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Paramagnetic Resonance Line Shapes of Fe+ + in MgOf 
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The asymmetric AM=2 paramagnetic resonance line shapes of Fe++ in MgO are explained using a model 
of stochastic distributions of cartesian strain components as a strain-broadening mechanism. Strains 
broaden the AM=2 resonances at lower frequencies by means of a direct zero-field splitting and at higher 
frequencies by means of a strain-induced change in g value. I t is found that this model of broadening gives 
mathematical expressions for the AM=2 line shapes which agree quantitatively with experimental results. 

INTRODUCTION 

THE paramagnetic resonance spectrum of Fe4"* 
in MgO consists of 3 lines: One transition is very 

broad and represents the normal AM=1 transition; 
the other two are forbidden AM =2 transitions and 
exhibit narrower asymmetric line shapes. Originally, 
Low1 suggested the possibility of strain broadening as 
a line-shape mechanism. Watkins and Feher2 have since 
measured the effects of applied uniaxial strains of the 
paramagnetic resonance spectrum, showing that the 
Fe++ ion is sensitive to strains and making the strain-
induced linewidth hypothesis more reasonable. Feher 
and Weger3 have applied the concept of random internal 
stress components to make a second-moment calculation 
of the strain-broadened resonance of Mn++ and Fe-1-1^" 
in MgO. One can also apply the concept of stochastic 
distributions of strain components to make a calculation 
of the line shape itself. This procedure, though less 
rigorous than a calculation of moments, can be applied 
with benefit to the ¥&*+ AM= 2 resonance lines because 
it explains the asymmetric shapes, because it permits a 
quantitative comparison of the AM=2 and AM=1 
shapes, and because the calculation of moments does 
not apply. 

One finds at low frequencies that the paramagnetic 
resonances are strain broadened by means of a direct 
zero-field splitting mechanism which can be adequately 
explained using the spin-strain Hamiltonian of Watkins.2 

However, at higher frequencies, a g distribution 
broadening mechanism predominates and it must be 
taken into account to explain line shape changes. 

The paramagnetic resonance spectrum of Fe++ in 
MgO is shown in Fig. 1. The broad line at g=SA is 
the usual AM =1 transition. The width of this transi
tion, which will be referred to as the "single quantum 
line" and abbreviated SQL, is accounted for by the 
extreme sensitivity of Fe++ to strains. 

The narrow line at g=3.4 is, in terms of perturbation 
theory, a second-order process in which two microwave 
photons are absorbed by the spin in rapid succession. 
This transition takes place between the two end levels 
of the ground-state triplet. Its width is less because it 
is broadened only by second-order strain shifts and 
because the energy denominator of second-order rf 
perturbation makes the process likely only when the 
first-order strain shift is small. This type of transition 
is generally called a "double quantum transition" and 
will be abbreviated DQL. 

The line at g=6.8 is called the "half-field line" and 
abbreviated HFL. This transition, which is strictly 
forbidden for cubic crystal fields, occurs because strains 
produce small admixtures of the pure Zeeman eigen-
functions. Using the admixture of eigenfunctions, the 
rf field can induce a transition between the two end 
levels of the triplet ground state using only one photon. 

The DQL and HFL will be collectively referred to 
as AM =2 transitions. Low1 has given the above 
interpretation for the HFL Orton et al* have established 
the double quantum nature of a N1++ transition in 
MgO, a case which is similar to Fe4-1" in MgO. 

FIG. 1. The paramagnetic resonance spectrum of Fe++ in MgO at 
9.5 Gc/sec. The derivative signal is illustrated. 
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THEORY OF STRAIN-INDUCED LINE SHAPES 

It will be assumed from the beginning that strains, 
caused by nearby crystal imperfections, are the cause of 
the observed line shapes and a theory based on this 
premise will be developed. The results of experiments 
presented later on will justify this assumption. 

4 J. W. Orton, P. Auzins, and J. E. Wertz, Phys. Rev. Letters 
4, 128 (1960). 
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I t is likely that the observed strain broadening of the 
Fe++ resonance lines is due to dislocations. The strain 
fields produced by dislocations are in general aniso
tropic; dislocations are preferentially oriented, and 
often form nets of dislocations resembling a super-
lattice structure. Not only is the problem of calculating 
line shapes in terms of a dislocation model too difficult 
to treat mathematically, even if the dislocation structure 
were known, but, in addition, one does not know such 
essential details as whether the F e ^ ions are randomly 
distributed in the lattice. I t is therefore not reasonable 
to attempt to explain line shapes from first principles 
using a dislocation model. 

An alternate, more modest approach, is to explain 
the HFL and DQL widths and shapes in terms of 
information obtained from the SQL. Assume that there 

Changing the orientation of the crystal relative to the 
static magnetic field will intermix the diagonal and 
off-diagonal elements of this array and produce minor 
changes in the width of the Fe44" paramagnetic reso
nance lines. These changes are not of interest here, and 
consequently the theoretical analysis and experimental 
procedure are carried out only for the case in which the 
magnetic field is along a [100] crystal direction. 
Watkins2 and Shir en,5 using different techniques, have 
determined the constants of this Hamiltonian. The 
average of their results is 

Gu ( = - 2Gi2) = 720 cm"1, Gu=460 cm"1. 

This interaction is applied as a perturbation assuming 
that the three levels of the ground state are already 
split by a relatively large Zeeman energy. From this 
one can deduce that the resonance condition of the 
SQL in the presence of strains is, 

E=^co0=b (j)Gn(exx-\-eyy—2ezz)+2rid-order terms. 

Correspondingly, the resonance condition for the 
DQL is 

E=ho)0+ (G44
2/#co0) (exy

2+eyz
2+ezx

2) 

+ (9Gn2 /16^0)(e 

I n these two cases ho)0 is the Zeeman energy between 
two adjacent levels. The resonance condition for the 
HFL is 

E=ftu0+ (2G44
2/^o) (exy

2+eyz
2+ezx

2) 

+ (9Gn
2/Ma>0)(exx-eyy)

2. 

Here, as in subsequent applications referring to the 

is a stochastic distribution in the values of the strain 
components eXXJ exy, etc. at the paramagnetic ions sites. 
If the set of 6 independent Cartesian strain components 
is known, one may use Watkins' effective spin-strain 
interaction to determine completely the effect of the 
strain components of the spin system. Having deter
mined the resonance energy shifts in terms of the strain 
components, the strain induced line shape is calculated 
by integrating over the probability distribution of 
strain components. The type of probability distribution 
is chosen so that the shape of the SQL agrees with the 
experimentally observed Lorentzian line shape. 

If the static magnetic field is along the [100] axis of 
the crystal, the spin-strain interaction can be written 
in matrix form, that is, in a representation in which Sz 

is diagonal. The result is 

HFL, fto)o is the Zeeman energy between the two end 
states of the triplet. This formulation is consistent with 
the fact that paramagnetic spectrometers are constant 
frequency devices. The difference in the DQL and HFL 
resonating conditions occurs because two rf photons are 
absorbed in the former and one in the latter. 

Since the HFL is forbidden in a perfectly cubic 
field, the strength of the rf field interaction is strain 
dependent. One must therefore calculate the strength of 
the interaction in terms of the strain components. If one 
denotes <£+, <£o, <A- as the Zeeman eigenfunctions in the 
absence of strains, the eigenfunctions in the presence of 
strains are, 

Gu (exz+ieyz) 
$+=<M-—-• ; <£o+( ) * - , 

V2 fuoo/2 

CJ"44 \6XX 16yz) 

V2 feoo/2 
Since the rf field interaction can be represented as 

~HTi=gbHx(S++SJ), the magnitude of the interaction 
for the HFL is 

\&xz Wyz) 

Assume that the distribution of Cartesian strain 
components is given by the probability P(e) = P(exx, 
eyy,ezz,eJZ,ezx,exy) of finding a spin subjected to the 
strains exx, eyy, etc. To make practical use of the distri
bution in solving problems, it is assumed to be separable 
into products of probability distributions of individual 
strain components, 

(—Gii/4) (exx+eyy — 2e2Z) 
(G44/V2) (exy+ieyz) 

(3Gn/4) (exx—eyy)+iGuexy 

\Gu/)\/2(exy—ieyz) 
(2Gn/4:)(exx+eyj-2ezz) 

(—G44/V2) (exz+ieyz) 

(3Gn/4) (exx—eyy)—iGuexy 

(—G44/V2) (exz—ieyz) 
(—Gn/4) (exx+eyt/—2ezz) 

e N. S. Shiren? Bull. Am. Phys. Soc. 7, 29 (1962). P 0) = P {exx)P {eyy)P (ezz)P(exy)P (eyz)P(ezx). 
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Since it is known that the SQL has a Lorentzian shape 
within errors of measurement, one must choose the 
distributions of strain to be Lorentzian in order that 
the SQL be Lorentzian. (Gaussian distributions give a 
Gaussian shaped SQL.) The choice of Lorentzian 
instead of near-Lorentzian distributions is for mathe
matical convenience. 

Because of symmetry considerations, one can assume 
that all of the widths of the distributions of diagonal 
strains are the same and that all of the widths of the 
distributions of off-diagonal strains are the same. There
fore one has, 

PfeH-
1 8 1 

7T eu2+A2 7T^ 2 +5 2 tej, 

where A and 8 are the widths of the diagonal and 
off-diagonal distributions of strain, respectively. 

CALCULATION OF LINE SHAPES 

The procedure for calculating the strain-induced line 
shapes will be as follows. First of all, the power absorbed 
for one spin as a function of the Cartesian strain 
components is found. The power absorbed by one spin 
will have a strain-shifted resonance denominator of 
width T2~

l. This finite width, over which a spin can 
absorb power, will be replaced by a Dirac delta function 
resonating condition. The delta function resonating 
condition, which is a function of the strain components, 
is integrated over the probability of finding a given set 
of strain components, producing a result which is 
equivalent to summing over an ensemble of spins. 
Because the delta function and its associated factors 
represent power absorbed per spin, the result of integrat
ing over the strain probabilities gives a line shape that 
represents total rf power absorbed as a function of 
frequency. 

In Appendix 1, formulas for the absorbed power per 
spin as a function of frequency and strain are derived 
using the density matrix approach. The results of this 
Appendix can be summarized as, 

#sa = -
4 fiuoSr 1 

^ d q = -

3 Ti l+TYCaH-cox) 2 ' 

8 fcoS 2 r 

2Ti 

X 

A^oS;rS(exz
2+eyz

2) 

3 Tx W i+r2
2(co+w2)

2' 

where co=rf frequency measured with respect to zero-

strain resonance frequency 

ui^\Gii{exx+eyy—2ezz) 

= lst-order perturbation strain shift, 

co2= (exy
2+eyz

2+ezx
2)-\ 

tkx)o 8 fuoo 
\CXX 6yy) 

= 2nd-order strain shift for H F L , 

f_Gu2 9 Gn2 

0)2 \&xy \6yz \^zx ) i \Vxx &yy) 

= 2nd-order strain shift for DQL, 

S=g2/32H1
2TiT2=saturation factor SQL and DQL, 

S, = g2p2H1
2T^T2=saturation factor for H F L . 

Note that the g in S' is the same as the g in S. This 
occurs because the strength of the rf matrix element for 
the HFL was calculated in terms of the rf matrix 
element of the SQL. 

Replacing the finite widths of the resonating denom
inators by an infinitely sharp 8 function amounts to 
the following replacement in an integrand: 

1 7r irh 
>— 5(co-a>i) = — 8{E-EX). 

l+r2
2(co-a>i)2 T2 T2 

Changing the frequency to energy units will be con
venient later on. 

This substitution is justified if the intensity of the 
line does not change significantly in a frequency interval 
Aco^TY"1, a condition which is always satisfied for the 
SQL and which is usually satisfied for the HFL. On 
the other hand, it will be found that this replacement is 
not a particularly good assumption for the DQL 
because in this approximation the DQL shows a dis
continuous derivative. I t does, however, produce a 
simplification that allows one to perform the calculation 
and one can in fact get good qualitative results for the 
DQL by adding T2 as a broadening mechanism at the 
end of the calculation. 

The method of distributions of strains consists of 
entering the R's in an integrand which is summed over 
the probability distributions of strains. Thus one has, 
when substituting in the appropriate 8 functions, 

[ l + ^2
2(co+aJl+a?2

/)2]Cl + ^2 2 (a J -a J l+c . 2
/ ) 2 ] , / ( £ ) s 

47rfeo (gpHTi)
2r 

3 ft 

4TT (gmnYr f S(exz
2+eyz

2) 

3 fi J (ftcoo)2 

/ 

7-

h{E-E1)P{E1)dE1, 

X5(£-£ 2 )P(£ ! ! ) r f£2 , 
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7(£)d q=8xfe0(^2H2 , f)
2rr1 

X /*8(£i) d(E-Ei)P(EhE2)dE1dE2, 

where 

P(Ei) = f SlEl-Gn(exx+eyi/-2ezz)']P(e)de, 

f T 2Gu2 

P(£ , )= / « £ i — ; — ( ^ 2 + e „ 2 + e „ 2 ) 
flO)Q 

9Gi; 

8 feo 

' " / • 

P(£iE,)= / 8[£ 1 -Gu(e„+e y , -2«. , ) ] 

r G442 

XS £2 (e«»*+e».*+e„s) 

16 fco 
-(<»-eM)2 \P(e)de, 

W W (e,x2H 

1 1 

(e**2+A2) O W + A 2 ) (ez*
2+A2) 

1 1 1 
X-

(c'+S2) (ey,»+8«) fe*2+S2) 

I n Appendix 2, the evaluation of the above integrals 
was carried out as far as possible in terms of closed form 
expressions. The result is 

4TT {gWriY 3GUA 1 
2"(E)aq=—ftco0 r . 

3 ft 7T £ 2 + ( 3 G n A ) 2 

4TT (gpffrf)2 / 1 6 6a1/2\ 
7(JE)hf=—*wo T( — X ) 

3 ft \37T3 ftwo / 

(1) 

dyHib/y) rl dyH(< 
X 

Jo y(l—y+a 
0 y(l-y+a)(l-y) 1/2 

with 

H(b/y) 

-C-
Jo [x' 

dx 

and 

0 l^+(fi/y)Xl-x'+(b/y)Ji*0.-xt+(2l>/y)'] 

2[(8/3)GnA]2 2S2Gi42 

a = , & = — — , (2) 

J(£)dq=8A,0(g/3ffr,)
2r1rf fciV2) 

\ir2 era2 / 

x/' 
. / 0 

dyHih/y) 

with 
0 ^ ( l - ^ ' t t - y + ^ i X i - y + f l i ) 

(3) 

-c«**-o2 k w ^ and 
I>2+ (&i/y)][i-x2+ ( V y ) ] 1 / 2 [ i - ^ + (26i/y)D 

[(8/3)AGn]2 52G44
2 

ftco0£ fioi{\E 

hcooE fia)oE 

e=(4/3)GnA, n = Gu8. 

Graphs of the functions I{E)u and I{E)^ have been 
obtained using a computer program to evaluate the 
integrals. The results, plotted in terms of the dimension-
less variables (l/a) = 9Eha)o/128G11

2A2 and (1/ai) 
= (2/a), are shown in Figs. 2 and 3. Even though the 
width depends on the ratio a/b, the shapes are insensi
tive to the ratio and hence only the case a=b is shown. 

The H F L and D Q L shapes are broad and have 
relatively steep slopes a t the high-field or zero-strain 
side of the lines. Because of this, the derivatives of the 
line shapes are significantly different from zero only for 
small strains and the derivatives are asymmetric. 
Another characteristic common to these resonances is 
tha t they get narrower as the spectrometer frequency is 
increased because they scale according to the factor 
1/a or 1/ai as the case may be. 

The line shapes are not valid for large 1/a because 
the theory does not take into account the fact t h a t 
imperfections can no t be nearer the paramagnetic ions 
than nearest-neighbor sites. 

HEIGHT AND WIDTH COMPARISONS 
OF SQL AND HFL 

I t is useful, in terms of comparing theory and 
experiment, to make a quant i ta t ive comparison of 
relative widths and heights using the above theory. 
Because the SQL and D Q L intensities va ry differently 
with rf power, a comparison of heights is no t convenient 
in this case. As a result, height and width comparisons 
of the SQL and H F L will be made and the widths of the 
H F L and D Q L will be compared. 

For a paramagnetic spectrometer with linear detec
tion the ou tpu t voltage (deflection of recorder pen) is 
proportional to the derivative with respect to magnetic 
field of absorbed power divided by the rf magnetic 
field strength. If the rf power level a t the sample cavity 
is held constant, the ratio of the absorbed power, t ha t is, 
the ratio of the I(E)'s for the SQL and H F L , will yield 
a quant i ty which can be determined experimentally. 
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FIG. 2. The strain induced HFL shape at low frequencies 
assuming a — b. For comparison with experiment the derivative 
shape is included. 

Since spectrometers plot out derivatives of line shapes, 
it will be convenient to express parameters in terms of 
the derivatives of the SQL and HFL. A computer 
program was used to calculate dD(\/a)/d(l/a) versus 
1/a, where, 

/ 1 \ r 1 dyH(, 

\a/ Jo y(l—y+a 

dyH(b/y) 

y{\-y+a)(\-yyi* 

for the three cases a=b, a=4:b, 4#=6. The results are 
illustrated in Fig. 4. As convenient parameters for 
measuring the width and height of the HFL, the width 
at half the maximum height of the derivative, and the 
maximum height of the derivative will.be used. These 
will be compared with the peak-to-peak height of the 
SQL derivative and the width of the SQL between the 
two peaks. From the graphs of the function dD(l/a)/ 
d(l/a), one gets the relationships (accurate to about 
5%), 

dD(l/a) 

d{\/a) 

Wh{-

- 0 .32(-

128Gn2A2 

and 

dl(e)b 

28GiiW /b\° 
3.0 -

9fco \a' 

(4) 

dE 

/47rWg2 /32#rf2 \ / 16 \ 

X-
dD(i/a) 

d(l/a) 

d(l/a) 

,x dE 

The peak-to-peak width and height of the SQL 
derivative are given by 

dI{E)., 

\ 3ft / \ 4 x / ( 3 G u A ) 2 " dE 

Tf8a = 2vJGuA. 

In measuring heights, one determines the quantity 

dI(E)\ 
AI=-

d(E) 
M, 

where M is the depth of the magnetic field modulation 
in energy units. Taking the ratio of the two height 
parameters, one gets 

A7hf mhf 

A/8( mSi 

.171-
6, 

(5) 

where m represents the modulation depth in gauss. 
Taking the ratio of the two widths, one finds, if wsq 

and Whf represent the widths in gauss and H2 is the 
magnetic field for g=2, that, 

H2wM/wac> = 2.3(b/a)»M. (6) 

Some features brought out by the height and width 
comparisons are: The width of the HFL is proportional 
to the square of the SQL width and is inversely propor
tional to the spectrometer frequency (Zeeman splitting); 
the ratio of the heights of the derivative curves for the 
SQL and HFL is independent of frequency. 

If one uses Figs. 2 and 3 to compare the half-height 
widths of the HFL and L)QL, one gets the relation 
2wdd=waq, where waq and wBCl are measured in gauss. 

I t is evident that the theory does not determine the 
value of the ratio a/b. 

M = 2 LINE SHAPE AT HIGHER FREQUENCIES 

When the Fe"^ AM= 2 resonances are observed using 
a high-frequency spectrometer (4-mm wavelength), 
a second-order perturbation through the next higher 
spin-orbit state, which can be schematically represented 
as 

(strain) (Zeeman interaction) 

(spin-orbit splitting) 

is effective in producing another strain-broadening 
mechanism. This mechanism, because it depends on 

.08 

.06 

.04 

.02 

n 

- \ 

- J 
-

\ \ 

j/li\/a) 

\ 1 dl(l/a) 
\ 2 d(l/o) 

1 1 

( i l l 

^ ^ ^ ^ - ^ ~ 
D.Q.L. 

. a=b 

-

If \/a) ~ a7 / 2 f dV H(o/y) 
J y2(!-y) , / 2(l-y+4o)(l-y+a) 

1 1 1 . . . .1 

FIG. 3. The strain-induced DQL shape at low frequencies 
for the case a=&. 

will.be


P A R A M A G N E T I C R E S O N A N C E L I N E S H A P E S OF Fe + + A133 

.7 
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o 
^ .3 

~i i i ~i r~ 

WHERE D<i)=ba , / 2 f ^ J 
cT y( l -y+a) ( l -y r 

9 10 ll 12 

FIG. 4. The low-frequency HFL shape for different values 
of the ratio a/b. 

the Zeeman interaction, represents a strain-induced g 
shift. The distribution of strains implies a distribution of 
g's and hence a linewidth. 

Because excited states within a manifold of a spin-
orbit multiplet are involved, the strain interaction must 
be expressed in terms of a more general orbital-strain 
interaction instead of the "effective spin" strain interac
tion used above. In order to calculate the size of the 
orbital-strain coupling constants, this same interaction 
in terms of orbital operators is applied as a perturbation 
between the ground-state triplet eigenfunctions. These 
eigenfunctions are expressed as products of spin and 
orbital operators and result from applying crystal field, 
spin-orbit, and Zeeman perturbations in succession to 
the 5D free ion configuration of F e ^ . For the case of 
the ground state triplet levels, the magnitude of the 
orbital-strain coupling constants can then be found in 
terms of the equally applicable "effective spin" strain 
interaction, for which the coupling constants are known. 

Using this procedure, one has for the relative energy 
shift between the Af, = ± l ground states (caused by 
the g distribution perturbation): 

27̂ wo 
V = -Gii(exx-\-eyy—2ezz), 

4X 

where X(L«S) is the spin-orbit coupling. 
The correct way of introducing the new width 

mechanism into the HFL is to include it as part of the 
energy shift factor in the 5 function resonating condi
tion. Thus one has, 

/(E), ,X 4 W S \ r S(exz
2+eyz

2) 

\ T r)f fl20)Q2 

X8ZE-E2(e)-v(e)lP(e)de, 

where P(e), de, and E2 are defined as in the HFL case 
above. This formula takes into account the fact that the 
new width mechanism enters only in the resonating 

frequency condition, but does not relax further the 
forbidden nature of the AM=2 selection rule. Conse
quently, the transition probability matrix element of 
the HFL is still the same. 

Unfortunately this formulation leads to mathematical 
difficulties which cannot be easily circumvented. An 
alternate and sufficiently accurate approach is to find 
the width of the distribution of V as a function of energy 
position E produced by the low-frequency broadening 
mechanism. The unnormalized probability of finding 
the energy shift V at E is 

P(V 

where 

, « = / S[y-E{]b[E-E2-]P(e)de, 

llftoi^Gn 
Ez= (exx+eyy—2ezz). 

4X 

A simple estimate of the effective width of the distribu
tion is given by 

w(v)=—— [p(y,E)dv. 
P(0,E)J 

Using methods similar to those applied in Appendix 
2, one can calculate W(v). The result is, 

V 192XGn / 

X— 

/ ' 
Jo 

f dyH(b/y)/ly2(l-y)^(l-y+a)^ 
Jo 

dy H(b/y)/[y(l-yyt2(l-y+a)(l-y+4a)'] 

One finds that the ratio of the two integrals has the 
asymptotic values 4a for a,b-^><*> and 6a for a, b —> 0. 
Since both extremes of energy shift E give nearly the 
same value of W(v) and it is reasonable that the case 
EC^LI will not give a very different result, one is justified 
in setting 

ll-wtucbGii A 
W= . 

16X 
In addition to having a numerical estimate of the width 
of the new strain mechanism, one has the following 
results: The width of the broadening mechanism is very 
nearly the same for all parts of the HFL (or DQL). 
The strain-broadening mechanism produces a linewidth 
that increases directly with increasing frequency. 

APPLICATION OF g DISTRIBUTION WIDTH 
MECHANISM TO HFL 

Assume that the broadening caused by the distribu
tion of g values has a Lorentzian probability distribu
tion. This is a reasonable approximation because this 
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width mechanism is linear in strain and because the 
strain distributions are Lorentzian. If one forms the 
convolution integral of the two strain width mecha
nisms, the g distribution broadened HFL shape will be 
given by, 

p I{E')MdE' 
I*(E)ht=W . 

Jo (E-E'Y+W2 

With the available spectrometer frequencies one 
finds experimentally that this broadening mechanism, 
in terms of half-height widths of resonance lines, never 
gives contributions appreciably greater than the low-
frequency strain-broadening mechanism. I t is therefore 
of value to express the g shift broadening in terms of a 
more sensitive parameter for which the mechanism 
causes large relative changes at lower frequencies. A 
sensitive parameter to use in observing broadening 
mechanisms is the width of the sharp or high-field side 
of the HFL derivative between the \ and f height 
points. Call this quantity WL> If the line is broadened 
only by the low-frequency strain mechanism, one has 
the relationship, WL = Q.08WM, which can be obtained 
from Fig. 4 graphically. This formula is a good approx
imation whatever the value of a/b because the line shape 
is nearly independent of the ratio. Using Eq. (4) for 
the half-height width WM, one has, 

WL = 0M[ ) ( - ) 
\ 9feo0 / W 

as the low-frequency asymptotic value. In the high-fre
quency limit the HFL shape is given by the expression, 

/*(#)hf-> — U 2 + ( -
16X \ 16X -)] 

From this one can show that what corresponds to WL is 

WL=27Tfk*oGnA/16\. 

If one sets the low-frequency asymptotic expression 
for WL equal to the high-frequency asymptotic expres
sion, a condition for the minimum value of WL is 
obtained. Thus, 

hW/XGnA = 0.64 (b/a)°-u. (7) 

This equation indicates that the frequency at which 
WL is a minimum is directly proportional to the 
magnitude of the strains in a crystal. I t is also evident 
that the ratio a/b must be determined before this 
relationship can be utilized. 

In using the above method to determine the frequency 
of the minimum value of WL, it has been tacitly assumed 
that the curve of WL versus frequency on a log-log 
plot is symmetrical about the minimum value. Because 
the function I(E)hf is complicated, it is not obvious 
that this is the case. However, using Fig. 5 one can 
obtain values of WL versus frequency and show, within 
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FIG. 5. The HFL shape broadened by the g distribution mechan
ism. Several ratios of the broadening parameter are shown. 

graphical errors, that the curve is in fact symmetrical 
and that it has to a good approximation the form 
WL=s(t+o)2)/cx), where the constants s and t can be 
determined from the asymptotic limits of WL. 

COMPUTER PROGRAM FOR g DISTRIBUTION 
BROADENED LINE SHAPES 

To obtain the "broadened" line shapes, a computer 
program has evaluated the function I*(E)ht and /*(E) d q 

as a function of E, for various values of the broadening 
parameter W. The results have been plotted in curve 
form and are illustrated in Figs. 5 and 6. 

The curves plot the derivative functions 

dD*(l/a)ht <*0*i(l/ai)dq 

and 
d(l/a) 

where 

0 W r 
— / 

hf IT J 0 

D l \ - ) = _ 

W l ' d q IT J 0 

d(l/a) 

D(l/a\AW) 
t(l/a)-(l/a')l+ft*' 

' ZMl/aiOdqrfq/fli') 

o [ ( l A i ) - ( l / a i ' ) ] + ^ i 2 

in terms of the dimensionless variables 1/a and l/ah 

where W and Wi represent the broadening parameter 
width in units of 1/a and l/ah respectively, and where 

4:(gt3HTiy 16 
/*(£)hf= T—D* 

3 * 3TT3 \a/M 

\ir2en/ \ # i / d q 

and 

B(-) =ba^j 
dyH(b/y) 

y(l~y+a)(l-y)^ 



P A R A M A G N E T I C R E S O N A N C E L I N E S H A P E S O F F e + + A135 

D1(~) = M i 1 / 2 ( 
W d q Jo 3>2(1-

dyH(h/y) 

y)1 /2(l-y+4ai)(l-y+a0 

EXPERIMENTAL RESULTS 

Strain as a Line-Shape Mechanism 

A simple check on the assumption of strain broaden
ing is to compare the strain-broadened SQL width with 
the strain-broadened width of another ion species 
present as an impurity in the crystal. It has been 
shown that the energy shift of the SQL in the presence 
of strains is 

A£s :,=fGi \pxx\&yy £6zz) 

if the magnetic field is along the [100*] crystal axis. 
Correspondingly, by using the same method and the 
same crystal orientation relative to the magnetic field, 
it can be shbwn that the energy shift of the Mn"14 

( | to f transition) is given by 

MI1++ has an S=% effective spin ground state. If one 
assumes that the widths of the stochastic distributions 
of cartesian strain components are the same at both the 
Mn++ and the Fe++ sites, then, using Watkins'2 or 
Shiren's4 G values, one can show that the ratio of the 
Mn++ (l—f) linewidth to the SQL width is given by 

J W ^ S Q L = 0 . 0 0 3 2 5 . 

The Mn++ (£,§) and the Mn++ ( J , - J ) widths were 
measured for samples in which the SQL widths were 
also known. The M n ^ (J ,~i) line is not broadened 
by strains and very likely its width is determined by 
dipolar broadening. Therefore the Mn++ (J,—§) 
linewidth was subtracted from the Mn++ (|,f) width 
and the difference, presumably due to strains, was 
plotted against the width of the SQL. The results of this 
plot are shown in Fig. 7. The agreement between the 
theoretical ratio of strain widths and the experimentally 
measured ratio is good. 
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FIG. 7. Comparison of 
widths of Fe+ + SQL and 
Mn"1"1* ( | - | ) resonances. 
The magnetic field is 
along the (100) axis of 
the crystal. Each point 
corresponds to a dif
ferent sample. 
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FIG. 6. The DQL shape broadened by the 
g distribution mechanism. 

The theory of strain-induced line shapes predicts 
several relationships between the paramagnetic res
onances of the Fe"^ system. Some of these relationships 
will now be compared with experimental results. 

Because the width of the HFL at low rf frequencies 
is a second-order perturbation of strain broadening, the 
width of the HFL is proportional to the square of the 
SQL width. This feature is verified by a comparison of 
the SQL and HFL widths measured at 9.5 Gc/sec and 
illustrated in Fig. 8. 

Additional evidence is supplied by the detailed shape 
of the HFL. In Fig. 9 is shown a picture of the HFL 
resonance observed at 9.5 Gc/sec and at 4°K. This 
picture illustrates the low-frequency limit of strain-
broadened line shape. If one subtracts off the baseline 
variation which is due to the SQL (see Fig. 1), and 
compares the resulting picture with the theoretical 
HFL shape shown in Fig. 5, the agreement is excellent. 

One also finds experimentally that the width of the 
HFL varies inversely with the spectrometer frequency 
in the low-frequency limit. This feature is not illustrated. 

The Ratio a/b 

The width and height of the HFL are given in terms 
of the variables a and b, where 

l/a=9£W128GiM2, 1/4 = Ehu0/2Gu2d2. 

Taking the average of Watkins' and Shiren's values of 
Gn and Gu quoted above, the ratio of a/b is given by 
a/b==16(A/8)2. 

Equation (5) gives the ratio of the maximum height 
of the derivative of the HFL to the peak-to-peak height 
of the SGL. The quantity I(E)hi?n8(l/I(E)aQtnM has 
been measured at 9 Gc/sec for about a dozen samples 
with the result, 

I(E)hfm8q/I(E)acimhi = 2.0±0.3. 

From this one has the estimate a/b= 13. 
Equation (6) gives the relationship between the HFL 

and SQL widths. From the graph of Fig. 8, which plots 
the HFL width against the SQL width for several 
samples at X band, one obtains 

H2wh{/wa(l
2 = 0.16. 

One therefore has the estimate a/b =15. Using the 
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average value of a/b, a/b = 14, one has the result, 

A/5=0.94«l. 

One intuitively expects A/5—1. The fact that this 
expectation has been substantiated is further evidence 
to support the strain-mechanism hypothesis of line 
shapes. 

Evidence for the g Distribution 
Broadening Mechanism 

In the theory of line shapes it was indicated that WL 
has the form 

WL = s(t+G?)/G>. 

If the plot of WL versus frequency co is made on a 
log-log scale, the shape of the curve, aside from 
translational shifting of position, is given by (l+co2)/co. 
Experimentally the constants s and t are determined 
by moving this trial curve in a horizontal or vertical 
direction until it fits over the data points. This exper
imentally determined fit to the function is shown in 
Fig. 10. It is apparent that the width parameter WL 
has a minimum in the neighborhood of 10 Gc/sec. 

The broadening produced by the g distribution 
mechanism can be estimated from theory by using the 
measured values of the SQL width and the value of the 
ratio a/b. Using these values, the theoretical condition 
for the minimum of TFL, Eq. (7), becomes 

co2=0.28wsq, 

where co is the frequency in Gc/sec and wsq is the peak-
to-peak width of the SQL measured in gauss. This 
relationship also predicts, within the accuracy of the 
theory, that the minimum occurs near 10 Gc/sec. 

H.F.L. 

RB53 SAMPLE 

33-Lg0/INCH 

As additional evidence one has the following experi
mental information which can also be predicted from 
the theory. 

The width parameter WL measured at 72 Gc/sec, 
where the low-frequency strain mechanism gives an 
insignificant contribution to the width, correlates well 
with the SQL width, which is a measure of strain. The 
graph of WL at 72 Gc/sec versus SQL width shown in 
Fig. 11 implies that these two widths are directly 
proportional to one another. 

The width increase of WL is directly proportional to 
spectrometer frequency. The RBI sample in Fig. 10 
illustrates this behavior. 

The minimum of WL decreases in frequency as the 
magnitude of strains in the crystal decreases. Compare 
the frequency of the minimum for the RBI sample 
(Fig. 10), which has a SQL width of 400 G, with the 
RB54 samples for which the SQL width is about 1000 G. 

Measurements on the width of the high field edge of 
the DQL also exhibit broadening as frequency is 
increased. Thus the width mechanism is not a pecularity 
of either the HFL or the SQL. 

- i—i i i i n i 

8 3 

FIG. 10. The width 
WL of the high-field 
edge pi the HFL as a 
function of spectrometer 
frequency for several 
samples. 

FIG. 9. The HFL derivative shape measured at 9.5 Gc/sec 
illustrating the low-frequency limit of strain broadening. Magnetic 
field increases to the left. 

CONCLUSIONS 

The theory of strain broadening of the F e ^ reso
nances using a model of stochastic distribution of 
Cartesian strain components at the paramagnetic ion 
sites gives only one adjustable parameter, the ratio 
a/b. Even this parameter is not completely arbitrary 
because it is proportional to the ratio of diagonal to 
off-diagonal strain-distribution widths, which one 
intuitively expects to be about unity. Experimental 
results quantitatively verify the applicability of this 
theory in many essential details. There is little doubt 
that strains in the crystal field potential cause the 
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FIG. 11. The width parameter WL at 72 Gc/sec versus SQL width. 
Each point corresponds to a different sample. 

observed Fe~H~ paramagnetic resonance line shapes both 
at low frequencies and at high frequencies, for which 
cases two different strain-broadening mechanisms are 
operative. 
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APPENDIX 1 

Density Matrix Approach to the DQL 

The treatment of the DQL in terms of second-order 
rf field perturbation theory is complicated by the 
presence of the SQL transition. Since contribution to 
the DQL occurs for the case of little or no first-order 
strain shifts, the energy denominator encountered in 
second-order perturbation theory becomes vanishingly 
small, making the perturbation expression arbitrarily 
large. For this reason perturbation theory is not valid 
and the density matrix approach is used. 

The energy differences of the 3 levels of the ground 
state in an applied magnetic field which produces the 
Zeeman splitting fto)0y subjected to the first-order strain 
shift &coi, and the second-order strain shift &co2, can be 
taken to be 

Wl2 = COO+051+C02 , 

CJ23= :Wo— CO1+CO2 C0i3 = 2 o ; o + 2 C 0 2 . 

The time variation of the density matrix is given by 

where n and m vary over the levels 1, 2, and 3. 

The static magnetic field part of the Hamiltonian is 

«JC n m = gO-tl (JO n m = hi n0 n m 

and the rf magnetic field interaction is 
'XP = ohH P~% ̂ nm t+<l>nm) = V v^nm — s U £ 1 nmP — V nm > 

the rf fields. The relaxation of the diagonal and off-
diagonal density matrix components are treated in the 
usual phenomenological fashion by setting, 

(Pnn)relax = 1/Ti J j (pnpkk — pkPnn) , 
k 

(finm)relax = (^/T2)pnm , Yl^M. 

The components of the density matrix with a single 
subscript denote thermal equilibrium values in the 
absence of the rf field. This formulation includes the 
principle of detailed balancing and assumes, for 
simplicity, that all of the diagonal relaxation times are 
the same, Th and that all of the off-diagonal relaxation 
times are the same, T2. By assuming only one value of 
T\, the resulting expression will be altered only in the 
limit of saturation. The density-matrix equations can 
then be written as 

Pnn— (l/Ti)Yl(pnPkk-~pkpnn) 
k 

+ (l/ih)Yd(VnkPkn — pnkVkn) , 
k 

Pnm^ — ( l / r 2 ) p n m + ( V * ) (En—Em)pnm 

+ (l/ih)Yl(Vnkpkm — pnkVkm) , U^M. 
k 

Following Clogston,6 one makes in succession the 
substitutions, 

Pnm=o-nme~ib>nmt+pnm°, where o)nm=^ (En—Em) 

gbEnk 
(Tnk=\nke-i(^n]^cank)t, wi th Ank= ei<f,nk. 

Keeping only the secular terms, the result is 

0==Yl(Pn^kk—pk^nn)-\-iTi^(Ank\kn — \nkAkn) 
k k 

l+iT2(wnm—tinm) = iT2Yd(Ank\km—'knkAkm), n^m. 
k 

In the case of the DQL and SQL transitions there is 
only one applied rf field so that one can set, 

^12=^23= (gbHTf/2h)=A , .413=0, 12i2=fi23=fi. 

These conditions correspond to the application of an rf 
field which is near resonance for the SQL and DQL. 

One can further simplify the subsequent expressions 
by making the substitutions, 

[l+£T2(coi2—Q)]=a, 

[l-Hr2(co13--20)>/3, 

[l+£T2(a>28—0)]=7. 

The equations of the six independent components of 

where Q,nm and <t>nm are the frequencies and phases of 6 A. M. Clogston, Phys. Chem. Solids 4, 271 (1958). 
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the density matrix are then 

Pl(X22+X33)— (p2+P3)Xll+^^l(X2 l — X12) , (Al) 

P2(Xll + X33)— (pl+Pd)^22+iATi[_(\19 — X21) 

+ (X32+X23)], (A2) 

P3(Xll+X22)— (pi+P2)X33+^^l(X23 —X32) , (A3) 

aXi2 = ^r2[(X22—X11)—X13], 

jsxi3=i^r2(x23—X12), 

7X23 = iA T2 (X33—X22+Xi3). 

The rf power absorbed per spin is equal to the amount 
of power dissipated through spin-lattice relaxation. 
This is given by, 

R=gbH0[(\dz—Xn)— (p3—Pi)]. 

By solving the 6 simultaneous equations for the 
components of the density matrix to get Xn and X33, 
and substituting the expressions for these quantities 
into equation, the absorbed power per spin is 

R=-
gbH0rS\ 

37\ 

(P+Q+AN)+6S(PQ+PN+QN) 

Ll+2S(P+Q+N)+3S2(PQ+PN+QN)J 

where T^gbHo/kT is the Boltzmann factor, S=A2TiT2 

is the saturation factor, and where 

^ Y + c ^ V + ^ T , 2 ' raft 
] • ^Y+^ 2 r 2

2 (a :+7) | 2 -

21 fry 12+A2T2
2Z(a+y)p*y*+ (fl*+j*)Py] 

\a(3y+A2T2
2(a+y)\2 

2|/3a|2+^2r2
2[(o:+7)«*iS*+(a*+T*)^] 

|^7+^ 23 n2 2(a+7) | 2 

quantities Ti and T2 is not a good assumption if S> 1, 
and for this reason the validity of the above equations 
in the limit of saturation is questionable. 

If one uses the intensity behavior with rf power to 
discriminate between the terms producing the SQL 
and DQL, one finds that parts of the terms P and Q 
vary as the rf field squared and are responsible for the 
SQL. For the unsaturated case one has 

Rsa = 
bH^rr 2 2 n 

3Tt L\a\2 M2-! 

If one sums over coi, one need not distinguish between 
the resonating denominator factors | a | 2 and I7I2. 
Picking out the terms which vary as the fourth power 
of the rf field strength as the source of the DQL, the 
result for usual the case of T2<CT\ is 

-Rdq=-
SgbHQrS2\ r—i-

In a similar manner one can apply the density matrix 
method to calculate the power absorbed per spin for 
the HFL transition. If the HFL is not saturated, the 
result is 

Rht= 
/4,gbHoS;ryS(eJ+eyz

2)\r 1 1 

\ 3ZY A ftW /Ll+(co+co 2 ) 2 r 2
2J 

Redfield7 has discussed the effects of saturation on 
the Bloch and hence on the density matrix theory. 
He indicates that the use of the phenomenological from some constant factors) is given by 

where S' = g2b2Hx
2T1'T2 and TV is the AM =2 spin-

lattice relaxation time. 

APPENDIX 2 

Calculation of Strain-Induced Line Shapes 

As an example of this calculation, the HFL will be 
used. Calculations for the SQL and DQL shapes 
proceed in an analogous fashion. 

Using the results of Appendix 1 and assumptions 
quoted in the text, the intensity of the HFL (aside 

8G442 r °° r r : 
1(E) = / . . . / (ex

2+ey
2)b\E-

flCOQ 

\&zx ) \CX 

8 feo0 

X 0*9' dex dev dex dev dez 

(exx
2+A2) (eyy

2+A2) (exy
2+82) (eyz+82) (ezx

2+52) 

E represents the energy shift from the unstrained Then, since aside from the factor exz
2+eyz

2, the integral 
Zeeman splitting. Make the following substitutions: 

EnaiQ 

2 

3 X 
&XX~ J 

4 Gu 

u 
&xy— j 

Gu 
3 y 

em 4GU 

V 

eyz=—, 
(JTU 

Gu"=n, 

w 
6ZX 

G44 

3 ^ 1 1 = € 

is symmetric m exy, eyzy ezx, one gets 

(u2-\-v2-\-w2)dudvdw 
i(®=-

S'ho), 0 Mr J J (u2 

X-
dxdy 

7 A. R. Redfield, Phys. Rev. 98, 1787 (1955). (x2+e2)(y2+e2) 

(u2-\-n2) (v2+n2) (w2+n2) 

8£E- (u
2+v2+w2)-(x-y)2']. 
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This can be written in the form 

8 C% . . . 
/ (£ ) = — / F(E1)G(E~E1)dEu 

3/zcoo J o 

where 

F *>-///© 

{u2-\-v2-\-w2)dudvdwh{Ei— (u2JrV2-\-w2)~] 
X , 

(u2+n2) (v2-\-n2) (w2+n2) 

<?(&) = (-Y f f- ^ r -SC^-^-j)2]. 
W J J (*2+e2)(;y2+e2) 

Changing the first integral to "spherical coordinates," 
the result is, 

^-0'IIh 
rAdr sindddd^iEi-r2) 

(r2 cos2d+n2) (r2 sin2(9 cos20+^2) (r2 sin20 sin20+w2) 

Eliminating the 8 function, 

l/n\z r E^sinddd 
F(E0—f 

Since the Jacobian of the transformation is J, the 
result is 

2\7r/7o 0i cos26+n2) 
2« d<j> flic 

X -^—: 
J o (Ei si 

c(A,=s07/ <£/> dq(Ez-f) 

C(g+/»)2+4e2][(g-/»)2+4e2] 

Doing the <j> integral, 

F(£0 = 2 ( -W 2 

X 

sin20sin20+w2)(£lSin2ecosV+w2)' Eliminating the 5 function and contour integrating, 
one has, 

1 tit 
G(£2)=- . . 

2£2
1'2V7r/£2+4e2 2\ir/E2+< 

Jo 0u 
sinddO 

Substituting the expressions for G and F into 7(E) 
and letting y=fii/£} a= (2e)2/E, b = n2/fi, b/y=n2/£h 

the final result is 
cos20+?*2) 0i sm26+2n2) 0i sin20+n2)1/2 

Let #=cos0. Then, 

n\2 rl dx 

/ (£) = -
16 6a1'2 dyH(b/y) & rl dyH( 

o 70 y(l—y+a 

F $ 0 = 4 £ i w ( - ) /* 
^i^+t 

X 

Hib/y) 

^_ -f. 
01-Elx

2+n2^2 01-Ax2+2n2) w h e r e 

37r3 feo0 Jo y(l—y+a)(\—y) 

dx 

1/2 

It is not possible to simplify this expression further. 
In solving for the integral G, let p=x—y, q=x+y. 

[x2+ (b/y)Xi-x2+ (V:y)]1/2[i-tf2+ (2Wy)l 

128Gu2A2 252G44
2 

a= , &=• 
9fc0£ fiuoE 


