading terms which vanish as N~~*m+1. 
The second moments are therefore given by 

A i i^=(M- 1)ai ,Ti . (C3) 

The elements of the inverse matrix are found from 
(B15) (with M = 0), (B16), and (B18), and lead to the 
moments: 

4/3# 
krHjl 26ay 

grfiPcrH) 

H-gaf(p<rH) ) • 

t=x,y; 

A^=-/'03<r/7)( 2Sa7+ ); 
4 V l-j8goV'68(rfl)/ 

(C4) 

A iy«r=Q, &j. 
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In particular, 

lim N&+2-) 
N-+00 

= lim #<(*,«>-*„<»)*+(*, w -* ,«)*> 

= Asa,
l l+AM!

22+A!,1,11+Ara
22-2(AM

12+A! /1,12) 

= 2<r/03<rff)//3ff, 

and, similarly, 
lim iV(%S_)=0. 
JV-wo 

Ferromagnetic Region 

(C5) 

(C6) 

The difficulty due to the existence of a family of 
maxima of P is removed by working in cylindrical 
coordinates with the function P [Eq. (5.20)], which 
has a single maximum, (5.21), and by taking only 
moments of the cylindrical variables: 

Si ( i ) *x(2), s.<», sv, e. (C7) 

The second variation in $ near a stationary point 
follows from (B7): 

<p$=^g{W W + (dsi(1) - dsj.™)* 
+ (dsl

m-dsz^y+Kl(s(sdsl^+(H/g)ds^y 
+ ( ^ x ( 2 > - (H/g)ds™y]}, (C8) 

where 
K= [2/(5o2+ (ff/*)*)][<l/ /W(i»))-1], (C9) 

and 
v=Pg£sMn/gyji*. (cio) 

Since (3.11) can be written, l=/5g<r2/(^)A, and since 
Q<f'(v)<f('n)/'0) K is positive and (C8) is positive 
definite. 

We can write (C8) more compactly as 

* * = i f e C W W 2 + E M*4sM, (Cll) 
i 

where we understand ds^ to run through <fc±(1), &i ( 2 ) , 
dy*(1), <&,(2), in that order. The matrix M is 

M = 

1+ifro2 - 1 iTiofl'/g 

- 1 l+Kso2 0 

^ o H / « 0 \+K(H/gY 

0 

-KsoH/g 

- 1 

l+-fi:(#/g)2J 0 -KsoH/g - 1 

Second moments involving the variables in (C7) are given by 

lim N{ff>)=4/pgs0
2, 

N-*co 

Bmtf<0(v-<^)>=O, 
JV-*oO 

lim #<(*„-<*„»(*-<*,»>= (M-i)M. 
N-+oo 

The inverse matrix can be verified to be 

1 M~l=-
2K(H/gY 

where a=H/gso. 
The moments required in Sec. V are: 

a2 

a2 

0 

0 

a2 0 

a2 0 

0 1 

0 1 

0" 

0 

1 

1 

1 

+-. 
4 

a 2 + l 

a 2 - l 

—a—ar1 

a—arl 

a2—1 —a—ar1 a—ar1 

a2+1 — a+or1 a-\- ar1 

-a+ar1 ar2+l a~2-l 

a+ar1 •1 ar2+l 

lim iV(A,2)=lim N((dsz^-ds^)2) 
N-+ao JV->oo 

= (l/(8g)((Jf-%+ ( M - % - (M-Os*- (Af-1)«0= Vfc; 

lim iV(S+S_)= lim A ^ i ^ + ^ ' - ^ t t V 2 ' cos0)> 
JV-*oo JV-*oo 

= lim Ndidsi.w-ds&W+isffl)) 
N-+oo 

= (l//3g)((Jf-1)u+ ( J f - 0 « - (M-1) .!- (M-1)i2)+l/^g= 2/0*. 

lim #<2+s_)=lim tf^w'-^^+^V10 sin0)) = O 
# - • 0 0 JV-»oo 

(even for finite iV), since P is a symmetric function of Sj.(1) and SL(2), and an even function of $. 

Finally, note that 

(C12) 

(C13) 

(C14) 

(C15) 

(C16) 

(C17) 

(C18) 

(C19) 


